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Fast magnetic reconnection with large guide fields
A. Stanier,1, a) Andrei N. Simakov,1 L. Chacón,1 and W. Daughton1

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Dated: 11 December 2014)

In this Letter, it is demonstrated using two-fluid simulations that low-β magnetic reconnection remains fast,
regardless of the presence of fast dispersive waves, which have been previously suggested to play a critical
role. To understand these results, a discrete model is constructed that offers scaling relationships for the
reconnection rate and dissipation region (DR) thickness in terms of the upstream magnetic field and DR
length. We verify these scalings numerically, and show how the DR self-adjusts to process magnetic flux at
the same rate that it is supplied to a larger region where two-fluid effects become important. The rate is
therefore independent of the DR physics, and is in good agreement with kinetic results.

Magnetic reconnection is the changing of magnetic
field-line connectivity within highly conducting plasmas
by localised magnetic flux unfreezing. Low-β reconnec-
tion, where the magnetic field is dominated by a strong
guide component B0ẑ, is the regime pertinent to labora-
tory magnetic confinement devices,1–5 the solar corona,6

and other magnetically dominated astrophysical environ-
ments. Despite the importance of these applications, low-
β reconnection remains poorly understood.
An outstanding theoretical question concerns the fast

timescales of reconnection in nature, compared to col-
lisional timescales. Numerical and analytic models7–11

have shown that low-β reconnection can be fast, inde-
pendent of collisional dissipation and system-size, when
the collisional dissipation region (DR) thickness, δ,

falls below the sound-Larmor radius ρs=
√
Te/mi/Ωci.

Here, Te is the electron temperature, mi the ion mass,
Ωci=qB0/mi the ion-cyclotron frequency, and q the ion
charge.
While there is still no rigorous theory, it has been

suggested10 that fast-dispersive waves (FDWs), with fre-
quency ω∝ k2 for wavenumber k, play a critical role in
facilitating fast reconnection. However, recent low-β ki-
netic simulations12,13 have demonstrated that reconnec-
tion remains fast even in the absence of FDWs. Fast-
reconnection can also occur in pair-plasmas that do not
support such waves,14–16 and in the single-fluid limit with
non-uniform dissipation.17,18 Finally, in time-dependent
studies, faster than exponential tearing growth-rates
have been demonstrated in the non-linear regime when
finite electron inertia,19 or finite ion gyro-radius,20–22 ef-
fects are included.
In this Letter, we show that low-β reconnection is

formally fast (Alfvénic, and independent of collisional
dissipation and system-size) for both ρs>de (case with
FDWs) and ρs ≤ de (no FDW case), where de=c/ωpe is
the electron skin-depth, c the speed of light, and ωpe the
electron plasma frequency. To understand why reconnec-
tion is fast in both cases, we perform a quasi steady-state
analysis of the DR and its coupling to the surrounding re-
gion where two-fluid effects are important. This analysis

a)Electronic mail: stanier@lanl.gov

offers scaling relationships for the DR thickness and re-
connection rate in terms of the upstream magnetic field
and the DR length. It is an extension of previous dis-
crete DR models in electron MHD,23,24 Hall-MHD,25,26

pair-plasmas,16 and a low-β regime with resistive DRs
and finite-ρs.

11 The scalings we obtain are carefully ver-
ified by two-fluid simulations, and related to the mag-
netic field and length of a surrounding region in which
two-fluid effects become important. For both cases, the
DR self-adjusts to permit reconnection at the rate set
by the inflow of flux into this larger region of thickness
h=max[ρs, de]. Specifically, the DR maintains a constant
aspect-ratio when δ < ρs, and the upstream magnetic
field Bx ∝ δ when δ < h. The resultant rates are inde-
pendent of the DR physics, so that two-fluid simulations
can reproduce the fast-reconnection observed in kinetic
simulations.12,13,27

Two-field model. The low-β, two-field reconnec-
tion equations,7–9,11,28,29 normalised by a characteristic
Alfvén velocity and macroscopic length-scale, are

(∂t + v ·∇)ω = B ·∇j + µ∇2ω, (1)

∂tB
∗ −∇× (v ×B∗) = ρ2s∇× [B × (ẑ ×∇ω)] (2)

− ∇×
[
∇×

(
ηB − ηH∇2B

)]
,

whereB=ẑ×∇ψ is the in-plane magnetic field with mag-
netic flux ψ, v=ẑ×∇ϕ the in-plane velocity with stream-
function ϕ, ω=ẑ·∇×v the vorticity, j=ẑ·∇×B the
out-of-plane current density, and B∗=B+d2e∇×(∇×B).
Also, µ is the ion collisional viscosity, η the plasma
resistivity, and ηH=d2iµe the hyper-resistivity with

di=
√
mi/mede the ion-skin depth, and µe the electron

collisional viscosity.30 When de=η=ηH=0, Eq. (2) be-
comes ∂tψ+vs·∇ψ=0, where vs=ẑ×∇

(
ϕ−ρ2s∇2ϕ

)
is the

velocity that carries the frozen-in magnetic flux.9,31 Phys-
ically, this is an electron perpendicular velocity that com-
bines the E ×B and diamagnetic drifts.

In a uniform collisionless (η=µ=ηH=0) plasma,
Eqs. (1,2) support waves with dispersion relation

ω = k∥
√
(1 + ρ2sk

2)/(1 + d2ek
2), (3)

where k∥=b̂0·k, and b̂0 is the unit vector along the

magnetic field. In the limit ρ2sk
2 ≫ 1≫ d2ek

2, Eq. (3)
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FIG. 1. a) Peak rates in island coalescence runs. b) Nor-
malised rates against system-size (Lx/Lx0, where Lx0 =100h)
from fluid (uniform ηH =10−9) and PIC Harris-sheet sim-
ulations. Fluid simulations are: de = ρs =0 (black ▽);
de =5ρs =10−2 (orange △); de =10−2, ρs =0 (green ×);
ρs =5de =10−2 (blue ⃝); and ρs =10−2, de =0 (red +). The
PIC runs have de =5ρs =10−2 (red �).

describes the fast-dispersive kinetic Alfvén wave with
ω=ρsk∥k. However, for ρs ≤ de there are no FDWs.

Numerical results. We solved Eqs. (1, 2) numerically
with the low-β formulation32 of the PIXIE2D code,33,34

for the island coalescence and Harris sheet reconnec-
tion problems. The island coalescence calculations were
solved in a quarter domain [0, 1]× [0, 1] with initial con-
ditions identical to those in Ref. 35. The fluid Harris-
sheet runs used a half-domain [−Lx, Lx]× [0, 0.5] with
equilibrium current-sheet thickness λ=1/(8π)≈ 4h, and
initiated with a 3% perturbation of the upstream field
strength. The Harris sheet runs were also compared with
fully kinetic particle-in-cell (PIC) simulations using the
VPIC code,36 with the same fluid-scale parameters37 and
initial conditions. For the fluid simulations, we focus on
viscous DRs (η=0; ηH , µ ̸=0), as resistivity alone can
not prevent DR collapse for δ <h.11,24 The ratio of ion
viscosity to hyper-resistivity is set at µ/ηH=104, which
provides sufficient dissipation in Eq. (1) to prevent nu-
merical instability, while remaining close to the inviscid
limit (several simulations were repeated for µ→ 0, with
results largely unchanged). The precise value of µ/ηH
chosen does not affect our conclusions.

Figure 1a shows the dependence of the peak recon-
nection rate, Ez = ∂tψ|X evaluated at the X-point and
normalised to the Alfvénic rate on the edge of the do-
main, on collisional dissipation, ηH , from a series of
island-coalescence simulations. Shown are two-fluid cases
without FDWs (orange △ and green ×), with FDWs
(blue ⃝ and red +), and the single-fluid case (black ▽).
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FIG. 2. Schematic of the reconnection region geometry. The
dissipation region (DR, red) is defined with thickness δ, which
depends on collisional dissipation, and length w, set by the
extent of flux carrying outflow jets vsx. This is embedded
in a larger two-fluid region (purple) defined with thickness
h = max(ρs, de), and length wv set by the extent of single-
fluid outflow jets vx.

The single-fluid rate with uniform ηH is formally slow
(dissipation dependent) as Ez∝η0.252H . However, in all
two-fluid cases the rate becomes dissipation independent
when δ falls below h; as ηH is reduced the DR thickness
δ decreases, and we find that δ . h for ηH . 10−8 in
these simulations. In these runs, the rates are also in-
dependent of the smallest two-fluid scale, p=min[ρs, de],
as they are the same for p=0 (green × and red +) and
for p ̸=0 (orange △ and blue ⃝), even when δ falls be-
low p (which occurs for ηH . 10−9.5). We note that the
reconnection rate obtained for Harris-sheet simulations
in runs without significant secondary island formation is
also independent of ηH when δ≪h (not shown).

Figure 1b shows the variation of the normalised peak
reconnection rate < E∗

z > with system-size (Lx/Lx0,
where Lx0 =100h) from fluid and PIC Harris-sheet sim-
ulations. Here

< E∗
z > =

1

(x̂ · vA)(x̂ ·B)

⟨
∂ψr

∂t

⟩
, (4)

where ψr =max(ψ)−min(ψ) is the flux difference be-
tween dominant X and O-points, <> is an average over
the time required for an Alfvén wave to cross the whole
box in the inflow direction, and (x̂ · vA)(x̂ · B) is the
Alfvén rate at 4h upstream of the main X-point.38 De-
spite a factor of 16 change in Lx, there is no appreciable
variation in < E∗

z > for cases with or without FDWs.
Also, for the case without FDWs, fluid rates closely fol-
low the PIC rates, implying that Eqs. (1, 2) contain suffi-
cient physics to reproduce the fast rates recently demon-
strated in kinetic simulations without FDWs.12,13 Note
that < E∗

z > is a significant fraction of an Alfvénic rate
in both cases, with and without FDWs, so that both
cases satisfy all criteria for fast-reconnection: the rate is
Alfvénic, independent of dissipation and of system-size.
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Analytic model. To construct the analytic model,
Eqs. (1, 2) are discretised at a DR of thickness δ and
length w, as shown in Fig. 2, using the technique of
Refs. 11, 16, and 23. The discrete magnetic field com-
ponents are Bx = x̂ ·B(0, δ/2), By = ŷ ·B(w/2, 0), and
the discrete single-fluid velocities are vy = − 2Φ/w and
vx =2Φ/δ, defined with the discrete flow stream func-
tion Φ= − ϕ(w/2, δ/2). We focus on quasi-steady be-
haviour, where time derivatives are small and can be ne-
glected. This is often a good approximation when the
system reaches non-linear saturation, such as at the time
of peak reconnection rate in the island-coalescence prob-
lem.39 Neglecting numerical factors of order unity gives
three equations that can be solved parametrically for five
unknowns (δ, w,Bx, By,Φ)

Φ2

δw

(
1

δ2
− 1

w2

)
+

(
Bx

w
+
By

δ

)(
By

w
−Bx

δ

)
=−µΦ∆2, (5)

− Φ

δw

[
Bx

(
1+ρ2s∆

)
−d2e

(
By

δw
−Bx

δ2

)]
=D

(
By

δw
−Bx

δ2

)
,

(6)

Φ

δw

[
By

(
1+ρ2s∆

)
−d2e

(
Bx

δw
−By

w2

)]
=D

(
Bx

δw
−By

w2

)
, (7)

where D= η+ ηH∆, and ∆= δ−2 +w−2. This set of dis-
crete equations combine the finite-ρs terms of Ref. 11 and
the finite-de terms of Ref. 16.
To simplify Eqs. (5-7), we assume that the aspect-ratio

δ/w is small, such that the approximation 1+ δ2/w2 ≈
1− δ2/w2 ≈ 1 is valid. It is also assumed that the DR
length is large enough such that w2/d2e ≫ 1. Both of
these assumptions are motivated by the numerical simu-
lations used in Fig. 1, where they are well satisfied. Fi-
nally, as in the simulations, we set η = 0.
Eliminating Φ and By gives an equation for δ(Bx, w),

δ4

w8

(
δ2 + ρ2s + d2e

)3
δ2 + ρ2s

=
1

S2
H

[
1+

µ(δ2 + ρ2s + d2e)

ηH

]
, (8)

where SH ≡
√
2Bxw

3/ηH is the hyper-resistive Lundquist
number. The quasi-steady (∂tj = 0) reconnection rate is
then

Ez ≈ D

(
Bx

δ
− By

w

)
≈ ηHBx/δ

3. (9)

Single-fluid case (δ2≫max[ρ2s, d
2
e]). Assuming µ=0,

and using Eqs. (8,9) gives the well-known scalings40

δ = δH ≡ wS
−1/4
H , Ez = EzH ≡

√
2B2

xS
−1/4
H . (10)

From numerical simulations, the DR length w is a macro-
scopic length-scale that corresponds to the distance be-
tween maxima of the ion outflow jets. For µ ̸=0 two
limiting cases are possible. When

√
SH/Sµ ≪ 1, where

Sµ =
√
2Bxw/µ is the viscous Lundquist number, the rate

has a small correction Ez ≈EzH

(
1− 3

√
SH/8Sµ

)
, but

for
√
SH/Sµ ≫ 1 the rate can be significantly reduced

Ez =EzHS
1/2
µ S

−1/4
H . The rate Ez ∝S

−1/4
H is shown in

Fig. 1a (black inverted triangles), where Bx, w∝ η0H .
Two-fluid case without FDWs (d2e≫ρ2s, δ

2). In what
follows, we assume for simplicity that the ratio of ion
to electron viscosity is fixed to the simulation value,
µ/ηH =1/(ρ2s + d2e) ≈ 104, and discuss the effect of
varying ion viscosity below. We consider two limiting
cases: for d2e ≫ δ2 ≫ ρ2s, Eqs. (8,9) give δ=w ηH/(Bx d

3
e),

and Ez =B4
x d

9
e/(η

2
H w3); for d2e ≫ ρ2s ≫ δ2 we get

δ= [w ηH ρs/(Bx d
3
e)]

1/2 and Ez = [B5
x d

9
e/(ηH ρ3s w

3)]1/2.
In both limits, the rate appears to be “super-fast”,
that is Ez ∝ ηαH with α< 0. This is unphysical and
contradicts the numerical results in Fig. 1a, where
Ez ∝ η0H across both the d2e ≫ δ2 ≫ ρ2s (orange △ for
10−8 ≥ ηH > 10−9.5, and green ×) and d2e ≫ ρ2s ≫ δ2 (or-
ange △ with ηH ≤ 10−9.5) limits. This apparent con-
tradiction is resolved as the two free-parameters in the
discrete model, Bx and w, scale with ηH to give Ez ∝ η0H
as seen in simulations.

The first limit, d2e ≫ δ2 ≫ ρ2s, is fully analogous to the
low-β pair-plasma case.16 As in Ref. 16, our numeri-
cal simulations show that the bulk of the current-layer
is supported at de-scale, which is also consistent with
kinetic simulations.12 At smaller scales the plasma be-
comes demagnetised, and the magnetic field on the up-
stream edge of the DR scales as Bx =(δ/de)Bxd with
Bxd = x̂ ·B(0, de/2). This gives a rate not explicitly de-
pendent upon ηH , provided w∝ η0H . We see in these
island coalescence simulations that w=wv ∝ η0H in this
limit, where wv is on the order of the island size. Us-
ing this Bx scaling in the second limit, d2e ≫ ρ2s ≫ δ2, the
DR length w must scale to ensure fixed aspect-ratio as
δ/w= ρs/wv for the rate to remain constant across the
two limits. These scalings for Bx and w are verified nu-
merically, as discussed below. The resulting DR thickness
and rate for the two-fluid case without FDWs are

δ =
δ2d
de
, Ez = B2

xd

de
wv

, (11)

where δd = wv(ηH/Bxdw
3
v)

1/4 is equal to the single-fluid
thickness in Eq. (10), evaluated with Bxd and wv (at the
boundary of the two-fluid region, see Fig. 2).

Two-fluid case with FDWs (ρ2s ≫ d2e, δ
2). We

again consider two limiting cases, ρ2s ≫ d2e ≫ δ2

and ρ2s ≫ δ2 ≫ d2e. In both limits, Eqs. (8,9) give
δ= [ηH w/(Bx ρ

2
s)]

1/2 and Ez = [B5
x ρ

6
s/(ηH w3)]1/2,

where the rate again appears to be super-fast for
Bx, w ∝ η0H . In the first limit, δ <de and we expect
Bx =(δ/de)Bxd as before, which requires w ∝ δ to give a
rate that is independent of ηH as in the simulations. We
show below from numerical simulations that the fixed
aspect-ratio scaling (δ/w∝ ρs/wv) occurs whenever
δ <ρs, regardless of de. In the second limit, δ >de and
so a Bx scaling is not known a priori from physical
arguments. However, with δ/w ∝ ρs/wv, we must have
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Bx ∝ δ to give a constant and fast-rate across both
limits. We find for both limits that, to a good approxi-
mation, Bx ≈ (δ/ρs)Bxs with Bxs = x̂ ·B(0, ρs/2). The
DR thickness and rate for the case with FDWs is

δ =
δ2s
ρs
, Ez = B2

xs

ρs
wv

, (12)

where δs = wv(ηH/Bxsw
3
v)

1/4.
Numerical validation. The scalings for Bx and w

are verified using the previously described island coa-
lescence simulations. For each simulation, we measure
(δ, w,Bx, wv, Bxh) at peak reconnection rate. The thick-
ness δ is measured in the same way as in Ref. 16, by fitting

the current as j(0, y)= e−ay2/δ2 with a=4 ln 2 to give δ as
the full-width half-maximum j(0, δ/2)= j(0, 0)/2. Thus,

δ=
√
2ay∗, where y∗ is the closest distance to the X-point

that |(∂2yj)/j|(0,y∗) =0. This method does a good job of
capturing the thickness of the viscous DR, as discussed
in Ref. 16. The lengths w and wv, shown in Fig. 2, are
defined as the distance between the maxima of x̂ ·vs|y=0

and x̂ · v|y=0, respectively. Bx and Bxh are evaluated at
(0, δ/2) and (0, h/2) respectively, as shown in Fig. 2.
Figure 3a shows the scalings of w/wv and wv with δ/ρs

in the two-fluid cases without (orange triangles) and with
(blue circles and red +) FDWs. There is a clear linear
dependence of w/wv on δ/ρs in both cases, validating
the scaling for w used in the analysis above. The change
of ≈

√
2 in slope between cases with and without FDWs

does not appear in the analytic model due to neglecting
numerical factors of order unity in the discretisation. The
w∝ δ scaling is a finite-ρs effect, and is largely unaffected
by de-scale physics.
Figure 3b shows the scaling of Bx and Bxh with δ/h

in both two-fluid cases. The DR parameter Bx decreases
linearly with δ/h as required, while the two-fluid param-
eter Bxh is approximately independent of δ. In this plot,
Bx is fit with two straight lines for each case, as there is
a slope change of ≈ 2 when δ= p=h/5 that is not cap-
tured by the analytic model due to neglecting factors of
order unity.
As a further validation of the model, Fig. 3c shows

the ratio of the measured and predicted DR thicknesses,
where δtheory is given in Eqs. (11,12), and demonstrates
an overall excellent agreement over almost two orders of
magnitude in δ.
The value of µ chosen for the analytic calculations and

simulations in this Letter is close to the inviscid limit.
Increasing µ gives a thicker DR, and slower outflows, as
expected. However, we find in these island coalescence
simulations that for moderate increases in µ, such that
δ <h holds, the DR and two-fluid regions self-adapt such
that the reconnection rate is largely unaffected. This is in
contrast to the single-fluid limit where large ion viscosity
can significantly slow the reconnection rate.
Interpretation. From the analytic scalings in both two-

fluid cases, the viscous DR has the potential to process
flux at a super-fast rate for Bx, w∝ η0H . However, the DR
rate can not physically exceed the rate of flux brought

FIG. 3. a) w/wv (hollow with linear fits) and wv (filled)
against δ/ρs; b) Bx (hollow with linear fits) and Bxh (filled)
against δ/h; c) ratio of simulated, δ, to predicted, δtheory
from Eqs. (11, 12), DR thicknesses. From island coales-
cence simulations with de =5ρs =10−2 (orange triangles);
ρs =5de =10−2 (blue circles); and ρs =10−2, de =0 (red +
for w/wv).

into the larger two-fluid region in Fig. 2. The latter rate
is simply given by vyhBxh, where vyh = (h/wv)Bxh due
to flow continuity with the outflow accelerated to the
upstream ion Alfvén speed (Bxh in normalised units).
The DR self-adjusts to match this upper bound, giving

Ez = B2
xh

h

wv
, (13)

in both two-fluid cases, where wv and Bxh are shown in
Figs. 3a, 3b to be independent of δ (and so ηH). The
DR self-adjusts by shrinking in length at constant aspect
ratio when finite-ρs effects become important, and by
regulating the upstream field Bx in the case of either
finite-ρs or finite-de.

This self-adjustment of the DR gives a dissipation in-
dependent rate, in agreement with Fig. 1a. A full discus-
sion of the system-size independence in Fig. 1b is beyond
the scope of this Letter, and will be addressed in future
work. We note that the rates between the cases with and
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without FDWs are similar, consistent with Refs. 12 and
13. However, the mechanism to limit wv ∝L0

x, and give
a rate independent of system-size, is not necessarily the
same between the two cases. For instance, we see more
secondary island formation in the case without FDWs,
but it is not clear whether this is the sole mechanism
that limits wv.
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