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Behavior 

Nonlinear Systems 
Universal numbers, 

5 = 4.6692016 ... 
and 

a = 2.502907875 ..., 
determine quantitatively 

the transition from 

smooth to turbulent or 

erratic behavior 

for a large class of 

nonlinear systems. 

here exist in nature processes that 
can be described as complex or 
chaotic and processes that are 

simple or orderly. Technology attempts 
to create devices of the simple variety: 
an idea is to be implemented, and 
various parts executing orderly motions 
are assembled. For example, cars, air- 
planes, radios, and clocks are all con- 
structed from a variety of elementary 
parts each of which, ideally, implements 
one ordered aspect of the device. 
Technology also tries to control or 
minimize the impact of seemingly disor- 
dered processes, such as the complex 
weather patterns of the atmosphere, the 
myriad whorls of turmoil in a turbulent 
fluid, the erratic noise in an electronic 
signal, and other such phenomena. It is 
the complex phenomena that interest us 
here. 

When a signal is noisy, its behavior 
from moment to moment is irregular and 
has no simple pattern of prediction. 

given up asking for a precise causal 
prediction), so that the goal of a descrip- 
t ion  is t o  d e t e r m i n e  w h a t  t h e  
probabilities are, and from this informa- 
tion to determine various behaviors of 
interest-for example, how air tur- 
bulence modifies the drag on an airplane. 

We know that perfectly definite causal 
and simple rules can have statistical (or 
random) behaviors. Thus, modern com- 
puters possess "random number  
generators" that provide the statistical 
ingredient in a simulation of an erratic 
process. However, this generator does 
nothing more than shift the decimal 
point in a rational number whose 
repeating block is suitably long. Accor- 
dingly, it is possible to predict what the 
nth generated number will be. Yet, in a 
list of successive generated numbers 
there is such a seeming lack of order that 
all statistical tests will confer upon the 
numbers a pedigree of randomness. 
Technically, the term "pseudorandom" 

However, if we analyze a sufficiently is used to indicate this nature. One now 
long record of the signal, we may find may ask whether the various complex 
that signal amplitudes occur within processes of nature themselves might not 
narrow ranges a definite fraction of the 
time. Analysis of another record of the 
signal may reveal the same fraction. In 
this case, the noise can be given a 
statistical description. This means that 
while it is impossible to say what am- 
plitude will appear next in succession, it 
is possible to estimate the probability or 
likelihood that the signal will attain some 
specified range of values. Indeed, for the 

be merely pseudorandom, with the full 
import of randomness, which is un- 
testable, a historic but misleading con- 
cept. Indeed our purpose here is to ex- 
plore this possibility. What will prove 
altogether remarkable is that some very 
simple schemes to produce erratic num- 
bers behave identically to some of the 
erratic aspects of natural phenomena. 
More specifically, there is now cogent 

last hundred years disorderly processes evidence that the problem of how a fluid 
have been taken to be statistical (one has changes over from smooth to turbulent 
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flow can be solved through its relation to 
the simple scheme described in this arti- 
cle. Other natural problems that can be 
treated in the same way are the behavior 
of a population from generation to 
generation and the noisiness of a large 
variety of mechanical, electrical, and 
chemical oscillators. Also, there is now 
evidence that  various Hamiltonian 
systems-those subscribing to classical 
m e c h a n i c s ,  s u c h  a s  t h e  s o l a r  
system-can come under this discipline. 

The  fea ture  common t o  these 
phenomena is that, as some external 
parameter (temperature, for example) is 
varied, the behavior of the system 
changes from simple to erratic. More 
precisely, for some range of parameter 
values, the system exhibits an orderly 
periodic behavior; that is, the system's 
behavior reproduces itself every period 
of time T. Beyond this range, the 
behavior fails to reproduce itself after T 
seconds; it almost does so, but in fact it 
requires two intervals of T to repeat it- 
self. That is, the period has doubled to 
2T. This new periodicity remains over 
some range of parameter values until 
another critical parameter value is 
reached after which the behavior almost 
reproduces itself after 2T, but in fact, it 
now requires 4T for reproduction. This 
process of successive period doubling 
recurs continually (with the range of 
parameter values for which the period is 
2"T becoming successively smaller as n 
increases) until, at a certain value of the 
parameter, it has doubled ad infiniturn, 
so that the behavior is no longer 
periodic. Period doubling is then a 
characteristic route for a system to 
follow as it changes over from simple 
periodic to complex aperiodic motion. 
All the phenomena mentioned above ex- 
hibit period doubling. In the limit of 
aperiodic behavior, there is a unique and 
hence universal solution common to all 
systems undergoing period doubling. 
This fact implies remarkable conse- 
quences. For a given system, if we 

denote by A the value of the parameter 
at which its period doubles for the nth 
time, we find that the values A converge 
to A (at which the motion is aperiodic) 
geometrically for large n. This means 
that 

for a fixed value of 6 (the rate of onset of 
complex behavior) as n becomes large. 
Put differently, if we define 

(quickly) approaches the constant 
value 6. (Typically, 6 will agree with 6 
to several significant figures after just a 
few period doublings.) What is quite 
remarkable (beyond the fact that there is 
always a geometric convergence) is that, 
for all systems undergoing this period 
doubling, the value of 5 is predetermined 
at the universal value 

Thus, this definite number must appear 
as a natural rate in oscillators, popula- 
tions, fluids, and all systems exhibiting a 
period-doubling route to turbulence! In 
fact, most measurable properties of any 
such system in this aperiodic limit now 
can be determined, in a way that essen- 
tially bypasses the details of the equa- 
tions governing each specific system 
because the theory of this behavior is 
universal over such details. That is, so 
long as a system possesses certain 
qualitative properties that enable it to 
undergo this route to complexity, its 
quantitative properties are determined. 
(This result is analogous to the results of 
t h e  m o d e r n  t h e o r y  o f  c r i t i c a l  
phenomena, where a few qualitative 
properties of the system undergoing a 
phase transition, notably the dimen- 
sionality, determine universal critical ex- 

ponents. Indeed at  a formal level the two 
theories are identical in that they are 
fixed-point theories, and the number 6, 
for example, can be viewed as  a critical 
exponent.) Accordingly, it is sufficient to 
study the simplest system exhibiting this 
phenomenon to comprehend the general 
case. 

Functional Iteration 

A random number generator is an ex- 
ample of a simple iteration scheme that 
has complex behavior. Such a scheme 
generates the next pseudorandom num- 
ber by a definite transformation upon the 
present pseudorandom number. In other 
words, a certain function is reevaluated 
successively to produce a sequence of 
such numbers. Thus, if f is the function 
and x0 is a starting number (or "seed"), 
then xo, xp  ..., xn, ..., where 

is the sequence of generated pseudoran- 
dom numbers.  T h a t  is, they a re  
generated by functional iteration. The 
nth element in the sequence is 

where n is the total number of applica- 
tions of f. [f"(x) is not the nth power of 
f(x); it is the nth iterate of f.1 A property 
of iterates worthy of mention is 

f"(frn(x)) = frn(fn(x)) = frn+"(x) , (6) 

since each expression is simply m + n 
applications of f. It is understood that 
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It is also useful to have a symbol, o , 
for functional iteration (or composition), 
so that 

Now fn  in Eq. (5) is itself a definite and 
computable function, so that x as a 
function of x0 is known in principle. 

If the function f is linear as, for exam- 
ple, 

for some constant a, it is easy to see that 

so that, for this f, 

is the solution of the recurrence relation 
defined in Eq. (4), 

Should I a I < 1, then x geometrically 
converges to zero at the rate I/a. This 
example is special in that the linearity of 
f allows for the explicit computation of 
fn. 

We must choose a nonlinear f to 
generate a pseudorandom sequence of 
numbers. If we choose for our nonlinear 
f 

then it turns out that fn is a polynominal 
in x of order 2". This polynomial rapidly 
becomes unmanageably large; moreover, 
its coefficients are polynomials in a of 
order up to 2 " '  and become equally dif- 
ficult to compute. Thus even if x0 = 0, xn 
is a polynomial in a of order 2 " ' .  These 
polynomials are nontrivial as can be sur- 
mised from the fact that for certain 

values of a, the sequence of numbers 
generated for almost all starting points in 
the range (a - a2,a) possess all the 
mathematical properties of a random 
sequence. T o  illustrate this, the figure on 
the cover depicts the iterates of a similar 
system in two dimensions: 

Analogous to Eq. (4), a starting coor- 
dinate pair (xo,yo) is used in Eq. (14) to 
determine the next coordinate (x,,y,). 
Equation (14) is reapplied to determine 
(x2,y2) and so on. For some initial points, 
all iterates lie along a definite elliptic 
curve, whereas for others the iterates are 
distributed "randomly" over a certain 
region. It should be obvious that no ex- 
plicit formula will account for the vastly 
rich behavior shown in the figure. That 
is, while the iteration scheme of Eq. (14) 
is trivial to specify, its nth iterate as a 
function of (xo,yo) is unavailable. Put dif- 
ferently, applying the simplest of 
nonlinear iteration schemes to itself suf- 
ficiently many times can create vastly 
complex behavior. Yet, precisely because 
the same operation is reapplied, it is con- 
ceivable that only a select few self- 
consistent patterns might emerge where 
the consistency is determined by the key 
notion of iteration and not by the par- 
ticular function performing the iterates. 
These self-consistent patterns do occur 
in the limit of infinite period doubling 
and in a well-defined intricate organiza- 
tion that can be determined a priori 
amidst the immense complexity depicted 
in the cover figure. 

The Fixed-Point Behavior o f  
Functional Iterations 

Let us now make a direct onslaught 
against Eq. (13) to see what it possesses. 
We want to know the behavior of the 
system after many iterations. As we 

already know, high iterates of f rapidly 
become very complicated. One way this 
growth can be prevented is to  have the 
first iterate of x0 be precisely xO itself. 
Generally, this is impossible. Rather this 
condition determines possible x{s. Such 
a self-reproducing point is called a fixed 
point of f. The sequence of iterates is 
then x0, x0, xO, ... so that the behavior is 
static, or if viewed as periodic, it has 
period 1. 

It is elementary to determine the fixed 
points of Eq. (13). For future con- 
venience we shall use a modified form of 
Eq. (13) obtained by a translation in x 
and some redefinitions: 

so that as A, is varied, x = 0 is always a 
fixed point. Indeed, the fixed-point con- 
dition for Eq. (15), 

gives as the two fixed points 

The maximum value of f(x) in Eq. (15) 
is attained at x = 1/- and is equal to 'k. 
Also, for 'k > 0 and x in the interval 
(0,1), f(x) is always positive. Thus, if 7. is 
anywhere in the range [0,1], then any 
iterate of any x in (0,l) is also always in 
(0,l). Accordingly, in all that follows we 
shall consider only values of x and 'k ly- 
ing between 0 and 1. By Eq. (16) for 0 <: 
7. < \/., only x* = 0 is within range, 
whereas for 1/ <: A. <: 1, both fixed points 
are within the range. For example, if we 
set X = 1/ and we start at the fixed point 
x; = '/; (that is, we set x0 = '/,), then xl = 
x = . = 1/- similarly if x,, = 0, xl  = x, 
= . = 0, and the problem of computing 
the nth iterate is obviously trivial. 

What if we choose an x0 not at a fixed 
point? The easiest way to see what hap- 
pens is to perform a graphical analysis. 
We graph y = f(x) together with y = x. 
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Where the lines intersect we have x = y 
= f(x), so that the intersections are 
precisely the fixed points. Now, if we 
choose an x0 and plot it on the x-axis, the 
ordinate of f(x) at  x0 is x,. To obtain x,, 
we must transfer x, to the x-axis before 
reapplying f. Reflection through the 
straight line y = x accomplishes 
precisely this operation. Altogether, to 
iterate an initial x0 successively, 

1. move vertically to the graph of fix), 
2. move horizontally to the graph of y = 

x, and 
3. repeat steps 1, 2, etc. 

Figure 1 depicts this process for t = x. 
The two fixed points are circled, and the 
first several iterates of an arbitrarily 
chosen point x0. are shown. What should 
be obvious is that if we start from any x0 
in (0,l) (x = 0 and x = 1 excluded), upon 
continued iteration x,, will converge to 
the fixed point at x = '/,. No matter how 
close x0 is to the fixed point at x = 0, the 
iterates diverge away from it. Such a 
fixed point is termed unstable. Alter- 
natively, for almost all x0 near enough to 
x = 1/ [in this case, all xO in (0,1)], the 
iterates converge towards x = l/,. Such a 
fixed point is termed stable or is referred 
to as an attractor of period 1. 

Now, if we don't care about the tran- 
sient behavior of the iterates of xo, but 
only about some regular behavior that 
will emerge eventually, then knowledge 
of the stable fixed point at x = '/ satisfies 
our concern for the eventual behavior of' 
the iterates. In this restricted sense of 
eventual behavior, the existence of an at- 
tractor determines the solution indepen- 
dently of the initial condition x0 provided 
that x0 is within the basin of attraction of 
the attractor; that is, that it is attracted. 
The attractor satisfies Eq. (16), which is 
explicitly independent of x0. This condi- 
tion is the basic theme of universal 
behavior: if an attractor exists, the even- 
tual behavior is independent of the 
starting point. 

Fig. 1.  Iterates of x0 at X = 0.5. 

What makes x = 0 unstable, but x = 

stable? The reader should be able to 
convince himself that x = 0 is unstable 
because the slope of f(x) at x = 0 is 
greater than 1. Indeed, if x* is a fixed 
point of f and the derivative of f at x*, 
fr(x*), is smaller than 1 in absolute value, 
then x* is stable. If l f'(x*)l is greater 
than 1, then x* is unstable. Also, only 
stable fixed points can account for the 
eventual behavior of the iterates of an ar- 
bitrary point. 

We now must ask, "For what values 
of 'k are the fixed points attracting?" By 
Eq. (15), fr(x) = 4X(1 -* 2x) so that 

and 

For 0 < t. < -/, only x* = 0 is stable. At 
t. = '/, x* = 0 and f'(x*) = 1. For < t. 
< 3 / ,  x* is unstable and x* is stable, 
while at >. = '/., f ' ( ~ * ~ )  = -1 and x"1so 
has become unstable. Thus, for 0 < < 
3/, the eventual behavior is known. 
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Period 2 from the Fixed Point 

What happens to the system when A is 
in the range % < A < 1, where there are 
no attracting fixed points? We will see 
that as ?L increases slightly beyond A = 
%, f undergoes period doubling. That is, 
instead of having a stable cycle of period 
1 corresponding to one fixed point, the 
system has a stable cycle of period 2; 
that is, the cycle contains two points. 
Since these two points are fixed points of 
the function f 2  (f applied twice) and since 
stability is determined by the slope of a 
function at itsfixed points, we must now 
focus on f2. First, we examine a graph of 
f2  at  A just below x. Figures 2a and b 
show f and f2, respectively, at A = 0.7. 

T o  understand Fig. 2b, observe first 
that, since f is symmetric about its max- 
imum at x = x, f2 is also symmetric 
about x = x. Also, f2 must have a fixed 
point whenever f does because the 
second iterate of a fixed point is still that 
same point. The main ingredient that 
determines the period-doubling behavior 
of f as A increases is the relationship of 
the slope of f2 to the slope of f. This 
relationship is a consequence of the 
chain rule. By definition 

where 

We leave it to the reader to verify by the 
chain rule that 

and 

an elementary result that determines 
period doubling. If we start at a fixed 
point of f and apply Eq. (20) to xo = x*, 
so that x2 = x, = x*, then 

Fig. 2. = 0.7. x* is the stable fmed point. The extrema o f f  are located in (a) by 

(22) 
constructing the inverse iterates of x = 0.5. 

f2I(x*) = fl(x*)fl(x*) = [fl(x*)] 
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Since at  = 0.7, lP(x*) I < 1, it follows 
from Eq. (22) that 

Also, if we start at  the extremum off ,  so 
that xo = % and P(xo) = 0, it follows 
from Eq. (21) that 

for all n. In particular, f2 is extreme (and 
a minimum) at  x. Also, by Eq. (201, f2 
will be extreme (and a maximum) a t  the 
xo that will iterate under f to x = x ,  since 
then xl = % and f'(xl) = 0. These points, 
the inverses of x = %, are found by going 
vertically down along x = x to y = x 
and then horizontally to y = f(x). 
(Reverse the arrows in Fig. 1, and see 
Fig, 2a.) Since f has a maximum, there 
are two horizontal intersections and, 
hence, the two maxima of Fig. 2b. The 
ability o f f  to have complex behaviors is 
precisely the consequence of its double- 
valued inverse, which is in turn a reflec- 
tion of its possession of an extremum. A 
monotone f, one that always increases, 
always has simple behaviors, whether or 
not the behaviors are easy to compute. A 
linear f is always monotone. The f's we 
care about always fold over and so are 
strongly nonlinear. This folding non- 
linearity gives rise to universality. Just as 
linearity in any system implies a definite 
method of solution, folding nonlinearity 
in any system also implies a definite 
method of solution. In fact folding non- 
linearity in the aperiodic limit of period 
doubling in any system is solvable, and 
many systems, such as various coupled 
nonlinear differential equations, possess 
this nonlinearity. 

To return to Fig. 2b, as  A -+ % and 
the maximum value of f increases to x, 
ff(x*) -+ - 1 and f2'(x*) --+ + 1. As A in- 
creases beyond %, I P(x*)l > 1 and 
f2'(x*) > 1, so  that f2 must develop two 
new fixed points beyond those of that 
is, f 2  will cross y = x at  two more points. 

~ i g .  3. A = 0.75. (a) depicts the slow convergence to thefmedp0int.f oscdates about This transition is depicted in Figs. 3a 
the faed  point. and b for f and f2, respectively, at  A = 
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0.75, and similarly in Figs. 4 a  and b at k 
= 0.785. (Observe the exceptionally slow 
convergence to  x* at X = 0.75, where 
iterates approach the fixed point not 
geometrically, but rather with deviations 
from x* inversely proportional to the 
square root of the number of iterations.) 
Since x; and x:, the new fixed points of 
f2, are not fixed points of f, it must be 
that f sends one into the other: 

and 

Such a pai r  of points, termed a 2-cycle, is 
depicted by the limiting unwinding cir- 
culating square in Fig. 4a. Observe in 
Fig. 4b that the slope of f2 1s in excess of 
1 at  the fixed point of f and so is an  un- 
stable fixed point of f2, while the two new 
fixed points have slopes smaller than 1, 
and so are stable; that is, every two 
iterates of f will have a point attracted 
toward x: if it is suficiently close to x; 
or toward x; if it is suficiently close to 
x;. This means that the sequence under 
f, 

eventually becomes arbitrarily close to 
the sequence 

x;, x;, x;, x;, ... , 
Fig. 4 .  = 0.785. (a) shows the outward spiralling to a stable 2-cycle. m e  elements of 

so that this is a stable 2-cycle, or an at- the 2-cycle, x; and x;, are located as fmed points in 0). 
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tractor of period 2 .  Thus, we have obser- 
ved for Eq. (15) the first period doubling 
as the parameter k has increased. 

There is a point of paramount impor- 
tance to be observed; namely, f2  has the 
same slope at x; and at x;. This point is 
a direct consequence of Eq. (201, since if 
xo = x:, then xl = x:, and vice versa, so 
that the product of the slopes is the 
same. More generally, if x;, x:, ..., x: is 
an n-cycle so that 

and 

then each is a fixed point off"  with iden- 
tical slopes: 

and 

Fig. 5 . 1  = 1,. A superstable 2-cycle. xy and x; are at extremu off 2. 
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From this observation will follow period 
doubling ad infiniturn. 

As k is increased further,  the 
minimum at x = will drop as the slope 
of f2 through the fixed point of f in- 
creases. At some value of k, denoted by 
k,, x = will become a fixed point of f2. 
Simultaneously, the right-hand max- 
imum will also become a fixed point of 
f2. [By Eq. (261, both elements of the 2- 
cycle have slope 0.1 Figures 5a and b 
depict the situation that occurs at k = kl. 



Period Doubling Ad I@nitum 

We are now close to the end of this 
story. As we increase k further, the 
minimum drops still lower, so that both 
x: and x; have negative slopes. At some 
parameter value, denoted by A2, the 
slope at both x t  and x; becomes equal to 
-1. Thus at A2 the same situation has 
developed for f2 as developed for f at Al 
= x. This transitional case is depicted in 
Figs. 6a and b. Accordingly, just as the 
fixed point of f at Al issued into being a 
2-cycle, so too does each fmed point of f2 
at A2 create a 2-cycle, which in turn is a 
4-cycle of f. That is, we have now en- 
countered the second period doubling. 

The manner in which we were able to 
follow the creation of the 2-cycle at A, 
was to anticipate the presence of period 
2, and so to consider f2, which would 
resolve the cycle into a pair of fixed 
points. Similarly, to resolve period 4 into 
fixed points we now should consider f". 
Beyond being the fourth iterate off ,  Eq. 
(8) tells us that f" can be computed from 
f2: 

From this point, we can abandon f itself, 
and take f2 as the "fundamental" func- 
tion. Then, just as f2 was constructed by 
iterating f with itself we now iterate f2 
with itself. The manner in which f2  
reveals itself as being an iterate off  is the 
slope equality at the fixed points of f2, 
which we saw imposed by the chain rule. 
Since the operation of the chain rule is 
"automatic," we actually needed to con- 
sider only the fixed point of f2 nearest to 
x = x; the behavior of the other fixed 
point is slaved to it. Thus, at the level of 
f", we again need to focus on only the 
fixed point of P nearest to x = K: the 
other three fried points are similarly 
slaved to it. Thus, a recursive scheme 
has been unearthed. We now increase k 
to k2, so that the fixed point of f" nearest Fig* 6. ?L = A2. x; and x; in @) have the same slow convergence as the B e d  p i n t  in 

to x = x is again at x = with slope 0. Fig. 3a. 
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there is a definite operation that, by 
acting on functions, creates functions; in 
particular, the operation acting on f2" at 
A Ã  (or better, f2" at A,,,) will determine 
f2" at \ ,. Also, since we need to keep 

2% track of f only in the interval including 
the fixed point of f2" closest to x = '/, and 
since this interval becomes increasingly 
small as A, increases, the part of f that 
generates this region is also the restric- 
tion of f to an increasingly small interval 
about x = '/. (Actually, slopes of f at 
points farther away also matter, but 
these merely set a "scale," which will be 
eliminated by a rescaling.) The behavior 
of f away from x = '/, is immaterial to 
the period-doubling behavior, and in the 
limit of large n only the nature off s 
maximum can matter. This means that 
in the infinite period-doubling limit, all 

Fig. 7.  A, = iy A superst& 4-cycle. The region within the dashed square in (a) functions with a quadratic extremum will 
should be compared with all of Fig. 5a. have identical behavior. [?I('/,) # 0 is the 

Figures 7a and b depict this situation for 
f2 and f4, respectively. When A, increases 
further, the maximum of f" at x = '/, now 
moves up, developing a fixed point with 
negative slope. Finally, at A, when the 
slope of this fixed point (as well as the 
other three) is again - 1, each fixed point 
will split into a pair giving rise to an 8- 
cycle, which is now stable. Again, f8 = f4 
o f4, and f" can be viewed as fundamen- 
tal. We define A,, so that x = '/, again is a 
fixed point, this time of f8. Then at A4 the 
slopes are - 1, and another period doubl- 
ing occurs. Always, 

Provided that a constraint on the range 
of A, does not prevent it from decreasing 
the slope at the appropriate fixed point 
past -1, this doubling must recur ad 
inflnitum. 

Basically, the mechanism that f2" uses 
to period double at An+, is the same 
mechanism that f2"+l will use to double 
at An+;. The function f2"' is constructed 
from f2" by Eq. (27), and similarly f2"+2 
will be constructed from f2"'l. Thus, 
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generic circumstance.] Therefore, the 
operation on functions will have a stabh 
fixed point in the space of functions 
which will be the common universal limii 
of high iterates of any specific function 
To determine this universal limit wt 
must enlarge our scope vastly, so thai 
the role of the starting point, x0, will be 
played by an arbitrary function; the at 
trading fixed point will become a univer 
sal function obeying an equation im 
plicating only itself. The role of the func 
tion in the equation x0 = f(xo) now musi 
be played by an operation that yields 2 

new function when it is performed upor 
a function. In fact, the heart of thii 
operation is the functional compositior 
of Eq. (27). If we can determine the ex 
act operator and actually can solve it: 
fixed-point problem, we shall understanc 
why a special number, such as 6 of Eq 
(3), has emerged independently of the 
specific system (the starting function) wc 
have considered. 

The Universal Limit of High Iterates 

In this section we sketch the solutior 
to the fixed-point problem. In Fig. 7a, 2 

dashed square encloses the part of f2 thal 
we must focus on for all further perioc 
doublings. This square should be corn 
pared with the unit square that corn 
prises all of Fig. 5a. If the Fig. 7a squarc 
is reflected through x = %, y = '/, anc 
then magnified so that the circulatior 
squares of Figs. 4a and 5a are of equa 
size, we will have in each square a piecc 
of a function that has the same kind o; 
maximum at x = '/, and falls to zero ai 
the right-hand lower corner of the cir 
culation square. Just as f produced thii 
second curve of f2 in the square as I. in 
creased from I., to K2, so too will f '  
produce another curve, which will be 
similar to the other two when it has beer 
magnified suitably and reflected twice 
Figure 8 shows this superposition for tht 
first five such functions; at the resolutior 
of the figure, observe that the last three 

A DISCOVERY 

The inspiration for the universality theory came from two sources. First, in 
197 1 N. Metropolis, M. Stein, and P. Stein (all in the LASL Theoretical Divi- 
sion) discovered a curious property of iterations: as a parameter is varied, the 
behavior of iterates varies in a fashion independent of the particular function 
iterated. In particular for a large class of functions, if at some value of the 
parameter a certain cycle is stable, then as the parameter increases, the cycle is 
replaced successively by cycles of doubled periods. This period doubling con- 
tinues until an infinite period, and hence erratic behavior, is attained. 

Second, during the early 1970s' a scheme of mathematics called dynamical 
system theory was popularized, largely by D. Ruelle, with the notion of a 
"strange attractor." The underlying questions addressed were (1) how could a 
purely causal equation (for example, the Navier-Stokes equations that describe 
fluid flow) come to demonstrate highly erratic or statistical properties and (2) 
how could these statistical properties be computed. This line of thought merged 
with the iteration ideas, and the limiting infinite "cycles" of iteration systems 
came to be viewed as a possible means to comprehend turbulence. Indeed, I 
became inspired to study the iterates of functions by a talk on such matters by 
S. Smale, one of the creators of dynamical system theory, at Aspen in the sum- 
mer of 1975. 

My first effort at understanding this problem was through the complex 
analytic properties of the generating function of the iterates of the quadratic 
map 

This study clarified the mechanism of period doubling and led to a rather dif- 
ferent kind of equation to  determine the values of X at which the period dou- 
bling occurs. The new equations were intractable, although approximate solu- 
tions seemed possible. Accordingly, when I returned from Aspen, I 
numerically determined some parameter values with an eye toward discerning 
some patterns. At this time I had never used a large computer-in fact my sole 
computing power resided in a programmable pocket calculator. Now, such 
machines are very slow. A particular parameter value is obtained iteratively 
(by Newton's method) with each step of iteration requiring 2" iterates of the 
map. For a 64-cycle, this means 1 minute per step of Newton's method. At the 
same time as n increased, it became an increasingly more delicate matter to 
locate the desired solution. However, I immediately perceived the &'s were 
converging geometrically. This enabled me to  predict the next value with in- 
creasing accuracy as n increased, and so required just one step of Newton's 
method to obtain the desired value. To  the best of my knowledge, this observa- 
tion of geometric convergence has never been made independently, for the sim- 
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pie reason that the solutions have always been performed automatically on 
large and fast computers! 

That a geometric convergence occurred was already a surprise. I was in- 
terested in this for two reasons: first, to gain insight into my theoretical work, 
as already mentioned, and second, because a convergence rate is a number in- 
variant under all smooth transformations, and so of mathematical interest. Ac- 
cordingly, I spent a part of a day trying to fit the convergence rate value, 
4.669. to the mathematical constants I knew. The task was fruitless, save for 
the fact that it made the number memorable. 

At this point I was reminded by Paul Stein that period doubling isn't a u- 
nique property of the quadratic map, but also occurs, for example, in 

Xn+ I = ?L sin TTX- . 

However, my generating function theory rested heavily on the fact that the 
nonlinearity was simply quadratic and not transcendental. Accordingly, my in- 
terest in the problem waned. 

Perhaps a month later I decided to determine the A's in the transcendental 
case numerically. This problem was even slower to compute than the quadratic 
one. Again, it became apparent that the h's converged geometrically, and 
altogether amazingly, the convergence rate was the same 4.669 that I remem- 
bered by virtue of my efforts to fit it. 

Recall that the work of Metropolis, Stein, and Stein showed that precise 
qualitative features are independent of the specific iterative scheme. Now I 
learned that precise quantitative features also are independent of the specific 
function. This discovery represents a complete inversion of accustomed ritual. 
Usually one relies on the fact that similar equations will have qualitatively 
similar behavior, but quantitative predictions depend on the details of the equa- 
tions. The universality theory shows that qualitatively similar equations have 
the identical quantitative behavior. For example, a system of differential equa- 
tions naturally determines certain maps. The computation of the actual 
analytic form of the map is generally well beyond present mathematical 
methods. However, should the map exhibit period doubling, then precise quan- 
titative results are available from the universality theory because the theory ap- 
plies independently of which map it happens to be. In particular, certain fluid 
flows have now been experimentally observed to become turbulent through 
period doubling (subharmonic bifurcations). From this one fact we know that 
the universality theory applies-and indeed correctly determines the precise 
way in which the flow becomes turbulent, without any reference to the under- 
lying Navier-Stokes equations. 
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curves are coincident. Moreover, the 
scale reduction that f2 will determine for 
f* is based solely on the functional com- 
position, so that if these curves for f2", 
f 2 " ,  converge (as they obviously do in 
Fig. 8), the scale reduction from level to 
level will converge to a definite constant. 
But the width of each circulation square 
is just the distance between x = % when 
it is a fixed point of f2" and the fixed 
point of f2" next nearest to x = '/, (Figs. 
7a and b). That is, asymptotically, the 
separation of adjacent elements of 
period-doubled attractors is reduced by 
a constant value from one doubling to 
the next. Also from one doubling to the 
next, this next nearest element alternates 
from one side of x = % to the other. Let 
dn denote the algebraic distance from x 
= to the nearest element of the attrac- 
tor cycle of period 2", in the 2"-cycle at 
?in. A positive number a scales this dis- 
tance down in the 2""-cycle at ?in+i: 

But since rescaling is determined only by 
functional composition, there is some 
function that composed with itself will 
reproduce itself reduced in scale by -a. 
The function has a quadratic maximum 
at x = \{^ is symmetric about x = and 
can be scaled by hand to equal 1 at x = 
. Shifting coordinates so that x = '/, - 
x = 0, we have 

Substituting g(0) = 1, we have 

Accordingly, Eq. (29) is a definite equa- 
tion for a function g depending on x 
through x2 and having a maximum of 1 
at x = 0. There is a unique smooth solu- 
tion to Eq. (29), which determines 



Knowing a,  we can predict through Eq. 
(28) a definite scaling law binding on the 
iterates of any scheme possessing period 
doubling. The law has, indeed, been am- 
ply verified experimentally. By Eq. (29), 
we see that the relevant operation upon 
functions that underlies period doubling 
is functional composition followed by 
magnification, where the magnification 
is determined by the fixed-point condi- 
tion of Eq. (29) with the function g the 
fixed point in this space of functions. 
However, Eq. (29) does not describe a 
stable fixed point because we have not 
incorporated in it the parameter increase 
from L,, to Thus, g is not the 
limiting function of the curves in the cir- 
culation squares, although it is intimately 
related to that function. The full theory is 
described in the next section. Here we 
merely state that we can determine the 
limiting function and thereby can deter- 
mine the location of the actual elements 
of limiting 2"-cycles. We also have es- 
tablished that g is an unstable fixed point 
of functional composition, where the rate 
of divergence away from g is precisely 6 
of Eq. (3) and so is computable. Accor- 
dingly, there is a full theory that deter- 
mines, in a precise quantitative way, the 
aperiodic limit of functional iterations 
with an unspecified function f. 

Some Details of the Full Theory 

Returning to Eq. (28), we are in a 
position to describe theoretically the uni- 
versal scaling of high-order cycles and 
the convergence to a universal limit. 
Since dn is the distance between x = '/, 
and the element of the 2"-cycle at ?in 
nearest to x = '/, and since this nearest 
element is the 2 " '  iterate of x = 1/, 
(which is true because these two points 
were coincident before the nth period 
doubling began to split them apart), we 
have 

Fig. 8. The superposition o f  the suitably magnified dotted squares o f f  ' " '  at \ (as in 
Figs. 5a, 7a, ...). 

For future work it is expedient to per- 
form a coordinate translation that moves 
x = '/, to x = 0. Thus, Eq. (32) becomes 

Equation (28) now determines that the 
rescaled distances, 

will converge to a definite finite value as 
n --+ oo. That is, 

must exist if Eq. (28) holds. 
However, from Fig. 8 we know 

something stronger than Eq. (34). When 
the nth iterated function is magnified by 
(-a)", it converges to  a definite function. 
Equation (34) is the value of this func- 
tion at x = 0. After the magnification, 
the convergent functions are given by 

Thus, 
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Fig. 9. The function g,. The squares locate cycle elements. 

is the limiting function inscribed in the 
square of Fig. 8. The function g,(x) is, by 
the argument of the restriction o f f  to in- 
creasingly small intervals about its max- 
imum, the universal limit of all iterates of 
all f s  with a quadratic extremum. In- 
deed, it is numerically easy to ascertain 
that gl of Eq. (35) is always the same 
function independent of the f in  Eq. (32). 

What is this universal function good 
for? Figure 5a shows a crude approx- 
imation of g, [n = 0 in the limit of Eq. 
(35)], while Fig. 7a shows a better ap- 
proximation (n = 1). In fact, the extrema 
of g, near the fixed points of g, support 
circulation squares each of which con- 
tains two points of the cycle. (The two 
squares shown in Fig. 7a locate the four 
elements of the cycle.) That is, gl  deter- 
mines the location of elements of high- 

order 2"-cycles near x = 0. Since g, is 
universal, we now have the amazing 
result that the location of the actual ele- 
ments of highly doubled cycles is univer- 
sal! The reader might guess this is a very 
powerful result. Figure 9 shows g, out to 
x sufficiently large to have 8 circulation 
squares, and hence locates the 15 ele- 
ments of a 2"-cycle nearest to x = 0. 
Also, the universal value of the scaling 
parameter a,  obtained numerically, is 

Like 6, a is a number that can be 
measured [through an experiment that 
observes the dn of Eq. (28)] in any 
phenomenon exhibiting period doubling. 

If g, is universal, then of course its 
iterate gi also is universal. Figure 7b 

depicts an early approximation to this 
iterate. In fact, let us define a new uni- 
versal function go, obtained by scaling 
gi: 

(Because g, is universal and the iterates 
of our quadratic function are all sym- 
metric in x, both g, and go are symmetric 
functions. Accordingly, the minus sign 
within gi can be dropped with impunity.) 
From Eq. (35), we now can write 

[We introduced the scaling of Eq. (37) to 
provide one power of a per period dou- 
bling, since each successive iterate of f2" 
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reduces the scale by a].  
In fact, we can generalize Eqs. (35) 

and (38) to a family of universal func- 
tions g,: 

To understand this, observe that go 
locates the cycle elements as the fixed 
points of go at extrema; g, locates the 
same elements by determining two ele- 
ments per extremum. Similarly, gr deter- 
mines 2, elements about each extremum 
near a fixed point of g,. Since each f 2  is 
always magnified by (-a)" for each r, 
the scales of all g are the same. Indeed, 
g, for r > 1 looks like g, of Fig. 9, except 
that each extremum is slightly higher, to 
accommodate a 2r-cycle. Since each ex- 
tremum must grow by convergently 
small amounts to accommodate higher 
and higher 2r-cycles, we are led to con- 
clude that 

must exist. By Eq. (39), 

Unlike the functions g,, g(x) is obtained 
as a limit of f2Â¥" at a fixed value of X,. In- 
deed, this is the special significance of 

it is an isolated value of X, at which 
repeated iteration and magnification lead 
to a convergent function. 

We now can write the equation that g 
satisfies. Analogously to Eq. (37), it is 
easy to verify that all g are related by 

By Eq. (40), it follows that g satisfies 

The reader can verify that Eq. (43) is in- 

variant under a magnification of g. Thus, 
the theory has nothing to say about ab- 
solute scales. Accordingly, we must fix 
this by hand by setting 

Also, we must specify the nature of the 
maximum of g at x = 0 (for example, 
quadratic). Finally, since g is to be built 
by iterating a - x2, it must be both 
smooth and a function of x through x2. 
With these specifications, Eq. (43) has a 
unique solution. By Eqs. (44) and (43), 

so that 

Accordingly, Eq. (43) determines a 
together with g. 

Let us comment on the nature of Eq. 
(43), a so-called functional equation. 
Because g is smooth, if we know its 
value at a finite number of points, we 
know its value to some approximation 
on the interval containing these points by 
any sufficiently smooth interpolation. 
Thus, to some degree of accuracy, Eq. 
(43) can be replaced by a finite coupled 
system of nonlinear equations. Exactly 
then, Eq. (43) is an infinite-dimensional, 
nonlinear vector equation. Accordingly, 
we have obtained the solution to one- 
dimensional period doubling through our 
infinite-dimensional, explicitly universal 
problem. Equation (43) must be infinite- 
dimensional because it must keep track 
of the infinite number of cycle elements 
demanded of any attempt to solve the 
period-doubling problem. Rigorous 
mathematics for equations like Eq. (43) 
is just beyond the boundary of present 
mathematical knowledge. 

At this point, we must determine two 
items. First, where is 6? Second, how do 
we obtain g,, the real function of interest 
for locating cycle elements? The two 

problems are part of one question. Equa- 
tion (42) is itself an iteration scheme. 
However, unlike the elements in Eq. (4), 
the elements acted on in Eq. (42) are 
functions. The analogue of the function 
o f f  in Eq. (4) is the operation in function 
space of functional composition followed 
by a magnification. If we call this opera- 
tion T, and an element of the function 
space v ,  Eq. (42) gives 

In terms of T, Eq. (42) now reads 

and Eq. (43) reads 

g = Tlgl (48) 

Thus, g is precisely the fixed point of T. 
Since g is the limit of the sequence g,, we 
can obtain g, for large r by linearizing T 
about its fixed point g. Once we have gr 
in the linear regime, the exact repeated 
application of T by Eq. (47) will provide 
g,. Thus, we must investigate the 
stability of T at  the fixed point g. 
However, it is obvious that T is unstable 
at g: for a large enough r, g is a point ar- 
bitrarily close to the fixed point g; by Eq. 
(479, successive iterates of g under T 
move away from g. How unstable is T?  
Consider a one-parameter family of 
functions flw, which means a "line" in the 
function space. For each f, there is an 
isolated parameter value A ,  for which 
repeated applications of T lead to con- 
vergence towards g 1 Eq. (4 I ) ] .  Now, the 
function space can be "packed" with all 
the lines corresponding to the various f's. 
The set of all the points on these lines 
specified by the respective A ' s  deter- 
mines a "surface" having the property 
that repeated applications of T to any 
point on it will converge to g. This is the 
surface of stability of T (the "stable 
manifold" of T through g). But through 
each point of this surface issues out the 
corresponding line, which is one- 
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dimensional since it is parametrized by a 
single parameter, A. Accordingly, T is 
unstable in only one direction in function 
space. Linearized about g, this line of in- 
stability can be written as the one- 
parameter family 

which passes through g (at 'k = 0) and 
deviates from g along the unique direc- 
tion h. But f, is just one of our transfor- 
mations 1 Eq. (4)1! Thus, as we vary 'k, f,b 

will undergo period doubling, doubling 
to a 2"-cycle at An. By Eq. (41), ' k  for 
the family of functions f, in Eq. (49) is 

Thus, by Eq. (1) 

Since applications of T by Eq. (47) 
iterate in the opposite direction (diverge 
away from g), it now follows that the 
rate of instability of T along h must be 
precisely 6. 

Accordingly, we find 6 and g, in the 
following way. First, we must linearize 
the operation T about its fixed point g. 
Next, we must determine the stability 
directions of the linearized operator. 
Moreover, we expect there t o  be 
precisely one direction of instability. In- 
deed, it turns out that infinitesimal defor- 
mations (conjugacies) of g determine 
stable directions, while a unique unstable 
direction, h, emerges with a stability rate 
(eigenvalue) precisely the 6 of Eq. (3). 
Equation (49) at 'kr is precisely gr for 
asymptotically large r. Thus gr is known 
asymptotically, so that we have entered 
the sequence gr and can now, by 
repeated use of Eq. (47), step down to g,. 
All the ingredients of a full description of 
high-order 2"-cycles now are at hand 
and evidently are universal. 

Although we have said that the func- 
tion g, universally locates cycle elements 

near x = 0, we must understand that it 
doesn't locate all cycle elements. This is 
possible because a finite distance of the 
scale of g, (for example, the location of 
the element nearest to x = 0) has been 
magnified by an for n diverging. Indeed, 
the distances from x = 0 of all elements 
of a 2"-cycle, "accurately" located by gl, 
are reduced by -a in the 2""-cycle. 
However, it is obvious that some ele- 
ments have no such scaling: because f(0) 
= a in Eq. (13), and an -+ a ,  which is 
a definite nonzero number, the distance 
from the origin of the element of the 2"- 
cycle farthest to the right certainly has 
not been reduced by -a at each period 
doubling. This suggests that we must 
measure locations of elements on the far 
right with respect to the farthest right 
point. If we do this, we can see that these 
distances scale by a2, since they are the 
images through the quadractic max- 
imum o f f  at  x = 0 of elements close to x 
= 0 scaling with -a. In fact, if we image 
g, through the maximum o f f  (through a 
quadratic conjugacy), then we shall in- 
deed obtain a new universal function 
that locates cycle elements near the 
right-most element. The correct descrip- 
tion of a highly doubled cycle now 
emerges as  one of universal local 
clusters. 

We can state the scope of universality 
for the location of cycle elements 
precisely. Since f('kl, x) exactly locates 
the two elements of the 2'-cycle, and 
since f('k,, x) is an approximation to g, In 
= 0 in Eq. (35)], we evidently can locate 
both points exactly by appropriately 
sealing g,. Next, near x = 0, f2('k2, x) is a 
better approximation to g, (suitably 
scaled). However, in general, the more 
accurately we scale g ,  to determine the 
smallest 2-cycle elements, the greater is 
the error in its determination of the right- 
most elements. Again, near x = 0, ?(A3, 
x) is a still better approximation to g,. In- 
deed, the suitably scaled g, now can 
determine several points about x = 0 ac- 
curately, but determination of the right- 

most elements is still worse. In this 
fashion, it follows that gl ,  suitably 
scaled, can determine 2^ points of the 2n- 
cycle near x = 0 for r << n. If we focus on 
the neighborhood of one of these 2'" 
points at some definite distance from x = 

0, then by Eq. (35) the larger the n, the 
larger the scaled distance of this region 
from x = 0, and so, the poorer the ap- 
proximation of the location of fixed 
points in it by g r  However, just as we 
can construct the version of g, that ap- 
plies a t  the right-most cycle element, we 
also can construct the version of g ,  that 
applies at this chosen neighborhood. Ac- 
cordingly, the universal description is set 
through an acceptable tolerance: if we 
"measure" f2" at some definite n, then we 
can use the actual location of the ele- 
ments as foci for 2" versions of g l ,  each 
applicable at  one such point. For all 
further period doubling, we determine 
the new cycle elements through the g,'s. 
In summary, the more accurately we 
care to know the locations of arbitrarily 
high-order cycle elements, the more 
parameters we must measure (namely, 
the cycle elements at  some chosen order 
of period doubling). This is the sense in 
which the  universali ty theory  is 
asymptotic. Its ability to have serious 
predictive power is the fortunate conse- 
quence of the high convergence rate 
6(-4.67). Thus, typically after the first 
two or three period doublings, this 
asymptotic theory is already accurate to 
within several percent. If a period- 
doubling system is measured in its 4- o r  
8-cycle, its behavior throughout and 
symmetrically beyond the period- 
doubling regime also is determined to 
within a few percent. 

T o  make precise dynamical predic- 
tions, we do not have to construct all the 
local versions of g,; all we really need 
to know is the local scaling everywhere 
along the attractor. The scaling is -a a t  
x = 0 and a2 at  the right-most element. 
But what is it at  an arbitrary point? We 
can determine the scaling law if we order 
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elements not by their location on the x- 
axis, but rather by their order as  iterates 
of x = 0. Because the time sequence in 
which a process evolves is precisely this 
ordering, the result will be of immediate 
and powerful predictive value. It is 
precisely this scaling law that allows us 
to compute the spectrum of the onset of 
turbulence in period-doubling systems. 

What must we compute? First, just as 
the element in the 2"cycle nearest to x = 

0 is the element halfway around the cy- 
cle from x = 0, the element nearest to an 
arbitrarily chosen element is precisely 
the one halfway around the cycle from it. 
Let us denote by dn(m) the distance bet- 
ween the mth cycle element (xm) and the 
element nearest to it in a 2"-cycle. [The 
dn of Eq. (28) is dn(0)]. As just explained, 

However, xrn is the mth iterate of x, = 0. 
Recalling from Eq. (6) that powers com- 
mute, we find 

dn(m) = frn(^O) 

- frn(Ln, f2"-l(Ln,0)) . (53) 

Let us, for the moment, specialize to m 
of the form 2 " r ,  in which case 

For r << n (which can still allow r >> I for 
n large), we have, by Eq. (39), 

The object we want to determine is the 
local scaling at the mth element, that is, 
the ratio of nearest separations at the mth 
iterate of x = 0, at successive values of n. 
That is, if the scaling is called o,  

I Observe by Eq. (28), the definition of a ,  
that on(0) - ( - a ) . )  Specializing again 
to m = 2 " r ,  where r << n, we have by Eq. 
(55) 

Finally, let us rescale the axis of iterates 
so that all 2"" iterates are within a unit 
interval. Labelling this axis by t, the 
value o f t  of the mth element in a 2"-cycle 
is 

In particular, we have 

Defining o along the t-axis naturally as 

we have by Eqs. (57) and (59), 

It is not much more difficult to obtain o 
for all t. This is done first for rational t 
by writing t in its binary expansion: 

In the 2"-cycle approximation we require 
on at  the 2Â¡-̂  + 2""" + ... iterate of the 
origin. But, by Eq. (8), 

It follows by manipulations identical to 
those that led from Eq. (54) to Eq. (60) 
that o at such values o f t  is obtained by 
replacing the individual g terms in Eq. 
(60) by appropriate iterates of various 
gr's. 

There is one last ingredient to the 
computation of o.  We know that o(0) = 

-a1 .  We also know that on ( l )  - 6'. 
But, by Eq. (59), 

Thus o is discontinuous at t = 0, with 
o(0 - E) = -ar1 and o(0 + e) = a-*(e + 
0'). Indeed, since x2n-r is always very 
close to the origin, each of these points is 
imaged quadratically. Thus Eq. (60) ac- 
tually determines 0(2-~-' - e), while 
~ ( 2 ~ '  + e) is obtained by replacing 
each numerator and denominator g by 
its square. The same replacement also is 
correct for each multi-gr term that 
figures into o at the binary expanded 
rationals. 

Altogether, we have the following 
results. o(t) can be computed for all t, 
and it is universal since its explicit com- 
putation depends only upon the uni- 
versal functions gr. a is discontinuous 
at  all the rationals. However, it can be 
established that the larger the number of 
terms in the binary expansion of a 
rational t, the smaller the discontinuity 
of o. Lastly, as a finite number of iterates 
leaves t unchanged as n + oo, o must be 
continuous except at the rationals. 
Figure 10 depicts l/o(t). Despite the 
pathological nature of o, the reader will 
observe that basically it is constant half 
the time at a '  and half the time a t  a-' 
for 0 < t < -/,. In a succeeding approx- 
imation, it can be decomposed in each 
half into two slightly different quarters, 
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and so forth. [It is easy to verify from 
Eq. (52) that o is periodic in t of period 
1, and has the symmetry 

Fig. 10. The trajectory scaling function. Observe that o (x + 1/2) = - o (x). and 

Accordingly, we have paid attention to 
its first half 0 < t < '/,.I With o we are at 
last finished with one-dimensional 
iterates per se. 

Universal Behavior in Higher Dimen- 
sional Systems 

So far we have discussed iteration in 
one variable; Eq. (15) is the prototype. 
Equation (14), an example of iteration in 
two dimensions, has the special property 
of preserving areas. A generalization of 
Eq. (14), 

with I b l < 1, contracts areas. Equation 
(61) is interesting because it possesses a 
so-called strange attractor. This means 
an attractor (as before) constructed by 
folding a curve repeatedly upon itself 
(Fig. 11) with the consequent property 
that two initial points very near to one 
another are, in fact, very far from each 
other when the distance is measured 
along the folded attractor, which is the 
path they follow upon iteration. This 
means that after some iteration, they will 
soon be far apart in actual distance as 
well as when measured along the attrac- 
tor. This general mechanism gives a 
system highly sensitive dependence upon 
its initial conditions and a truly 
statistical character: since very small dif- 
ferences in initial condi t ions  a r e  
magnified quickly, unless the initial con- 
ditions are known to infinite precision, 
all known knowledge is eroded rapidly to 

Fig. 11. The plotted points lie on the "strange attractor" of Dufflng's equation. future ignorance. Now, Eq. (61) enters 
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into the early stages of statistical 
behavior through period doubling. 
Moreover, 5 of Eq. (3) is again the rate 
of onset of complexity, and a of Eq. (3 1) 
is again the rate at  which the spacing of 
adjacent attractor points is vanishing. 
Indeed, the one-dimensional theory 
determines all behavior of Eq. (61) in the 
onset regime. 

In fact, dimensionality is irrelevant. 
The same theory, the same numbers, etc. 
also work for iterations in N dimensions, 
provided that the system goes through 
period doubling. The basic process, 
wherever period doubling occurs a d  
infiniturn, is functional composition from 
one level to the next. Accordingly, a 
modification of Eq. (29) is at the heart of 
the process, with composition on func- 
tions from N dimensions to N dimen- 
sions. Should the specific iteration func- 
tion contract N-dimensional volumes (a 
dissipative process), then in general there 
is one direction of slowest contraction, 
so that after a number of iterations the Fig. 12a. The most stable 1-cycle o f  Dll/fing's equation in phase space (e). 
process is effectively one-dimensional. 
Put differently, the one-dimensional solu- 
tion to Eq. (29) is always a solution to its 
N-dimensional analogue. It is the rele- 
vant fixed point of the analogue if the 
iteration function is contractive. 

Universal Behavior in Differential 
Systems 

The next step of generalization is to 
include systems of differential equations. 
A prototypic equation is Duffing's os- 
cillator, a driven damped anharmonic 
oscillator, 

i + k i  + x3 = bsin 2 n t .  (62) 

The periodic drive of period 1 determines 
a natural time step. Figure 12a depicts a 
period 1 attractor, usually referred to as 
a limit cycle. It is an attractor because, 
for a range of initial conditions, the solu- 
tion to Eq. (62) settles down to the cycle. 
It is period 1 because it repeats the same Fig. 12b. The most stable 2-cycle of Dufflng's equation. Observe that it is two dis- 
curve in every period of the drive. placed copies of Fig. 12a. 
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Fig. 12c. The most stable 4-cycle of Duffing's equation. Observe 
copies of Fig, 12b have either a broad or a narrow separation. 

Figures 12b and c depict attractors of 
periods 2 and 4 as the friction or damp- 
ing constant k in Eq. (62) is reduced 
systematically. The parameter values k 
= L), Xi, Xi, ..., are the damping cons- 
tants corresponding to the most stable 
2"-cycle in analogy to the \. of the one- 
dimensional functional iteration. Indeed, 
this oscillator's period doubles (at least 
numerically!) ad infinitum. In fact, by k 
= L5, the 61 of Eq. (2) has converged to 
4.69. Why is this? Instead of considering 
the entire trajectories as shown in Fig. 
12, let us consider only where the trajec- 
tory point is located every 1 period of 
the drive. The 1-cycle then produces 
only one point, while the 2-cycle 
produces a pair of points, and so forth. 
This time-one map [if the trajectory 
point is (x,;) now, where is it one period 
later?] is by virtue of the differential 
equation a smooth and invertible func- 

that the displaced 

tion in two dimensions. Qualitatively, it 
looks like the map of Eq. (61). In the 
present state of mathematics, little can 
be said about the analytic behavior of 
time-one maps; however, since our 
theory is universal, it makes no dif- 
ference that we don't know the explicit 
form. We still can determine the com- 
plete quantitative behavior of Eq. (62) in 
the onset regime where the motion tends 
to aperiodicity. If we already know, by 
measurement, the precise form of the 
trajectory after a few period doublings, 
we can compute the form of the trajec- 
t o r y  a s  t h e  f r i c t ion  is r e d u c e d  
throughout the region of onset of com- 
plexity by carefully using the full power 
of the universality theory to determine 
the spacings of elements of a cycle. 

Let us see how this works in some 
detail. Consider the time-one map of the 

D u f i g ' s  oscillator in the superstable 2"- 
cycle. In particular, let us focus on an 
element at which the scaling function a 
(Fig. 10) has the value q,, and for which 
the next iterate of this element also has 
the scaling an. (The element is not at a 
big discontinuity of 0.) It is then intuitive 
that if we had taken our time-one ex- 
amination of the trajectory at  values of 
time displaced from our first choice, we 
would have seen the same scaling an for 
this part of the trajectory. That is, the 
differential equations will extend the 
map-scaling function continuously to a 
function along the entire trajectory so 
that, if two successive time-one elements 
have scaling on, then the entire stretch of 
trajectory over this unit time interval has 
scaling oo. In the last section, we were 
motivated to construct CT as  a function of 
t along an interval precisely towards this 
end. 

T o  implement this idea, the first step is 
to define the analogue of dn. We require 
the spacing between the trajectory at 
time t and at  time Tn/2 where the period 
of the system in the 2"-cycle is 

That is, we define 

(There is a d for each of the N variables 
for a system of N differential equations.) 
Since o was defined as periodic of period 
1, we now have 

The content of Eq. (65), based on the n- 
dependence arising solely through the Tn  
in a, and not on the detailed form of o,  
already implies a strong scaling predic- 
tion, in that the ratio 

when plotted with t scaled so that Tn = 
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1, is a function independent of n. Thus if 
Eq. (65) is true for some o, whatever it 
might be, then knowing xn(t), we can 
compute dn(t) and from Eq. (65) dn+i(t). 
As a consequence of periodicity, Eq. 
(64) for n -+ n + 1 can be solved for 
x,,+,(t) (through a Fourier transform). 
That is, if we have measured any chosen 
coordinate of the system in its 2"-cycle, 
we can compute its time dependence in 
the 2""-cycle. Because this procedure is 
recursive, we can compute the coor- 
dinate's evolution for all higher cycles 
through the infinite period-doubling 
limit. If Eq. (65) is true and o not known, 
then by measurement at a 2"-cycle and 
a t  a 2"+1-cycle, o could be constructed 
from Eq. (65), and hence all higher order 
doublings would again be determined. 
Accordingly, Eq. (65) is a very powerful 
result. However, we know m ~ c ~  Fig. 13a. The ratio of nearest copy separations in the 8-cycle and 16-cycle for Duff- 
The universality theory tells US that ing3 equation. 
period doubling is universal and that 
there is a unique function o which, in- 
deed, we have computed in the previous 
section. Accordingly, by measuring x(t) 
in some chosen 2"-cycle (the higher the 
n, the more the number of effective 
parameters to be determined empirically, 
and the more precise are the predic- 
tions), we now can compute the entire 
evolution of the system on its route to 
turbulence. 

How well does this work? The em- 
pirically determined o [for Eq. (62)] of 
Eq. (65) is shown for n = 3 in Fig. 13a 
and n = 4 in Fig. 13b. The figures were 
constructed by plotting the ratios of dn+, 
and dn scaled respective to T = 16 in 

Fig. 13a and T = 32 in Fig. 13b. 
Evidently the scaling law Eq. (65) is be- 
ing obeyed. Moreover, on the same 
graph Fig. 14 shows the empirical o for 
n = 4 and the recursion theoretical o of 
Fig. 10. The reader should observe the 
detail-by-detail agreement of the two. In 
fact, if we use Eq. (65) and the 
theoretical o with n = 2 as empirical in- 
put, the n = 5 frequency spectrum agrees Fig. 13b. The same quantity as in Fig. 13a, but for the 16-cycle and32-cycle. Here, the 
with the empirical n = 5 spectrum to time axis is twice as compressed. 
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Fig. 14. Figure 13b overlayed with Fig. 10 compares the universal scaling function o with the empirically determined scaling of 
nearest copy separations from the 16-cycle to the 32-cycle for Dnfflng's equation. 

within 10%. (The n = 4 determines n = 5 
to within I%.) Thus the asymptotic un- 
iversality theory is correct and is already 
well obeyed, even by n = 2! 

Equations (64) and ( 6 5 )  are solved, as 
mentioned above, through Fourier 
transforming. The result is a recursive 
scheme that determines the Fourier coef- 
ficients of ~ , , + ~ ( t )  in terms of those of 
x ( t )  and the Fourier transform of the 
(known) function o(t). To employ the 
formula accurately requires knowledge 
of the entire spectrum of xn (amplitude 
and phase) to determine each coefficient 
of However, the formula enjoys an 

approximate local prediction, which 
roughly determines the amplitude of a 
coefficient of in terms of the am- 
plitudes (alone) of x near the desired fre- 
quency of x + ~ .  

What does the spectrum of a period- 
doubling system look like? Each time the 
period doubles, the fundamental fre- 
quency halves; period doubling in the 
continuum version is termed half- 
subharmonic bifurcation, a typical 
behavior of coupled nonlinear differen- 
tial equations. Since the motion almost 
reproduces itself every period of the 
drive, the amplitude at  this original fre- 

quency is high. At the first subharmonic 
halving, spectral components of the odd 
halves of the drive frequency come in. 
On the route to  aperiodicity they 
saturate at a certain amplitude. Since the 
motion more nearly reproduces itself 
every two periods of drive, the next 
saturated subharmonics, a t  the  odd 
fourths of the original frequency, are 
smaller still than the first ones, and so 
on, as each set of odd 2"ths comes into 
being. A crude approximate prediction 
of the theory is that whatever the system, 
the saturated amplitudes of each set of 
successively lower half-frequencies 
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define a smooth interpolation located 8.2 
dB below the smooth interpolation of the 
previous half-frequencies. [This is shown 
in Fig. 15 for Eq. (62).] After subhar- 
monic bifurcations ad infiniturn, the 
system is now no longer periodic; it has 
developed a continuous broad spectrum 
down to zero frequency with a definite 
internal distribution of the energy. That 
is, the system emerges from this process 
having developed the beginnings of 
broad-band noise of a determined 
nature. This process also occurs in the 
onset of turbulence in a fluid. 

The Onset of Turbulence 

The existing idea of the route to tur- 
bulence is Landau's 1941 theory. The 
idea is that a system becomes turbulent 
through a succession of instabilities, 
where each instability creates a new 
degree of freedom (through an indeter- 
minate phase) of a time-periodic nature 
with the frequencies successively higher 
and incommensurate (not harmonics); 
because the resulting motion is the 
superposition of these modes, it is quasi- 
periodic. 

In fact, it is experimentally clear that 
quasi-periodicity is incorrect. Rather, to 
produce the observed noise of rapidly 
decaying correlation the spectrum must 
become continuous (broad-band noise) 
down to zero frequency. The defect can 
be eliminated through the production of 
successive half-subharmonics, which 
then emerge as an allowable route to tur- 
bulence. If the general idea of a succes- 
sion of instabilities is maintained, the 
new modes do not have indeterminate 
phases. However, only a small number 
of modes need be excited to produce the 
required spectrum. (The number of 
modes participating in the transition is, 
as of now, an open experimental ques- 
tion.) Indeed, knowledge of the phases of 
a small number of amplitudes at an early 
stage of period doubling suffices to 
determine the phases of the transition 

Fig. 15. The subharmonic spectrum of Dufflng's equation in the 32-cycle. The dotted 
curve is an interpolation of the odd 32nd subharmonics. The shorter dashed curve is 
constructed similarly for the odd 16th subharmonics, but lowered by 8.2 dB. The 
longer dashed curve of the 8th subharmonics has been dropped by 16.4 dB, and the 
solid curve of the 4th subharmonics by 24.6 dB. 

Fig. 16. The experimental spectrum (redrawn from Libchaber and Maurer) of a con- 
vecting fluid at its transition to turbulence. The dashed lines result from dropping a 
horizontal line down through the odd 4th subharmonics (labelled 2) by 8.2 and 16.4 
dB. 
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spectrum. What is important is that a 
purely causal system can and does 
possess essentially statistical properties. 
Invoking ad hoc statistics is unnecessary 
and generally incompatible with the true 
dynamics. 

A full theoretical computation of the 
onset demands the calculation of suc- 
cessive instabilities. The method used 
traditionally is perturbative. We start at 
the static solution and add a small time- 
dependent piece. The fluid equations are 
linearized about the static solution, and 
the stability of the perturbation is 
studied. To date, only the first instability 
has been computed analytically. Once 
we know the parameter value (for exam- 
ple, the Rayleigh number) for the onset 
of this first time-varying instability, we 
must determine the correct form of the 
solution after the perturbation has grown 
large beyond the linear regime. To this 
solution we add a new time-dependent 
perturbative mode, again linearized (now 
about a time-varying, nonanalytically 
available solution) to discover the new 
instability. To date, the second step of 
the analysis has been performed only 
numerically. This process, in principle, 
can be repeated again and again until a 
suitably turbulent flow has been ob- 
tained. At each successive stage, the 
computation grows successively more 
intractable. 

However, it is just at this point that 
the universality theory solves the 
problem; it works only after enough in- 

stabilities have entered to reach the 
asymptotic regime. Since just two such 
instabilities already serve as a good ap- 
proximate starting point, we need only a 
few parameters for each flow to em- 
power the theory to complete the hard 
part of the infinite cascade of more com- 
plex instabilities. 

Why should the theory apply? The 
fluid equations make up a set of coupled 
field equations. They can be spatially 
Fourier-decomposed to an infinite set of 
coupled ordinary differential equations. 
Since a flow is viscous, there is some 
smallest spatial scale below which no 
significant excitation exists. Thus, the 
equations are effectively a finite coupled 
set of nonlinear differential equations. 
The number of equations in the set is 
completely irrelevant. The universality 
theory is generic for such a dissipative 
system of equations. Thus it is possible 
that the flow exhibits period doubling. If 
it does, then our theory applies. 
However, to prove that a given flow (or 
any flow) actually should exhibit dou- 
bling is well beyond present un- 
derstanding. All we can do is experi- 
ment. 

Figure 16 depicts the experimentally 
measured spectrum of a convecting li- 
quid helium cell at the onset of tur- 
bulence. The system displays measurable 
period doubling through four or five 
levels; the spectral components at each 
set of odd half-subharmonics are labelled 
with the level. With n = 2 taken as 

asymptotic, the dotted lines show the 
crudest interpolations implied for the n = 

3, n = 4 component. Given the small 
amount of amplitude data, the interpola- 
tions are perforce poor, while ignorance 
of higher odd multiples prevents con- 
struction of any significant interpolation 
at the right-hand side. Accordingly, to 
do the crudest test, the farthest right- 
hand amplitude was dropped, and the 
oscillations were smoothed away by 
averaging. The experimental results, 
-8.3 dB and -8.4 dB, are in surprisingly 
good agreement with the theoretical 8.2! 

From this good experimental agree- 
ment and the many period doublings as 
the clincher, we can be confident that the 
measured flow has made its transition 
according to our theory. A measurement 
of 5 from its fundamental definition 
would, of course, be altogether convinc- 
ing. (Experimental resolution is insuf- 
ficient at present.) However, if we work 
backwards, we find that the several per- 
cent agreement in 8.2 dB is an  ex- 
perimental observation of a in the system 
to the same accuracy. Thus, the present 
method has provided a theoretical 
calculation of the actual dynamics in a 
field where such a feat has been impossi- 
ble since the construction of the Navier- 
Stokes equations. In fact, the scaling law 
Eq. (65) transcends these equations, and 
applies to the true equations, whatever 
they may be. 
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