
THE BEGINNING of the 
MONTE CARL0 METHOD 

by N. Metropolis 

T 
he year was 1945. Two earth- 
shaking events took place: the 
successful test at Alamogordo 
and the building of the first elec- 

tronic computer. Their combined impact 
was to modify qualitatively the nature of 
global interactions between Russia and 
the West. No less perturbative were the 
changes wrought in all of academic re- 
search and in applied science. On a less 
grand scale these events brought about a 
renascence of a mathematical technique 
known to the old guard as statistical sam- 
pling; in its new surroundings and owing 
to its nature, there was no denying its new 
name of the Monte Carlo method. 

This essay attempts to describe the de- 
tails that led to this renascence and the 
roles played by the various actors. It is 
appropriate that it appears in an issue ded- 
icated to Stan Ulam. 
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Some Background 

Most of us have grown so blase about 
computer developments and capabilities 
- e v e n  some that are spectacular-that 
it is difficult to believe or imagine there 
was a time when we suffered the noisy, 
painstakingly slow, electromechanical de- 
vices that chomped away on punched 
cards. Their saving grace was that they 
continued working around the clock, ex- 
cept for maintenance and occasional re- 
pair (such as removing a dust particle 
from a relay gap). But these machines 
helped enormously with the routine, rela- 
tively simple calculations that led to Hi- 
roshima. 

The ENIAC. During this wartime pe- 
riod, a team of scientists, engineers, and 
technicians was working furiously on the 

first electronic computer-the ENIAC- 
at the University of Pennsylvania in Phil- 
adelphia. Their mentors were Physicist 
First Class John Mauchly and Brilliant 
Engineer Presper Eckert. Mauchly, fa- 
miliar with Geiger counters in physics 
laboratories, had realized that if electronic 
circuits could count, then they could do 
arithmetic and hence solve, inter alia, dif- 
ference equations-at almost incredible 
speeds! When he'd seen a seemingly 
limitless array of women cranking out 
firing tables with desk calculators, he'd 
been inspired to propose to the Ballistics 
Research Laboratory at Aberdeen that an 
electronic computer be built to deal with 
these calculations. 

John von Neumann, Professor of Math- 
ematics at the Institute for Advanced 
Study, was a consultant to Aberdeen and 
to Los Alarnos. For a whole host of 
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reasons, he had become seriously inter- 
ested in the thermonuclear problem being 
spawned at that time in Los Alamos by 
a friendly fellow-Hungarian scientist, Ed- 
ward Teller, and his group. Johnny (as he 
was affectionately called) let it be known 
that construction of the ENIAC was near- 
ing completion, and he wondered whether 
Stan Frankel and I would be interested 
in preparing a preliminary computational 
model of a thermonuclear reaction for the 
ENIAC. He felt he could convince the 
authorities at Aberdeen that our problem 
could provide a more exhaustive test of 
the computer than mere firing-table com- 
putations. (The designers of the ENIAC 
had wisely provided for the capability of 
much more ambitious versions of firing 
tables than were being arduously com- 
puted by hand, not to mention other quite 
different applications.) Our response to 
von Neumann's suggestion was enthusi- 
astic, and his heuristic arguments were 
accepted by the authorities at Aberdeen. 

In March, 1945, Johnny, Frankel, and I 
visited the Moore School of Electrical En- 
gineering at the University of Pennsylva- 
nia for an advance glimpse of the ENIAC. 
We were impressed. Its physical size 
was overwhelming-some 18,000 double 
triode vacuum tubes in a system with 
500,000 solder joints. No one ever had 
such a wonderful toy! 

The staff was dedicated and enthusi- 
astic; the friendly cooperation is still re- 
membered. The prevailing spirit was akin 
to that in Los Alamos. What a pity that a 
war seems necessary to launch such revo- 
lutionary scientific endeavors. The com- 
ponents used in the ENIAC were joint- 
army-navy (JAN) rejects. This fact not 
only emphasizes the genius of Eckert and 
Mauchly and their staff, but also suggests 
that the ENIAC was technically realizable 
even before we entered the war in Decem- 
ber, 1941. 

After becoming saturated with indoc- 
trination about the general and detailed 
structure of the ENIAC, Frankel and I re- 
turned to Los Alarnos to work on a model 

that was realistically calculable. (There 
was a small interlude at Alamogordo!) 
The war ended before we completed our 
set of problems, but it was agreed that we 
continue working. Anthony Turkevich 
joined the team and contributed substan- 
tially to all aspects of the work. More- 
over, the uncertainty of the first phase of 
the postwar Los Alamos period prompted 
Edward Teller to urge us not only to com- 
plete the thermonuclear computations but 
to document and provide a critical review 
of the results. 

The Spark. The review of the ENIAC 
results was held in the spring of 1946 
at Los Alamos. In addition to Edward 
Teller, the principals included Enrico Fer- 
mi, John von Neumann, and the Direc- 
tor, Norris Bradbury. Stanley Frankel, 
Anthony Turkevich, and I described the Stanislaw Ulam 
ENIAC, the calculations, and the con- 
clusions. Although the model was rel- dition, however, Stan's extensive mathe- 
atively simple, the simplifications were matical background made him aware that 
taken into account and the extrapolated statistical sampling techniques had fallen 
results were cause for guarded optimism into desuetude because of the length and 
about the feasibility of a thermonuclear tediousness of the calculations. But with 
weapon. this miraculous development of the 

Among the attendees was Stan Ulam, ENIAC-along with the applications Stan 
who had rejoined the Laboratory after must have been pondering-it occurred to 
a brief time on the mathematics faculty him that statistical techniques should be 
at the University of Southern California. resuscitated, and he discussed this idea 
Ulam's personality would stand out in with von Neumann. Thus was triggered 
any community, even where "characters" the spark that led to the Monte Carlo 
abounded. His was an informal nature; he method. 
would drop in casually, without the usual 
amenities. He preferred to chat, more or 
less at leisure, rather than to dissertate. 

The Method 

Topics would range over mathematics, 
physics, world events, local news, games 
of chance, quotes from the classics-all 
treated somewhat episodically but always 
with a meaningful point. His was a mind 
ready to provide a critical link. 

During his wartime stint at the Labora- 
tory, Stan had become aware of the elec- 
tromechanical computers used for implo- 
sion studies, so he was duly impressed, 
along with many other scientists, by the 
speed and versatility of the ENIAC. In ad- 

The spirit of this method was consis- 
tent with Stan's interest in random pro- 
cesses-from the simple to the sublime. 
He relaxed playing solitaire; he was stim- 
ulated by playing poker; he would cite 
the times he drove into a filled parking 
lot at the same moment someone was ac- 
commodatingly leaving. More seriously, 
he created the concept of "lucky num- 
bers," whose distribution was much like 
that of prime numbers; he was intrigued 
by the theory of branching processes and 
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contributed much to its development, in- 
cluding its application during the war to 
neutron multiplication in fission devices. 
For a long time his collection of research 
interests included pattern development in 
two-dimensional games played according 
to very simple rules. Such work has lately 
emerged as a cottage industry known as 
cellular automata. 

John von Neumann saw the relevance 
of Ulam's suggestion and, on March 11, 
1947, sent a handwritten letter to Robert 
Richtmyer, the Theoretical Division lead- 
er (see "Stan Ulam, John von Neumann, 
and the Monte Carlo Method"). His let- 
ter included a detailed outline of a pos- 
sible statistical approach to solving the 
problem of neutron diffusion in fission- 
able material. 

Johnny's interest in the method was 
contagious and inspiring. His seemingly 
relaxed attitude belied an intense interest 
and a well-disguised impatient drive. His 
talents were so obvious and his coopera- 
tive spirit so stimulating that he garnered 
the interest of many of us. It was at that 
time that I suggested an obvious name 
for the statistical method-a suggestion 
not unrelated to the fact that Stan had an 
uncle who would borrow money from rel- 
atives because he "just had to go to Monte 
Carlo." The name seems to have endured. 

The spirit of Monte Carlo is best con- 
veyed by the example discussed in von 
Neumann's letter to Richtmyer. Consider 
a spherical core of fissionable material 
surrounded by a shell of tamper material. 
Assume some initial distribution of neu- 
trons in space and in velocity but ignore 
radiative and hydrodynamic effects. The 
idea is to now follow the development 
of a large number of individual neutron 
chains as a consequence of scattering, ab- 
sorption, fission, and escape. 

At each stage a sequence of decisions 
has to be made based on statistical prob- 
abilities appropriate to the physical and 
geometric factors. The first two decisions 
occur at time t = 0, when a neutron is se- 
lected to have a certain velocity and a cer- 

tain spatial position. The next decisions 
are the position of the first collision and 
the nature of that collision. If it is deter- 
mined that a fission occurs, the number of 
emerging neutrons must be decided upon, 
and each of these neutrons is eventually 
followed in the same fashion as the first. 
If the collision is decreed to be a scatter- 
ing, appropriate statistics are invoked to 
determine the new momentum of the neu- 

John von Neumann 

tron. When the neutron crosses a material 
boundary, the parameters and characteris- 
tics of the new medium are taken into ac- 
count. Thus, a genealogical history of an 
individual neutron is developed. The pro- 
cess is repeated for other neutrons until a 
statistically valid picture is generated. 

Random Numbers. How are the vari- 
ous decisions made? To start with, the 
computer must have a source of uni- 
formly distributed psuedo-random num- 
bers. A much used algorithm for gener- 
ating such numbers is the so-called von 
Neumann "middle-square digits." Here, 
an arbitrary n-digit integer is squared, 
creating a 2n-digit product. A new in- 
teger is formed by extracting the middle 
n-digits from the product. This process 
is iterated over and over, forming a chain 

of integers whose properties have been 
extensively studied. Clearly, this chain 
of numbers repeats after some point. H. 
Lehrner has suggested a scheme based on 
the Kronecker-Weyl theorem that gener- 
ates all possible numbers of n digits be- 
fore it repeats. (See "Random-Number 
Generators" for a discussion of various 
approaches to the generation of random 
numbers.) 

Once one has an algorithm for generat- 
ing a uniformly distributed set of random 
numbers, these numbers must be trans- 
formed into the nonuniform distribution g 
desired for the property of interest. It can 
be shown that the function f needed to 
achieve this transformation is just the in- 
verse of the nonuniform distribution func- 
tion, that is, f = g l .  For example, neu- 
tron physics shows us that the distribution 
of free paths-that is, how far neutrons of 
a given energy in a given material go be- 
fore colliding with a nucleusÃ‘decrease 
exponentially in the interval (0, a). If x 
is uniformly distributed in the open inter- 
val (0, 1)' then f = - 1nx will give us a 
nonuniform distribution g with just those 
properties. 

The reader will appreciate many of the 
advantages of the Monte Carlo method 
compared to the methods of differen- 
tial equations. For example, a neutron- 
velocity spectrum with various peaks and 
valleys is difficult to handle mathemati- 
cally. For Monte Carlo one needs only 
to mirror the velocity spectrum in the 
probability distribution. Also, the Monte 
Carlo method is sufficiently flexible to ac- 
count for hydrodynamic effects in a self- 
consistent way. In an even more elabo- 
rate code, radiation effects can be dealt 
with by following the photons and their 
interactions (see "Monte Carlo at Work"). 

Clearly, applications of the Monte Car- 
lo method are much broader than so far 
outlined. (Although I emphasize the use 
of Monte Carlo in the study of phys- 
ical systems, random sampling is also 
an efficient way to evaluate complicated 
and many-dimensional integrals. For an 
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example, see the section entitled "The 
Monte Carlo Method" in "A Primer on 
Probability, Measure, and the Laws of 
Large Numbers.") Since its inception, 
many international conferences have been 
held on the various applications of the 
method. Recently, these range from 
the conference, "Monte Carlo Methods 
and Applications in Neutronics, Photon- 
ics, and Statistical Physics," at Cadarache 
Castle, France, in the spring of 1985 to 
the latest at Los Alarnos, "Frontiers of 
Quantum Monte Carlo," in September, 
1985. 

Putting the Method into Practice 

Let me return to the historical account. 
In late 1947 the ENIAC was to be moved 
to its permanent home at the Ballistics 
Research Laboratory in Maryland. What 
a gargantuan task! Few observers were 
of the opinion that it would ever do an- 
other multiplication or even an addition. 
It is a tribute to the patience and skill 
of Josh Gray and Richard Merwin, two 
fearless uninitiates, that the move was a 
success. One salutary effect of the inter- 
ruption for Monte Carlo was that another 
distinguished physicist took this occasion 
to resume his interest in statistical studies. 

Enrico Fermi helped create modem 
physics. Here, we focus on his inter- 
est in neutron diffusion during those ex- 
citing times in Rome in the early thir- 
ties. According to Emilio Segrk, Fermi's 
student and collaborator, "Fermi had in- 
vented, but of course not named, the 
present Monte Carlo method when he was 
studying the moderation of neutrons in 
Rome. He did not publish anything on 
the subject, but he used the method to 
solve many problems with whatever cal- 
culating facilities he had, chiefly a small 
mechanical adding machine."* 

In a recent conversation with Segrk, I 

*quoted with permission of W. H. Freeman and 
Company from From X-Rays to Quarks by Emilio 
Segr6. 

learned that Fermi took great delight in 
astonishing his Roman colleagues with 
his remarkably accurate, "too-good-to-be- 
lieve" predictions of experimental results. 
After indulging himself, he revealed that 
his "guesses" were really derived from 
the statistical sampling techniques that he 
used to calculate with whenever insomnia 
struck in the wee morning hours! And 
so it was that nearly fifteen years earlier, 
Fermi had independently developed the 
Monte Carlo method. 

Enrico Fermi 

It was then natural for Fermi, during 
the hiatus in the ENIAC operation, to 
dream up a simple but ingenious ana- 
log device to implement studies in neu- 
tron transport. He persuaded his friend 
and collaborator Percy King, while on a 
hike one Sunday morning in the moun- 
tains surrounding Los Alamos, to build 
such an instrument-later affectionately 
called the FERMIAC (see the accompa- 
nying photo). 

The FERMIAC developed neutron ge- 
nealogies in two dimensions, that is, in a 
plane, by generating the site of the "next 
collision." Each generation was based 
on a choice of parameters that charac- 
terized the particular material being tra- 

versed. When a material boundary was 
crossed, another choice was made appro- 
priate to the new material. The device 
could accommodate two neutron energies, 
referred to as "slow" and "fast." Once 
again, the Master had just the right feel 
for what was meaningful and relevant to 
do in the pursuit of science. 

The First Ambitious Test. Much to 
the amazement of many "experts," the 
ENIAC survived the vicissitudes of its 
200-mile journey. In the meantime Rich- 
ard Clippinger, a staff member at Ab- 
erdeen, had suggested that the ENIAC 
had sufficient flexibility to permit its con- 
trols to be reorganized into a more conve- 
nient (albeit static) stored-program mode 
of operation. This mode would have a 
capacity of 1800 instructions from a vo- 
cabulary of about 60 arithmetical and log- 
ical operations. The previous method of 
programming might be likened to a gi- 
ant plugboard, that is to say, to a can 
of worms. Although implementing the 
new approach is an interesting story, suf- 
fice it to say that Johnny's wife, Klari, 
and I designed the new controls in about 
two months and completed the implemen- 
tation in a fortnight. We then had the 
opportunity of using the ENIAC for the 
first ambitious test of the Monte Carlo 
method-a variety of problems in neu- 
tron transport done in collaboration with 
Johnny. 

Nine problems were computed corre- 
sponding to various configurations of ma- 
terials, initial distributions of neutrons, 
and running times. These problems, as 
yet, did not include hydrodynamic or ra- 
diative effects, but complex geometries 
and realistic neutron-velocity spectra 
were handled easily. The neutron histo- 
ries were subjected to a variety of statisti- 
cal analyses and comparisions with other 
approaches. Conclusions about the effi- 
cacy of the method were quite favorable. 
It seemed as though Monte Carlo was 
here to stay. 

Not long afterward, other Laboratory 
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staff members made their pilgrimages to 
ENIAC to run Monte Carlo problems. 
These included J. Calkin, C. Evans, and 
F. Evans, who studied a thermonuclear 
problem using a cylindrical model as well 
as the simpler spherical one. B. Suydam 
and R. Stark tested the concept of artifi- 
cial viscosity on time-dependent shocks; 
they also, for the first time, tested and 
found satisfactory an approach to hydro- 
dynamics using a realistic equation of 
state in spherical geometry. Also, the dis- 
tinguished (and mysterious) mathemati- 
cian C. J. Everett was taking an inter- 
est in Monte Carlo that would culminate 
in a series of outstanding publications in 
collaboration with E. Cashwell. Mean- 
while, Richtmyer was very actively run- 
ning Monte Carlo problems on the so- 
called SSEC during its brief existence at 
IBM in New York. 

In many ways, as one looks back, it 
was among the best of times. 

Rapid Growth. Applications discussed 
in the literature were many and varied 
and spread quickly. By midyear 1949 a 

symposium on the Monte Carlo method, 
sponsored by the Rand Corporation, the 
National Bureau of Standards, and the 
Oak Ridge Laboratory, was held in Los 
Angeles. Later, a second symposium was 
organized by members of the Statistical 
Laboratory at the University of Florida in 
Gainesville. 

In early 1952 a new computer, the MA- 
NIAC, became operational at Los Ala- 
mos. Soon after Anthony Turkevich led 
a study of the nuclear cascades that result 
when an accelerated particle collides with 
a nucleus. The incoming particle strikes 
a nucleon, experiencing either an elastic 
or an ineleastic scattering, with the latter 
event producing a pion. In this study par- 
ticles and their subsequent collisions were 
followed until all particles either escaped 
from the nucleus or their energy dropped 
below some threshold value. The "exper- 
iment" was repeated until sufficient statis- 
tics were accumulated. A whole series of 
target nuclei and incoming particle ener- 
gies was examined. 

Another computational problem run on 
the MANIAC was a study of equations 

THE FERMIAC 

The Monte Carlo trolley, or FERMIAC, was 
invented by Enrico Fermi and constructed 
by Percy King. The drums on the trolley 
were set according to the material being tra- 
versed and a random choice between fast 
and slow neutrons. Another random digit 
was used to determine the direction of mo- 
tion, and a third was selected to give the dis- 
tance to the next collision. The trolley was 
then operated by moving it across a two- 
dimensional scale drawing of the nuclear 
device or reactor assembly being studied. 
The trolley drew a path as it rolled, stopping 
for changes in drum settings whenever a 
material boundary was crossed. This infant 
computer was used for about two years to 
determine, among other things, the change 
in neutron population with time in numerous 
types of nuclear systems. 

of state based on the two-dimensional 
motion of hard spheres. The work was 
a collaborative effort with the Tellers, 
Edward and Mici, and the Rosenbluths, 
Marshall and Arianna (see "Monte Carlo 
at Work"). During this study a strategy 
was developed that led to greater com- 
puting efficiency for equilibrium systems 
obeying the Boltzmann distribution func- 
tion. According to this strategy, if a sta- 
tistical "move" of a particle in the sys- 
tem resulted in a decrease in the energy 
of the system, the new configuration was 
accepted. On the other hand, if there was 
an increase in energy, the new configu- 
ration was accepted only if it survived a 
game of chance biased by a Boltzmann 
factor. Otherwise, the old configuration 
became a new statistic. 

It is interesting to look back over two- 
score years and note the emergence, rather 
early on, of experimental mathematics, 
a natural consequence of the electronic 
computer. The role of the Monte Carlo 
method in reinforcing such mathematics 
seems self-evident. When display units 
were introduced, the temptation to exper- 
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iment became almost irresistible, at least 
for the fortunate few who enjoyed the lux- 
ury of a hands-on policy. When shared- 
time operations became realistic, exper- 
imental mathematics came of age. At 
long last, mathematics bchieved a certain 
parity-the twofold aspect of experiment 
and theory-that all other sciences enjoy. 

It is, in fact, the coupling of the sub- 
tleties of the human brain with rapid 
and reliable calculations, both arithmeti- 
cal and logical, by the modem computer 
that has stimulated the development of 
experimental mathematics. This develop- 
ment will enable us to achieve Olympian 
heights. 

The Future 

So far I have summarized the rebirth 
of statistical sampling under the rubric 
of Monte Carlo. What of the future- 
perhaps even a not too distant future? 

The miracle of the chip, like most mir- 
acles, is almost unbelievable. Yet the fan- 
tastic performances achieved to date have 
not quieted all users. At the same time we 
are reaching upper limits on the comput- 
ing power of a single processor. 

One bright facet of the miracle is the 
lack of macroscopic moving parts, which 
makes the chip a very reliable bit of 
hardware. Such reliability suggests par- 
allel processing. The thought here is 
not a simple extension to two, or even 
four or eight, processing systems. Such 
extensions are adiabatic transitions that, 
to be sure, should be part of the im- 
mediate, short-term game plan. Rather, 
the thought is massively parallel opera- 
tions with thousands of interacting pro- 
cessors+ven millions! 

Already commercially available is one 
computer, the Connection Machine, with 
65,536 simple processors working in par- 
allel. The processors are linked in such 
a way that no processor in the array is 
more than twelve wires away from an- 
other and the processors are pairwise con- 
nected by a number of equally efficient 

routes, making communication both flex- 
ible and efficient. The computer has been 
used on such problems as turbulent fluid 
flow, imaging processing (with features 
analogous to the human visual system), 
document retrieval, and "common-sense" 
reasoning in artificial intelligence. 

One natural application of massive par- 
allelism would be to the more ambitious 
Monte Car10 problems already upon us. 
To achieve good statistics in Monte Car10 
calculations, a large number of "histories" 
need to be followed. Although each his- 
tory has its own unique path, the under- 
lying calculations for all paths are highly 
parallel in nature. 

Still, the magnitude of the endeavor 
to compute on massively parallel devices 
must not be underestimated. Some of the 
tools and techniques needed are: 

A high-level language and new archi- 
tecture able to deal with the demands 
of such a sophisticated language (to the 
relief of the user); 
Highly efficient operating systems and 
compilers; 
Use of modem combinatorial theory, 
perhaps even new principles of logic, 
in the development of elegant, compre- 
hensive architectures; 
A fresh look at numerical analysis and 
the preparation of new algorithms (we 
have been mesmerized by serial com- 
putation and purblind to the sophistica- 
tion and artistry of parallelism). 
Where will all this lead? If one were 

to wax enthusiastic, perhaps-just per- 
haps-a simplified model of the brain 
might be studied. These studies, in turn, 
might provide feedback to computer ar- 
chitects designing the new parallel struc- 
tures. 

Such matters fascinated Stan Ulam. He 
often mused about the nature of memory 
and how it was implemented in the brain. 
Most important, though, his own brain 
possessed the fertile imagination needed 
to make substantive contributions to the 
very important pursuit of understanding 
intelligence. 
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