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Atomic Vibrations and 
Melting in Plutonium

Andrew C. Lawson, Barbara Martinez, Joyce A. Roberts, James W. Richardson, Jr., and Bard I. Bennett

Neutron powder 
diffraction was 
used in determining 
this huge rhombohedral 
unit cell of the z-phase 
of the plutonium-uranium 
alloy Pu 0.6U0.4. This 
complicated structure 
with 58 atoms in the unit cell 
and 10 crystallographically distinct
atom types illustrates the general tendency for complex structures in plutonium and its alloys. 
The Los Alamos Neutron Scattering Center is shown in the background. 
(Crystal structure was reproduced with permission from Acta Crystallographica B52, 1996.)
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At any temperature, the atoms 
in a crystalline solid are con-
stantly vibrating about their

equilibrium positions. Those positions
define the crystal lattice and are ulti-
mately determined by the electronic
structure of the solid. As the material
heats up, the atoms vibrate about their
lattice sites with increasing amplitude
until they shake loose and the material
melts. The square of the vibrational 
amplitude is inversely proportional to
the strength of the atomic forces that
bind each atom to its lattice site. In
some materials, including plutonium,
the vibrational motion that accompanies
heating can cause the electrons to 
rearrange around the atoms, changing
the strength of the interatomic forces.
Measuring the atomic vibrations 
therefore gives information about the
strength of these interatomic forces and,
ultimately, about the electronic struc-
ture and its variation with temperature
and applied pressure. 

The response of plutonium metal to
thermal and mechanical perturbations is
characterized by instability. Figure 1
shows plutonium’s phase diagram at
temperatures below its melting tempera-
ture (640°C) and at pressures below
10 kilobar. Under these relatively
small changes in temperature and 

pressure, plutonium goes through seven
distinct crystallographic phases. 
These solid-to-solid phase transitions
arise from rearrangements of the 
electrons that cause the interatomic
forces to weaken and the crystal 
structure to change. 

The melting point of plutonium
metal is another sign of instability, 
as it is very low when compared with
the melting points of its neighbors in
the periodic table (see Figure 2).
These instabilities have been known
since the forties, when Manhattan 
Project metallurgists struggled to 
fashion plutonium metal into the
shape needed for the first atomic
bomb, but they still baffle condensed
matter physicists. Here, we report 
on some new measurements of atomic
vibrations that shed light on both the

phase instability and the melting
anomaly of plutonium. 

Atomic Vibrations
and the Equation 

of State

Understanding the 
instabilities of plutonium
and other actinides is not
only of fundamental inter-
est, but also of great prac-
tical importance for the
current nuclear missions of the
Department of Energy. Among
those missions are cleaning up the 
nuclear contamination and preventing
further contamination, storing nuclear
waste, and maintaining a safe and 
reliable nuclear weapons stockpile.
Foremost among the missions of
Los Alamos is stockpile stewardship,
which requires the construction of a 
reliable equation of state (EOS) for 
plutonium to predict the performance 
of nuclear weapons in the absence of
weapons testing. To ensure that the
EOS provides this predictive capability,
we must understand the vibrational 
excitations of plutonium at a fundamen-
tal level because they contribute 
directly to the EOS. 

The EOS describes the internal pres-
sure in plutonium metal as a function 
of temperature and density. Plutonium
metal is, of course, a solid, and its 
internal pressure can be divided into
several contributions, whose relative
sizes vary with temperature and exter-
nal pressure. At T = 0, there is only the
zero-point vibrational energy, and 
the pressure comes mostly from the 
static attraction or repulsion between
the atoms. Bare nuclei repel each other,
and the material flies apart. Some of 
the electrons surround the nuclei, 
forming ion cores, and screen this 
repulsion. Other electrons (the conduc-
tion electrons) are shared with neighbor-
ing atoms, causing the atoms to bind 
together. The net balance between these
competing forces determines the pressure
the solid can exert on its surroundings.
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Figure 1. Pressure-Temperature 
Phase Diagram of Plutonium Metal 
Plutonium has the most complex phase 

diagram of any element in the periodic

table. Its seven distinct crystallographic

phases arising from the rearrangements of

the electrons can be stabilized with slight

changes in temperature or pressure. (Repro-

duced with permission from the Metallurgical Society.)

Figure 2. Melting Points of the
Light Actinides 
As illustrated here, the melting points 

of neptunium and plutonium are anom-

alously low by comparison with those 

of neighboring elements. The same is 

illustrated in a metallurgical context 

in Figure 13 in the article “Plutonium 

Condensed-Matter Physics” on page 61.

(Reproduced with permission from Philosophical Maga-

zine B80, 2000, page 53, Taylor & Francis.)
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Theoretical and experimental research in equations of state and 

material modeling is essential to ensuring a firm scientific footing 

for these disciplines. This type of research is necessary not only for

assessing the nuclear weapons stockpile but also for developing a

predictive computational capability. Here, I will outline the general

theoretical formalism for calculating equations of state and then 

expand on the contribution from the vibrational (or thermal) excita-

tions of solids to the equation of state (EOS). The temperature 

dependence of the Debye temperature reported in the main article

has a direct bearing on our models for the vibrational contribution. 

The EOS for any material is typically expressed as an equation for

the pressure as a function of temperature and density. Generally

speaking, at densities less than 100 grams per cubic centimeter

(g/cm3) and temperatures less than 100 kilo-electron-volt (keV), there

are three distinct contributions to the pressure: 

P(ρ,T) = Pc(ρ) + PN(ρ,T) + Pe(ρ,T)   . (1)

The pressure at T = 0, Pc(ρ), is commonly called the “cold curve” and

is due to the electronic forces that bind the individual atoms into a

solid; PN(ρ,T) is the pressure due to the vibrational excitation of the

nuclei in the solid, liquid, or gas states; and Pe(ρ,T) is the pressure

due to the electrons’ thermal excitation. 

The cold curve is traditionally modeled by empirical formulae

(Lennard-Jones and Morse potentials combined with Thomas-

Fermi-Dirac theory). Modern calculations of electronic band structure

include relativistic effects. Experimental measurements conducted 

in a diamond-anvil or tungsten carbide cell can provide data for 

pressures up to approximately 2 megabars. 

The vibrational contribution for the solid state, PN(ρ,T), is traditionally

modeled with the Debye theory. Models of the liquid state use an 

interpolation scheme between a Debye solid and an ideal gas. 

Modern theory for all these states uses molecular dynamics or 

Monte Carlo methods to obtain pressures as a function of density

and temperature. No direct experimental data are available, but to

infer a melting temperature, we use shock wave methods and 

laser-heated diamond-anvil cells. 

The pressure for electron excitations, Pe(ρ,T), is traditionally modeled

by Saha or Thomas-Fermi-Dirac theories. Modern theory for this 

contribution to the pressure uses relativistic, quantum mechanical, 

self-consistent field theory. No direct experimental data are available,

but Pe(ρ,T) can be inferred from data obtained from pressure waves

generated by nuclear explosions.

We now add more detail to the vibrational contribution to pressure 

from the motion of the nuclei. The Mie-Grüneisen form is given by 

PN(ρ,T) = ρΓ(ρ,T)EN(ρ,T)   , (2)

where the energy in the Debye model is given by

(3)

and the Grüneisen parameter Γ is defined by the following equation: 

(4)

The Debye temperature ΘD(ρ,T) is the effective atomic vibrational 

temperature, and it determines when a material melts or loses its

strength. In Equation (3), D3(x) is the Debye integral of the third kind.

In traditional EOS modeling, ΘD is assumed to be independent of 

temperature—that is, ΘD(ρ). Consequently, Γ would also be a simple

function only of density. Modern theories suggest that ΘD and Γ
depend on a material’s density, temperature, and electronic structure.

The neutron diffraction measurements reported in the main article 

confirm these theoretical ideas. The data show that the Debye 

temperature and the Grüneisen parameter are, indeed, a function 

of temperature and electronic structure. 

To verify the predictions from quantum mechanical theory, we need

to further validate our current models. Measuring the Debye-Waller

factor with a new, heated high-pressure cell shows great promise. 

By using the apparatus containing this cell, we have obtained inter-

esting data for molybdenum. After validation, the theory will be used

in modeling material melting and strength for applications in weapons

physics (conventional and nuclear), metal casting, or explosively 

driven shape-forming. 
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Equations of State—Theoretical Formalism

by Bard I. Bennett
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The ground-state distribution of these
electrons relative to the ion cores can
be predicted by electronic-structure cal-
culations (see the article “The Ground-
State Properties of the Actinide 
Elements: A Theoretical Overview”). 

As temperature increases, pressure
from the vibrational motion of the ion
cores increases as well. These excita-
tions can be treated at several levels 
of approximation. The first two levels
are the Einstein and Debye models. 
In both, we imagine that an external
source of heat gives the ion cores an
average kinetic energy, and the cores
move away from their equilibrium posi-
tions, which are assumed to be fixed in
space for the Einstein model and fixed
to each other for the Debye model. At
the same time, in both models, the elec-
tronic forces act like springs, pulling on
the ions and causing them to oscillate
back and forth. In the Einstein model,
the ions oscillate independently of each
other. Every atom vibrates at a single
characteristic frequency, ωE, and there
are no propagating waves. Even though
this model is unrealistically simple, it
does give useful first approximations
for the heat capacity and the thermal 
vibration amplitude. At high enough
temperatures, the heat capacity is 
constant, and the vibration amplitude 
is proportional to the temperature. 

Debye made the much more realistic
assumption that the electronic springs
attach each atom to its near neighbors
in the lattice, and not to a lattice site
fixed in space. Travelling waves are
now allowed, and the vibrational modes
(phonons), which are dictated by 
the crystal structure, obey different 
dispersion relations (frequency versus
wavelength) along different crystal 
directions. The phonon spectrum (that
is, the number of allowed vibrational
frequencies per frequency interval) 
depends on the spacing between the
crystal planes and on the atomic spring
constants in those directions, but it will
always be proportional to ω2 at low fre-
quencies. In calculating the contribution
to pressure from the vibrational excita-
tions, common practice is to use the

model from Debye’s theory as a start-
ing point and extrapolate wherever nec-
essary (see the box “Equations of
State” on the opposite page). 

The Debye model is a simplified 
description of the thermal excitations of
a solid because it ignores most of the
details of lattice dynamics, but it is very
useful for interpreting experiments that
measure the average elastic and thermal
properties of a solid. (See the box 
“The Debye Model and the Actinides”
on page 197.)

The characteristic vibrational energy
of the lattice is given in temperature
units by the Debye temperature. 
Defined as the maximum energy of any
sound wave that will propagate in a 
periodic lattice, this energy is deter-
mined by the fact that the wavelength
of sound must be greater than the 
lattice spacing (or lattice constant) a0
defining the size of the crystallographic
unit cell. The characteristic frequency
in the Debye model is given in terms of
an appropriate average sound velocity
Vsoundand the atomic volume Ω
(a sphere of radius a0/2):

The characteristic Debye temperature is

kBΘD = hωD ,                        (2)

where kB is the Boltzmann constant.
The sound velocity is determined by a
complicated average over the crystal 
direction and wave polarization:

(3)

where βspring is an average atomic
spring constant and m is the atomic
mass. The spring constant tells how
much force is required to extend the
spring per unit length of extension. 

The Debye theory predicts that the
phonon spectrum has a simple quadratic
dependence on frequency up to ωD and
then drops off discontinuously to zero.

The phonon spectrum of a real crystal
is more complicated but retains a qua-
dratic behavior at low frequencies.
Therefore, the Debye spectrum, charac-
terized by ΘD, is a reasonable improve-
ment over the Einstein model, which
has only one vibrational frequency. 
The point of our work is to use neutron
diffraction measurements to measure
ΘD, which is essentially the same as
the Debye-Waller temperature ΘDW. 

The Debye-Waller temperature ΘDW
is an average in two ways. First, it is an
ω–2-weighted average over all possible
frequencies in the phonon spectrum, so
that a measurement of the Debye-
Waller temperature ΘDW is equivalent
to a measurement of the average elastic
constant, which is equivalent to the
bulk modulus B. Note that B and the
average elastic constant are proportional
to βspring/a0 or Ω–1/3βspring. Second,
ΘDW is an average over all possible 
directions in the crystal. The Debye
theory is essentially exact at low 
temperatures because only the low-
frequency quadratic part of the phonon
spectrum is excited at those tempera-
tures. At higher temperatures, the 
theory is only approximate, but that 
approximation can be improved if ΘD
is allowed to be temperature dependent.
Ultimately, we would like to measure
the actual phonon spectrum rather than
predict it from theory, but this is a 
project for the future. 

At present, the question of how 
accurate the plutonium equation of state
(EOS) is over a range of temperatures,
pressures, and shock-induced conditions
relevant to nuclear weapons is central
to the Stockpile Stewardship Program.
And our goal is to gather enough infor-
mation—both experimental and theoret-
ical—to derive the EOS from measure-
ments of microscopic properties and
first principles calculations, thereby 
reducing the uncertainties to a mini-
mum. The most complete characteriza-
tion of the vibrational properties could
be obtained through measurements of
inelastic neutron scattering on single
crystals. Those measurements would
determine the dispersion relations (the

Vsound = Ω βspring
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dependence of vibrational frequency on
wavelength) for different crystal direc-
tions. And this knowledge would pro-
vide a powerful check on the 
microscopic basis for the vibrational
contribution to the EOS regardless of
whether that contribution is calculated
in the Debye or another model. 
Although large single crystals (about
1 cubic centimeter) needed for neutron-
scattering measurements are not cur-
rently available, a significant effort is
under way at Los Alamos to grow suit-
able crystals (see the articles “Preparing
Single Crystals of Gallium-Stabilized
Plutonium” and “A Single-Crystal
Saga” on pages 226 and 233, respec-
tively). In the meantime, however, 
ultrasonic measurements of the elastic
constants will provide the directional
dependence of the long-wavelength
elastic constants (see the article 
“Elasticity, Entropy, and the Phase Sta-
bility of Plutonium on page 208). 

Neutron Diffraction Studies 
of Atomic Vibrations

Until the large crystals required for
inelastic neutron scattering become
available, we are measuring polycrys-
talline materials. Here, we report on our
neutron-powder-diffraction studies of
polycrystalline samples. We measured
powder diffraction patterns over a range
of temperatures and fitted each measured
pattern to a model of the diffraction pat-
tern through a process known as 
Rietveld refinement. From the pattern of
positions and intensities of the Bragg
diffraction peaks at each temperature, we
were able to deduce the average vibra-
tional displacement of the nuclei from
their lattice positions at that temperature
and, in turn, the material’s Debye-Waller
temperature, ΘDW. Our measurements
demonstrate that ΘDW varies with tem-
perature. Indeed, by incorporating that
temperature dependence into the Linde-
mann melting rule, we were able to pre-
dict melting temperatures for the light
actinides. The theoretical and experi-
mental values are in good agreement.

Experiments and Data Analysis

The neutron diffraction data 
presented in this paper were collected 
at the pulsed-neutron sources at 
Argonne National Laboratory and
Los Alamos National Laboratory. We
used polycrystalline samples of lead,
thorium, neptunium, and plutonium 
encapsulated in vanadium and of 
uranium encapsulated in fused silica. 
Encapsulation is required for radiologi-
cal safety. Vanadium is used for two
reasons: Its coherent neutron cross-
section is tiny, so its Bragg peaks 
are negligible, and metallurgically, vana-
dium is compatible with plutonium at
high temperatures. The plutonium 
sample was highly enriched in plutoni-
um-242 because this isotope has a very
low probability of absorbing neutrons
compared with the more abundant pluto-
nium-239. Our measurements covered 
as much of the stability range of each
phase as possible without leaving any
chance for the containment to fail. 

Powder diffraction is the simplest
technique for obtaining crystal structures
because single crystals of the material
are not required. For all but the simplest
structures, however, the analysis of these
complex patterns can be ambiguous.
Hugo Rietveld developed a method for
data refinement in the late 1960s to 
extract precise estimates of all crystallo-
graphic parameters from x-ray and 
neutron-powder-diffraction patterns. 
In this method, the experimental data 
are fitted to a detailed model of the posi-
tions, intensities, and shapes of the dif-
fraction peaks. The model accounts for
the effects of the crystal symmetry, the
lattice constants, the atom positions in
the unit cell, and the broadening of the
diffraction peaks from local crystal 
strain and size effects. The model 
also accounts for the effects of the
mean-square thermal (or vibrational) 
displacement of the atom, 〈u2〉, from its
equilibrium position in the crystal. The
Rietveld refinement thus enables us to
infer the average vibrational displace-
ment 〈u2〉 from powder diffraction data.
We implemented the method using the

code developed by Allen Larson and
Robert Von Dreele of the Los Alamos
Neutron Scattering Center (LANSCE).
At present, this is the most widely used
computer code for Rietveld refinement
in the world (Von Dreele 1990). 

Figure 3 illustrates the effects of 
vibrational motion on the appearance 
of the diffraction pattern. The figure
shows portions of two neutron-diffrac-
tion patterns of an aluminum-stabilized
δ-phase plutonium alloy (Pu0.95Al0.05)
taken at temperatures of 13 and
260 kelvins, respectively. The data are 
plotted as a function of d, the spacing
between the crystallographic planes,
and only the diffraction peaks at short
d-spacings are shown. In both data sets,
the Bragg diffraction peaks have 
the characteristic pattern produced by
the face-centered-cubic structure of 
δ-phase plutonium. There are, however,
two features that derive directly from
the vibrational motion of the atoms.
First, the intensities of the Bragg peaks
in both data sets decrease rapidly as 
the d-spacing decreases. Second, 
the attenuation is noticeably stronger 
in the 260-kelvin diffraction pattern
than in the 13-kelvin pattern.

Interpreting Diffraction Data
with the Debye Theory

In 1914, Debye worked out the effect
of the vibrational motion on the diffrac-
tion patterns of crystals. He showed that
the intensity of a diffraction peak is pro-
portional to an exponentially decreasing
factor, now known as the Debye-Waller
factor, which is given by 

(4) 

The negative exponent is proportion-
al to 〈u2〉, implying that the intensities
decrease with increasing temperature 
as seen in the powder diffraction data
illustrated in Figure 3. Moreover, the
exponent is inversely proportional to
d2, which means that the attenuation
due to vibrational motion is very
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Figure 3. Neutron Diffraction Patterns for Pu 0.95Al0.05
The diffraction data of the aluminum-stabilized δ-phase plutonium alloy have been fitted by Rietveld refinement. In (a), the experiment 

was conducted at 13 K and in (b) at 260 K. The red crosses are the observed scattered neutron intensity plotted versus crystallog raphic

d-spacing, the green line through them is the Rietveld fit, and the purple curve below the data is the error of the fit. Only the short

d-spacing portions of the patterns are shown. Notice that the Bragg peak intensities decrease from right to left as the d-spacing 

decreases. The attenuation is noticeably stronger in the 260 K than in the 13 K diffraction pattern, in keeping with the trend pr edicted by

the Debye-Waller factor. The article describes how we deduce the Debye-Waller temperature ΘDW from the Bragg peak intensities. ( Repro-

duced with permission from Kluwer Academic, A. C. Lawson et al., Edited by A. Gonis et al., “Light Actinides” in Electron Correlation and Materials Properties , 1999, page 75.)
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strongly enhanced at short d-spacings,
also seen in Figure 3. In fact, pulsed-
neutron sources such as the one at
LANSCE are best suited for these 
powder-diffraction measurements 
because the neutron spectrum contains
many neutrons with wavelengths at
these short d-spacings, at which 
neutron diffraction scattering is most 
affected by the vibrational motion. 

If the interatomic forces behave like
harmonic springs, as they do in the
Debye model, the very general equiparti-
tion law requires that each vibrational
mode have (kBT)/2 of energy, which
means that 〈u2〉 increases linearly with
temperature at high enough temperatures:

The Debye theory for 〈u2〉 at low
temperatures shows that the tempera-
ture dependence for 〈u2〉 is given by

A materials constant that appears in
this equation is ΘDW, which as men-
tioned earlier, is a direct measure of the
atomic spring constant βspring of the
material. The relationship between
ΘDW and βspring is given by the
following equation: 

Temperature-Dependent 
Results for Plutonium’s 

Elastic Properties

We now describe how ΘDW can be
experimentally determined from mea-
surements of 〈u2〉. As mentioned before,
we obtain diffraction patterns over an
appropriate temperature range and then

apply the Rietveld refinement method to
determine 〈u2〉 at each temperature. 
According to Equations (5) and (7) of
the Debye model, if ΘDW were a 
temperature-independent constant, 〈u2〉
should increase linearly with tempera-
ture at high temperatures, with a slope
inversely proportional to Θ2

DW. It should
thus be easy to extract ΘDW from a fit
of 〈u2〉 versus temperature. Indeed, we
have measured and analyzed many dif-
ferent metallic elements in this way and
found that Debye’s theory explains the
data very well. Moreover, the measured
values of ΘDW are in good agreement

with those determined by heat capacity
measurements.

It is expected, however, that ΘDW
should have a slight temperature depen-
dence, reflecting changes in the crys-
tal’s elastic properties as its volume is
changed by ordinary thermal expansion.
For the actinides, the thermal expansion
is far from ordinary: Depending on the
material, the coefficient of thermal 
expansion spans a wide range of values.
In fact, the negative thermal expansion
of unalloyed δ-phase plutonium at high
temperatures is one of the unexpected
properties of plutonium. 
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Figure 4. Mean-Square Thermal Vibration Amplitudes for δ-Phase 
Pu0.94Ga0.06 and Thorium Metal 
Although thorium and gallium-stabilized δ-plutonium are face-centered-cubic metals, their

vibrational amplitudes behave very differently as a function of temperature. As illustrated

here, the linear portion of the plutonium curve is steeper than that of thorium, indicating

that plutonium is more compressible (that is, its spring constant βspring , which is inversely

proportional to the amplitudes squared , is lower than that of thorium). At the same time,

the plutonium curve displays a larger upward curvature, indicating that, at high tempera-

ture, the springs in plutonium are softening more rapidly than those in thorium.

(Reproduced with permission from Philosophical Magazine B80, 2000, page 53, Taylor & Francis.)
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And yet, our measurements of ΘDW
held an even bigger surprise. They
showed that ΘDW has a very large tem-
perature dependence. The Debye-Waller
temperature decreases at a higher tem-
perature in an approximately linear
fashion. That is, ΘDW obeys an 
equation of the approximate form

ΘDW = Θ0 + cT   ,                     (8)

where Θ0 is the low-temperature value of
the Debye-Waller temperature and c is a
small negative constant. This result

means that the spring constants are effec-
tively temperature dependent and that the
springs become weaker at high tempera-
tures. This behavior is known as elastic
softening, and its effect is shown in 
Figure 4. In that figure, we compare our
measurements of 〈u2〉 for δ-phase
Pu0.94Ga0.06with those for thorium
metal. The two metals have the same
crystal structure, but the data indicate that
thorium’s spring constants are stronger
and much less dependent on temperature. 

The curves for plutonium and 
thorium differ in two ways. First, the

linear part of the plutonium curve is
much steeper than that of thorium. The
increase in slope means that plutonium
is more compressible than thorium—
that is, it has a lower ΘDW, or atomic
spring constant. Second, whereas the
thorium curve is nearly linear, the 
plutonium curve shows a considerably
upward curvature, which indicates 
that the atomic springs in plutonium 
are softening at high temperature. 
The experiments demonstrate directly
that plutonium is more unstable than
thorium, in agreement with the instabil-

The Debye Model and the Actinides

Mechanical Assumptions of the Debye Model

• The atoms (mass m) are separated by the lattice 

constant (a0) and are connected by harmonic springs,

whose strengths are described by the atomic spring 

constant βspring.

• Excitations are sound waves of wavelength λ, velocity 

Vsound = Ω1/3(βspring/m)1/2, where Ω is the atomic volume, 

and frequency ω = Vsound/λ. 

• Velocities are the same for longitudinal and transverse 

waves, and they are the same in all crystal directions. 

• Sound waves cannot propagate if λ < a0.

• The low-frequency sound wave (phonon) spectrum is 

proportional to ω2.

Thermal Consequences of the Debye Model

If the solid has ideal, harmonic springs,

• the characteristic Debye temperature ΘD is given by

kBΘD = h(6π2/Ω)1/3Vsound; 

• the low-temperature heat capacity is NkB(T/ΘD)3, where N is 

the number of atoms in the solid;

• the high-temperature heat capacity is 3NkB;

the Debye temperature ΘD is independent of temperature;

• there is no thermal expansion; and

• the solid never melts!

If the solid has weakly anharmonic springs,

• there is measurable thermal expansion;

• the spring constants depend on volume;

• the Debye temperature ΘD depends on temperature via 

thermal expansion and the Grüneisen constant; and

• the melting point is approximately determined by the 

Lindemann criterion.

Observed Properties of the Actinides

• Thermal expansion is anomalous. 

• The Debye temperature ΘD depends strongly on 

temperature through an explicit temperature variation 

of the elastic constants. 

• The melting point is anomalously low. 

A comparison of the phonon spectra N(ω) for the

Debye model (dashed line) and a typical material

(solid line) shows that, whereas at low frequencies

both spectra are proportional to ω2, at high frequen-

cies the actual spectrum of a material deviates signifi-

cantly from the Debye spectrum. 
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ities shown in Figure 1. To display
these trends more clearly, we replotted
the results in Figure 5 by using the 
dimensionless mean-square vibrational
displacement, mkBΘ0〈u

2〉/3h2, versus 
the dimensionless temperature, T/Θ0.
Figure 5(a) shows that the temperature-
induced softening of the elastic con-
stants is quite large, and Figure 5(b)
that the softening is independent of
thermal expansion. 

The 〈u2〉 measurements can be used
for quantifying this instability in elastic
properties, and the results can be 
applied to modeling stockpile materials.
We have observed similar softening in
the other light actinides—α-uranium,
α-neptunium, and α-plutonium—but
not in any nonactinide material we have
studied so far. From neutron diffraction
measurements, we deduced the temper-
ature dependence of ΘDW for the light
actinides (see Figure 6). Measurements
of 〈u2〉 are more sensitive to the behav-
ior of the phonon spectrum at lower
frequencies than are other thermal mea-
surements, so that they reflect the por-
tion of the phonon spectrum that is
truly Debye-like. As a result, ΘDW
is a robust characteristic of a given 
material. Our findings on the tempera-
ture dependence of ΘDW for δ-phase
plutonium are in fair agreement with the
much earlier ultrasonic measurements of
Taylor et al. (1965). The observed elas-
tic softening appears to be an intrinsic
property of the light actinides. 

The Melting Temperatures 
of the Actinides

One consequence of the measured 
lattice softening is that the light actinides
have higher vibrational amplitudes at high
temperatures than would be predicted
from the low-temperature value of ΘDW,
that is, from a temperature-independent
ΘDW. That is why, we decided to reexam-
ine the melting points of the actinides in
terms of the old Lindemann melting rule. 

In 1910, even before the Debye 
theory was proposed, Lindemann sug-
gested that a material would melt when
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Figure 5. Dimensionless Plots of the Vibrational Displacement and Lattice
Constants as a Function of Temperature 
These plots are for δ-phase Pu 0.94Ga0.06 and thorium metal. (a) Shown here are dimen-

sionless displacement versus dimensionless temperature, mkBΘ0〈u2〉/3hh2 vs T/Θ0. The

ideal curve is computed from Equation (6), and it shows the universal Debye behavior

for a temperature-independent ΘDW, that is, c = 0 in Equation (8). (b) Shown here is the

reduced lattice constant, a/a0 vs T/Θ0. The curves indicate that the thermal expansion

of plutonium-gallium alloys is less than that of thorium and depends strongly on galli-

um concentration. The thermal expansion of the 2% sample is different from that of the

6% sample, but the corresponding vibrational-displacement course is nearly identical

for these two samples. We deduce that the temperature dependence of ΘDW is not a

simple Grüneisen effect. (Reproduced with permission from Philosophical Magazine B80, 2000, page 53,

Taylor & Francis.)
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the vibrational amplitude exceeds a
fixed fractionf of the interatomic dis-
tance. According to Lindemann’s rule,
the melting point is determined by

where Ω is the atomic volume and f is
the fractional value of the interatomic
distance at which materials are sup-
posed to melt. The melting point will
appear on both sides of this equation
when we substitute 〈u2〉 with the 
temperature-dependent expression for
ΘDW in Equation (8). For the actinides,
experiment shows that f = 8.3 percent,
and this value is not much different in
other regions of the periodic system. 

Figure 7 shows the melting points
predicted from Lindemann’s rule when
we use the value for c deduced from 
experiment—see Equation (8). For melt-
ing temperatures, the agreement with 
experimental values is quite good. But
when the temperature dependence of
ΘDW is ignored, the Lindemann criterion
does not work at all. Thus, we should no
longer consider anomalous the trend in
the melting point of the actinides shown
in Figure 2. Instead, we need to under-
stand the microscopic reasons for the pe-
culiar temperature dependence of ΘDW. 

We also found that, whether α-phase
or stabilized δ-phase plutonium data 
are used in the Lindemann criterion, the
predicted melting point of plutonium is
almost the same. This remarkable result
suggests that the melting point is an 
essentially atomic property. 

Future Directions

Since the Debye-Waller work was
completed, we have used the analysis
of diffuse scattering to establish that 
plutonium-gallium alloys are really good
Debye solids. Diffuse scattering is an 
oscillatory feature that appears in the
background of the diffraction patterns
when the motions of neighboring atoms
are correlated, and these features are 
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Figure 6. Temperature Dependencies of ΘDW for the Light Actinides
Results from our neutron-diffraction measurements show the temperature dependence 

of ΘDW for the light actinides. The lines span the temperature range of the solid phases.

The intercept of each line shows ΘDW at T = 0, and the slope shows the elastic softening

observed for each material. This elastic softening is an intrinsic property of the light 

actinides. (Reproduced with permission from Kluwer Academic , A. C. Lawson et al., Edited by A. Gonis et al., 

“Light Actinides” in Electron Correlation and Materials Properties , 1999, page 75.)

Figure 7. Melting Points of the Light Actinides 
The melting points of the light actinides were determined in three ways: from experi-

ment (black dots), from the Lindemann estimate of the melting point based on Θ0, the

low-temperature value of ΘDW (red triangles), and from the Lindemann estimate based

on the temperature-dependent ΘDW (blue rectangles). Experimental data and the esti-

mate based on the temperature-dependent ΘDW are in good agreement. 



actually visible in the data of Figure 3
(see error curve). The analysis shows that
diffuse scattering is in good agreement
with the Debye model and that the mea-
sured correlations are exactly as expected
when the atoms are coupled to each
other (the Debye model) rather than to
fixed lattice sites (the Einstein model). 

The next stage of this work is the
difficult task of extending the measure-
ments to high pressure. In effect, we
will be using neutrons to make high-
pressure elasticity measurements. Also
in future years, single crystals will be-
come available, and very detailed
phonon-dispersion measurements will
be completed. Those measurements will
supersede the ones we have reported
here by mapping out the dependence of
vibrational energy on wavelength and
crystal direction. They will enable us to
relate important properties of stockpile
materials, such as melting, to their fun-
damental origins in the properties of the
5f electrons present in the actinides. ��
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Microstrain in δ′-Plutonium

Andrew C. Lawson

In addition to giving information on crystal structure, the shapes

of the diffraction peaks also give valuable information on other

aspects of the state of the material. In particular, if the lattice

“constant” is not really constant but actually fluctuates through-

out the bulk material, then the diffraction lines will be broad-

ened. One mechanism for fluctuation is the strain caused by

the forces exerted by the grains on one another in the course

of a crystallographic transformation. 

Thanks to the analysis developed recently by Peter Stephens, it

is now possible to include anisotropic microstrain broadening in

the Rietveld analysis. This means that one allows for the strain

in individual grains to depend on crystal direction. The ob-

served microstrain, which is an average over many grains, is a

distribution that must be consistent with the crystal symmetry.

The observed microstrain in δ′-plutonium is shown in Figure 1.

The figure indicates that the spread in the distribution of lattice

spacings is much greater in the crystallographic c-direction of

the tetragonal crystals of δ′-plutonium than in the a-direction. 

Why is the microstrain so high for δ′-plutonium? We do not know in

detail, but it would seem that the tetragonal δ’-structure is a rather

unhappy compromise between the two cubic structures, δ and ε
(Figure 2). 
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Figure 1. Anisotropic Microstrain for δ′-Plutonium 
at 740 K
This plot shows the root-mean-square average deviation of 

the crystal d-spacings in δ′-Pu plotted versus crystal direction.

This quantity is called the microstrain, and it is determined by

intergranular stresses. In the tetragonal crystal shown here, 

the microstrain is much larger in the crystallographic c-direction.

The microstrains are caused by intergranular stresses .

Figure 2. Temperature Dependence of the 
Normalized Lattice Constants of Pure Plutonium 
Between 600 and 800 K, plutonium transforms from face-

centered-cubic δ′-phase to face-centered-tetragonal δ′-phase and

then to body-centered-cubic ε-phase. Even though they are both

cubic, the structures of the δ′- and ε-phases are not closely related

to each other, and the atomic volumes are very different. 

The interatomic distances have to change considerably during 

the transformation, and this change leads to a large microstrain

for the tetragonal δ′-phase. (Reproduced with permission from Kluwer Acade-

mic , A. C. Lawson et al., Edited by A. Gonis et al., “Light Actinides” in Electron Correla-

tion and Materials Properties , 1999, page 75.)
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