

Number 22 1994

Los Alamos Science 45

T
he availability of
massively parallel
computers presents

computational scientists
with an exciting challenge.
The architects of these
machines claim that they are
scalable—that a machine
containing 100 processors
arranged in a parallel archi-
tecture can be made 10
times more powerful by
employing the same basic
design but using 1000
processors instead of 100.
Such massively parallel
computers are available, and
one of largest—a CM-5
Connection Machine con-
taining 1024 processors—is
here at Los Alamos National
Laboratory. The challenge
is to realize the promise of
those machines—to demon-
strate that large scientific
problems can be computed
with the advertised speed
and cost-effectiveness.

The challenge is signifi-
cant because the architec-
ture of parallel computers
differs dramatically from
that of conventional vector
supercomputers, which have
been the standard tool for
scientific computing for the
last two decades.

44 Los Alamos Science Number 22 1994

This “snapshot” from a molecular dynamics simulation shows a thin plate
undergoing fracture. The plate contains 38 million particles. This state-of-
the-art simulation was performed using a scalable algorithm, called SPaSM,
specifically designed to run on the massively parallel CM-5 supercomputer at
Los Alamos National Laboratory. The velocities of the particles are indicated
by color—red and yellow particles have higher velocities than blue and gray
particles.

State-of-the-Art
Parallel Computing

molecular dynamics on the connection machine

Peter S. Lomdahl and David M. Beazley

The massively parallel architecture
requires an entirely new approach to
programming. A computation must
somehow be divided equally among the
hundreds of individual processors and
communication between processors
must be rapid and kept to a minimum.
The incentive to work out these issues
was heightened by Gordon Bell, an in-
dependent consultant to the computer
industry and well-known skeptic of
massively parallel machines. Six years
ago he initiated a formal competition
for achievements in large-scale scientif-
ic computation on vector and parallel
machines. The annual prizes are
awarded through and recognized by the
Computer Society of the Institute of
Electrical and Electronic Engineers
(IEEE). The work reported here was
awarded one of the 1993 IEEE Gordon
Bell prizes. We were able to demon-
strate very high performance as mea-
sured by speed: Our simulation, called
SPaSM (scalable parallel short-range
molecular dynamics), ran on the mas-
sively parallel CM-5 at a rate of 50 gi-
gaflops (50 billion floating-point opera-
tions per second). That rate is nearly
40% of the theoretical maximum; typi-
cal programs achieve only about 20%
of the theoretical maximum. Also, the
algorithm we developed has the proper-
ty of scalability. When the number of
processors used was doubled, the time
required to run the simulation was cut
in half.

Our achievement was the adaptation
of the molecular-dynamics method to
the architecture of parallel machines.
Molecular dynamics (MD) is a first-
principles approach to the study of ma-
terials. MD starts with the fundamental
building blocks—the individual
atoms—that make up a material and
follows the motions of the atoms as
they interact with each other through
interatomic forces. Even the smallest
piece of material that is useful for ex-

perimental measurement contains over
ten billion atoms. Therefore, the larger
the number of atoms included in the
calculation, the more interesting the re-
sults for materials science. Scientists
would very much like to perform simu-
lations that predict the motions of bil-
lions of atoms during a dynamical
process such as machining or fracture
and compare the predictions with ex-
periment. Unfortunately, the realization
of that prospect is not possible today.
However, if the machines can be scaled
up in both memory capacity and speed,
as the computer manufacturers have
promised, then simulations can be
scaled up proportionally so that billion-
atom simulations may become a reality.
Furthermore, as we show here, the cur-
rent generation of massively parallel
machines has made it possible to simu-
late the motions of tens of millions of
atoms. Such simulations are large
enough to perform meaningful studies
of the bulk properties of matter and to
improve the approximate models of
those properties used in standard con-
tinuum descriptions of macroscopic sys-
tems. Molecular-dynamics simulations
on massively parallel computers thus
represent a new opportunity to study
the dynamical properties of materials
from first principles.

Massively parallel machines have
only recently become popular, so the
vendors have not yet developed the
software—the compilers—needed to
optimize a given program for the par-
ticular architecture of their machines.
Consequently, to develop a scalable
parallel algorithm for molecular dynam-
ics that would yield high performance,
we needed to understand the inner
workings of the CM-5 and incorporate
that knowledge into the details of our
program. Much of our work focused
on implementing a particular technique
for interprocessor communication
known as “message passing.” In this

approach programmers use explicit in-
structions to initiate communication
among the processors of a parallel sys-
tem, and the processors accomplish the
communication by sending messages to
each other.

Message-passing programming is ad-
vantageous not only in achieving high
performance, but also in increasing
“portability,” because it is easily adapt-
ed for use on a number of massively
parallel machines. We were able to run
our message-passing algorithm on an-
other parallel computer, the Cray T3D,
with minimal modification.

Following brief descriptions of MD
and the architecture and properties of
the CM-5, we present the method by
which we have mapped a molecular-dy-
namics simulation to the architecture of
the CM-5. Our example illustrates
message passing and other techniques
that are widely applicable to effective
programming of massively parallel
computers.

Molecular Dynamics

Molecular dynamics is a computa-
tional method used to track the posi-
tions and velocities of individual parti-
cles (atoms or groups of atoms) in a
material as the particles interact with
each other and respond to external in-
fluences. The motion of each particle
is calculated by Newton’s equation of
motion, force

5 mass 3 acceleration,
where the force on a given particle de-
pends on the interactions of the particle
with other particles. The mutual inter-
action of many particles simultaneously
is called a “many-body problem” and
has no analytical, or exact, solution be-
cause the force on a particle is always
changing in a complex way as each
particle in the system moves under the
influence of the others.

The MD algorithm provides an ap-

State-of-the-Art Parallel Computing

46 Los Alamos Science Number 22 1994

proximate solution to the many-body
problem by treating time as a succes-
sion of discrete timesteps and treating
the force on (and therefore the accelera-
tion of) each particle as a constant for
the duration of a single timestep. At
each timestep the position and velocity
of each particle is updated on basis of
the constant acceleration it experiences
during that timestep. For example, at
time t, at the beginning of a timestep of
length Dt, particle i has position ri and
velocity vi. The force on particle i
from the other particles is calculated;
the force determines the acceleration ai
of particle i for the duration of this
timestep. From elementary physics, the
position ri

′ and velocity vi′ at the later
time t1Dt are given by:

ri′ 5 ri 1 viDt 1 ai(Dt)2

and
vi′ 5 vi 1 aiDt.

Sometimes, these equations are re-
placed by more sophisticated approxi-
mations for the new positions and ve-
locities; the approximations involve
interpolations from positions and veloc-
ities at time t and the earlier t2Dt.
Such schemes conserve energy and mo-
mentum more effectively than the sim-
ple update of position and velocity
given above.

Whatever the scheme, the equations
yield a new position and velocity for
each particle at the new time t1Dt.

The procedure is repeated for each suc-
ceeding timestep, and the result is a se-
ries of “snapshots” of the positions and
velocities of the particles at times t50,
Dt, 2Dt, … , nDt.

In MD simulations particles are usu-
ally treated as point particles (that is,
they have no extent), and the force be-
tween any two particles is usually ap-
proximated as the gradient of a poten-
tial function V that depends only on the
distance r between the two particles.
The force on particle i from particle j
can be written

Fij 5 2 rij

, where rij 5 ri 2 rj,

and that force is directed along the line
connecting the two particles. If the
force is negative, particles i and j at-
tract one another; if the force is posi-
tive, the particles repel each other. The
net force exerted on particle i by all
other particles j is approximated by
summing the forces calculated from all
pair-wise interactions between particle i
and each particle j.

The standard pair-wise potential
used in MD simulations is the Lennard-
Jones potential, which is known empiri-
cally to provide a reasonably good “fit”
to experimental data for atom-atom in-
teractions in many solids and liquids.
As shown in Figure 1, this potential has
both an attractive part and a repulsive
part:

V(r) 5 4e

31 2
12

2 1 2
6

4,

where r is the distance between the two
particles and s and e are adjustable pa-
rameters. When the distance between
two particles is at the minimum of the
potential function, the force between
the two particles is zero and the parti-

s
}
r

s
}
r

dV
}
dr

1
}
2

State-of-the-Art Parallel Computing

Number 22 1994 Los Alamos Science 47

molecular1.adb
7/26/94

-1.0

-0.5

0.0

0.5

1.0

43210
Distance between particles (in units of σ)

P
ot

en
tia

l (
in

 u
ni

ts
 o

f ε
)

"Repulsive" region

"Attractive" region

Figure 1. The Lennard-Jones Interaction Potential
The Lennard-Jones interaction potential V between two particles is plotted as a func-

tion of the distance r between the particles. The potential is in units of e, and the dis-

tance between the particles is in units of s. The parameter s is equal to the value of r

at which the potential function crosses zero. The potential has a positive slope at

longer distances, corresponding to an attractive force, and a steeply negative slope at

short distances, corresponding to a strong repulsive force. Separating the two regions

is the local minimum of the potential—the deepest point in the potential “well”—which

has a depth equal to e and is located at r 5 21/6s. At the potential minimum the force

between the particles is zero. Therefore, in the absence of effects from any other parti-

cles, the separation between two particles will tend to oscillate around r 5 21/6s.

cles are in their equilibrium positions.
In the absence of other particles nearby,
the separation of two particles will tend
to oscillate around this distance. Physi-
cally, the average nearest-neighbor dis-
tance of atoms in many solids and flu-
ids corresponds very closely to the
position of the minimum in the atom-
atom potential.

For our molecular-dynamics simula-
tions, we simplify the force calculation
greatly by using a truncated form of the
Lennard-Jones potential. That is, we
“cut off” the long, flat tail of the poten-
tial and assume that the force between
particles is exactly zero for particle sep-
arations greater than some chosen rmax,
the interaction cut-off distance. In
other words, when calculating the
forces for particle i, we need consider
only those particles j that are within a
distance rmax of i. The time required to
calculate the pair interactions with all
the surrounding particles is reduced
considerably since a given particle
“feels” forces from perhaps only a hun-
dred neighbors instead of the millions
or billions of particles included in the
simulation. The truncated potential
provides an excellent approximation for
solid materials because in solids the ef-
fects of distant atoms are “screened” by
nearer atoms. The fact that we can use
a short-range potential is the most sig-
nificant difference between our problem
and that described in “A Fast Tree
Code for Many-Body Problems,” in
which the force is long-range and there-
fore each particle always interacts with
all other particles in the system.

Mapping Molecular Dynamics
onto the Architecture of the

CM-5

The molecular-dynamics method has
been implemented on electronic com-
puters since 1957. The first such calcu-

lations were performed on the UNI-
VAC, the first commercially available
computer. Initially only 32 particles
were used, and only about 300 interac-
tions per hour could be calculated. The
rapid advance of computers has made it
possible for us—using the massively
parallel CM-5—to include tens of mil-
lions of atoms in our simulation of ma-
terials behavior. Since materials con-
tain large numbers of repeating units
(units that can be treated in parallel)
calculations of materials behavior are
ideally suited for implementation on
massively parallel architectures.

Figure 2 illustrates the architecture
of the CM-5, which was built by
Thinking Machines Corporation. The
computer was constructed from large
numbers of relatively inexpensive,
high-volume microprocessor and mem-
ory components. Such a scheme allows
the hardware designers to build a high-
performance supercomputer without a
major effort in the development of new
microprocessor and memory circuits.
The Laboratory’s CM-5 has 1024 pro-
cessing nodes but partitions as small as
32 nodes may be used.

The processing nodes in the CM-5
are connected by two types of high-
speed communication networks: a con-
trol network and a data network. The
control network performs synchroniza-
tion functions, broadcasts, and reduc-
tions. The synchronization functions
are used to coordinate the work of the
individual processors. Broadcasts are
messages sent to all processors simulta-
neously, such as a set of instructions to
be executed by each processor. Reduc-
tions are operations in which data are
collected from all processors for the
calculation of some overall value such
as the total energy of a system.

The data network carries simultane-
ous point-to-point communication be-
tween multiple processing nodes at a
rate of over 5 megabytes per second per

node. Both networks have a “fat-tree”
topology, a scalable structure in which
the total bandwidth (capacity for data
transmission) of the network increases
in proportion to the number of proces-
sors. When new processing nodes are
added, the networks are expanded so
that the effective bandwidth between
any two processors does not decrease.
Maintaining a high bandwidth is critical
to the scalability of the CM-5. A ma-
chine having more processing nodes
will have a greater total amount of net-
work “traffic.” Therefore the larger
computer must also have a greater net-
work capacity in order to realize the ex-
pected gain in performance.

Our MD algorithm uses the data net-
work extensively—large amounts of
particle data are transmitted between
processors. The control network is also
very important to our algorithm. A sin-
gle program is broadcast over the con-
trol network to the processors, each of
which executes that program for the ap-
propriate subset of the particles in the
simulation. The processing nodes are
allowed to operate independently during
most of the calculations. However,
there are steps in our algorithm that re-
quire synchronization of the processors.
For example, the calculation of new
particle positions and velocities cannot
proceed until the total force acting on
each particle has been determined. A
special synchronization function en-
sures that the latter calculation is com-
plete before the former is initiated.

Access to the communication net-
works is provided by a message-passing
library supplied by Thinking Machines.
The library allows two types of com-
munication—synchronous and asyn-
chronous. We use both communication
styles in our MD algorithm.

All programs on the CM-5 use some
form of message passing between pro-
cessing nodes. Data-parallel languages
such as C* and FORTRAN-90 perform

State-of-the-Art Parallel Computing

48 Los Alamos Science Number 22 1994

State-of-the-Art Parallel Computing

Number 22 1994 Los Alamos Science 49

(b) 32-node CM-5

Data
network
interface

Control
network
interface

RISC
Micro-

processor

Vector
unit

8 Mb
memory

To data
network

To control
network

(a) 16-node CM-5

molecular2.adb
7/26/94

(c) Processing node (PN)

64-bit bus

PN PN� PN PN PN

Fat-tree
data network

Vector
unit

8 Mb
memory

Vector
unit

8 Mb
memory

Vector
unit

8 Mb
memory

Figure 2. The Architecture of the CM-5 Connection Machine
The diagram shows the general layout of the CM-5, one of the largest massively parallel computers. Also shown in the diagram is

the manner in which this parallel architecture can be scaled up in size. (a) Sixteen processing nodes are connected in parallel by a

network that carries data between the processors. A control network (not shown), similar in structure to the data network, carries

instructions to the nodes. The networks have a “fat tree” topology—the upper branches (which connect a large number of nodes

and therefore must carry more data) have a higher bandwidth (capacity for data transmission) so that the overall point-to-point band-

width is at least 5 megabytes per second for any pair of nodes. (b) The addition of more processing nodes to the system (shown in

gray) requires that the networks be expanded to a “higher” level in order to maintain the point-to-point bandwidth. (c) Each pro-

cessing node consists of a 33-megahertz SPARC RISC (Reduced Instruction Set Computer) microprocessor, 32 megabytes of memo-

ry, and four vector-processing units that perform 64-bit floating-point and integer arithmetic at a maximum combined rate of 128 mil-

lion floating-point operations per second. The 1024-node CM-5 at the Laboratory also has 400 gigabytes (400 billion bytes) of disk

space distributed over a number of disk drives (not shown), which are connected in parallel to the networks by input/output proces-

sors. The parallel arrangement of the disk drives allows data to be transferred rapidly to disk; however, the data of a single write

operation will be spread over all disks. For more details of computer elements and architectures see “How Computers Work: An In-

troduction to Serial, Vector, and Parallel Computers.”

message passing transparently; that is,
the underlying communication is hidden
from the user. However, to achieve
higher performance we wrote explicit
message-passing instructions into our
program. It was designed to be execut-
ed on all of the processing nodes simul-
taneously. Once the program is broad-
cast to the processing nodes, each node
works independently on a small part of
the problem and manages its own data
and interprocessor communications.

Data structures of the MD algo-
rithm. The particles in a molecular-dy-
namics simulation occupy a simulated
region of space called a “computational
box,” shown in Figure 3a (for simplici-
ty, the algorithm is illustrated in two di-
mensions). The box is divided into do-
mains of equal size, one for each
processor (Figure 3b). The assignment
of particles to processors is made ac-
cording to the domain in which each
particle is located. The data associated
with each particle include its velocity
and its coordinates within the computa-
tional box.

Because any simulation is finite in
size we often need a method to effec-
tively eliminate the boundaries of the
simulation. Therefore, we apply peri-
odic boundary conditions to the compu-
tational box. That is, the entire compu-
tational box with all of its particles is
treated as just one unit of an infinite
lattice of identical units. Thus a parti-
cle near a boundary of the computation-
al box will be treated as if it is interact-
ing with particles in an adjacent box
containing an identical number of parti-
cles with identical positions and veloci-
ties. One result of such boundary con-
ditions is that when a particle moves
out through one side of the computa-
tional box, an identical particle with the
same velocity enters through the bound-
ary at the opposite side of the box.
Therefore, both linear momentum and

the number of particles in the computa-
tional box are conserved.

Typically the volume of the compu-
tational box is large enough that the
processor domains have dimensions sig-
nificantly larger than the interaction
cut-off distance, rmax. In such cases
each processor will have been assigned
a significant number of particles that do
not interact with each other. Comput-
ing the forces between all pairs of parti-
cles within each domain is unnecessary
because the result for each pair of parti-
cles separated by more than rmax would
be zero. Therefore, the domain of each
processor is subdivided into an identical
number of cells, each having dimen-
sions slightly larger than rmax (see Fig-
ure 3c). The number of such cells de-
pends only on the size of the domain
and rmax, not on the number of avail-
able processors. The domains may be
subdivided into thousands of cells for
simulations with large spatial dimen-
sions. In the example in Figure 3, there
are 4 processor domains and each do-
main has 16 cells. The cell structure
forms the foundation of our algorithm.

Each particle is represented in the
computer by a C-programming-lan-
guage data structure consisting of the
particle parameters, including position,
velocity, force, and type. Associated
with each cell is a small block of mem-
ory containing a sequential list of the
particle data for that cell. Storing parti-
cle data in this manner facilitates the
communication steps of the force calcu-
lation. The entire contents of a cell can
be communicated to other processors
simply by sending a small block of
memory.

MD force calculation. The calcula-
tion of forces acting on the particles is
the most time-consuming part of the
MD method. To optimize the calcula-
tion, particles that are neighbors physi-
cally should also be near one another in

the memory of the computer. Howev-
er, such an arrangement is difficult to
maintain because each particle is free to
move anywhere in space—particles that
are initially neighbors may separate
during the course of an MD simulation,
and particles that are initially far apart
may become neighbors. The cell struc-
ture just described was designed to
keep the particles organized so that the
force calculation proceeds efficiently.

The force on a given particle in-
cludes contributions from all the other
particles that are closer than rmax. Be-
cause the cell size has been chosen to
be slightly larger than rmax, all the par-
ticles that must be considered are locat-
ed within the cell containing the given
particle or within adjacent cells.

Each processor follows an identical,
predetermined sequence to calculate the
forces on the particles within its as-
signed domain. For each cell in its do-
main, the processor computes forces
exerted on particles in the cell by other
particles in the same cell as well as by
particles located in adjacent cells. The
forces due to particles in adjacent cells
are calculated in the order given by the
interaction path shown in Figure 4a.
Use of an identical path for each cell
ensures that all contributions to the
total force on every particle are com-
puted without performing redundant
calculations.

Typical calculations have hundreds
or thousands of cells per processor do-
main, so for most of the cells of a
given domain all neighboring cells are
also assigned to the same domain.
Therefore, the interaction calculation
can be performed for most cells without
any communication between processors.
However, for cells along the edge of
each processor domain, some of the ad-
jacent cells are assigned to other
processors (as in Figure 4b), and the
message-passing features of the CM-5
must be utilized so that particle data for

State-of-the-Art Parallel Computing

50 Los Alamos Science Number 22 1994

those adjacent cells can be sent to and
received from the neighboring proces-
sors. Because each processor has been
assigned an identical cell structure and
follows the same sequence of opera-
tions through that structure, all proces-
sors will be required to transmit particle
data for the same internal cell at ap-
proximately the same time. At such
times the processors synchronize and
participate in send-and-receive commu-
nication. Processors assigned to do-
mains with fewer particles will proceed
through the interaction calculations
faster. Therefore, when working on
cells at the edges of the domain, those
processors may be required to wait for
others before they can synchronize.
The details of synchronized message
passing are shown in Figure 4c.

At every message-passing step, each
processor sends the particle data for an
entire cell to the appropriate processors
and receives corresponding information
from other processors. The force calcu-
lation then proceeds, now that each
processor has available in its local
memory the particle data needed to im-
plement the next step along the interac-
tion path. Note that synchronization
occurs only during message passing.
At all other times, the processors are
running asynchronously.

Redistribution of particles. When
the force calculation is complete the
processors compute the new positions
and velocities of all particles in the sys-
tem. Since our algorithm is based on
the cell structure of the processor do-
mains, the possibility of changes in par-
ticle positions requires that the comput-
er data structures for each cell are
updated regularly. A special redistribu-
tion function checks the coordinates of
each particle after every timestep. If
the new coordinates of a particle indi-
cate that it has moved to a new cell, the
particle parameters must be transferred

State-of-the-Art Parallel Computing

Number 22 1994 Los Alamos Science 51

molecular3.adb•
7/26/94

 4-node CM-5

 4-node CM-5

r max

3 4

1 2

y

x0

y

x0

y

x0

Figure 3. The Data Structure of the MD Algorithm
This figure illustrates the mapping of a molecular-dynamics problem onto a parallel
processor with 4 nodes. For simplicity, the algorithm is illustrated in two dimensions.

(a) The computational box

A “computational box” contains all the particles
in the simulation. A single coordinate system
is used for the entire computational box so that
each particle has a unique set of coordinates.

(b) The processor domains

The computational box is divided into 4 equal
domains, each of which is assigned to a
separate processor as denoted by the
numbers 1, 2, 3, and 4.

(c) The cell structures of each processor
domain

The domain assigned to each processor is
subdivided into cells having dimensions just
larger than rmax, the interaction cut-off distance.
In this example the domain of each processor
has been divided into 16 cells. The circle of
radius rmax is centered on a particle and
indicates the area containing all the other
particles that are close enough to affect the
motion of the center particle. Note that all the
particles contained in this circle are located
either within the same cell as the center particle
or within adjacent cells. Associated with each
cell is a small block of memory containing a
sequential list of the particle data for that cell.

State-of-the-Art Parallel Computing

52 Los Alamos Science Number 22 1994

Molecular4.adb•
7/26/94

4-node CM-5

4-node CM-5

"Ready to send"

WAIT

Send
message

Resume
calculations

Source

Receive
message

Destination

Resume
calculations

PN

Perform
calculations

T
im

e

"Ready to receive"

Perform
calculations

9

5

1

12 9

7 8 5

3 4 1

9

5

1

12 9

7 8 5

3 4 1

12

7 8

3 4

12

7 8

3 4

13 15 16 13 1615

10

6

2

10

6

2

14

10

6

2

10

6

2

14

13 15 16 13 161514 14

11

11

11

11

10

10

10

10

9 9

9 9

5

1

12

7 8 5

3 4 1

5

1

12

7 8 5

3 4 1

12

7 8

3 4

12

7 8

3 4

13 15 16 13 1615

6

2

6

2

14

6

2

6

2

14

13 15 16 13 161514 14

11

11

11

11

y

x0

y

x0

(a) Interaction path for cell 7

The processors are performing the interaction calculations for cell 7, having already done so for
cells 1 through 6. First, all forces between particles within cell 7 are computed and the results
are sent to an accumulator that adds all the pair-wise contributions for each particle. Then the
block of memory containing the list of particle data for cell 8 is called up and used to calculate the
forces exerted on particles in cell 7 by particles in cell 8. The results are sent to the accumulator
for cell 7. By Newton’s third law, the forces exerted on particles in cell 8 by particles in cell 7 are
equal and opposite to those exerted on particles in cell 7 by particles in cell 8. Consequently, the
results are also sent to the accumulator for cell 8. The process is repeated three times more for
cell 7, calculating forces involving particles in cell 7 with those in cells 12, 11, and 10. The forces
exerted on particles in cell 7 by particles in cells 2, 3, 4, and 6 were sent to the accumulator for
cell 7 when the interaction pathways were followed for cells 2, 3, 4, and 6. Because all the
particles that must be considered for cell 7 are within the domain of a single processor, no
message passing is required.

(b) Interaction path for cell 8 (synchronous message passing steps are red)

The processors are calculating forces for cell 8. Because cell 8 is located at the edge of a
processor domain, some steps of the interaction path (shown by red arrows) cross the boundary
between processor domains. To carry out the entire force calculation for cell 8 (and for all other
cells along the edge of processor domains) the data for the particles in cell 8 must be made
available to neighboring processors. Synchronous message passing is used to transfer the
particle data for cell 8 to and from neighboring processors. Note that because the computational
box has periodic boundary conditions, interaction paths leave the box at one edge while
equivalent interaction paths enter the box at the opposite edge. Because each processor has
the same cell structure and proceeds through the cells in the same order, all the processors will
need to send and/or receive particle data for a given edge cell at approximately the same time.
Those processors that are assigned to neighboring domains in the computational box will
exchange data with one another during the force calculation. Therefore, synchronization of
message passing between the appropriate processors is straightforward.

(c) Synchronous message
passing between processing
nodes (PN)

One processor is sending data to
another via synchronous message
passing. The source processor
stops computing, issues a “Ready
to send” signal, and waits for a
“Ready to receive” signal from the
destination processor. After the
“Ready to receive” signal is
issued, the data is transferred, and
then both processors resume
calculations.

Figure 4. MD Force Calculation
This figure shows the steps that are performed for each cell in order to calculate and sum up the forces acting on all particles. Each
processor works on its cells in the order 1 through 16 and follows an identical interaction pathway for each cell.

PN

State-of-the-Art Parallel Computing

Number 22 1994 Los Alamos Science 53

4-node CM-5

Periodically
check network
during normal
calculations

molecular5.adb•
7/12/94

"Ready to send"

Resume
calculations

Send
message

Resume
calculations

Source

Receive
message

Destination

Resume
calculations

PN PN

Perform
calculations

T
im

e

"Ready to receive"

y

x0

(a) Moving particles to proper cells (asynchronous message passing steps are red)

The new coordinates of each particle are checked by a special redistribution function. For
each case in which the new coordinates of a particle correspond to a location in a different cell,
the redistribution function also transfers the data for that particle to the sequential list of
particle data for the new cell. Most of the transfers are between cells within the same
processor domain. Those transfers that cross a boundary between processor domains are
executed by means of message passing between processing nodes and are indicated by red
arrows in the figure.

Figure 5. Redistribution of Particles
After the force calculation is completed for a given timestep, new positions and velocities are calculated for all the particles.

(b) Asynchronous message
passing between processing
nodes (PN)

Since there is no way to know
beforehand which processors will be
involved in the transfer of particles,
the transfer is accomplished by an
asynchronous mode of message
passing. During asynchronous
message passing, the source
processor issues a “Ready to send”
signal and immediately resumes
calculation (contrast with synchro-
nous message passing in Figure 4c).
All processors periodically check the
network and retrieve any waiting
messages. The only significant
interruption to the calculations of
either node is the time used for the
transfer of the message.

to the particle list of the new cell (see
Figure 5a).

There are two types of particle trans-
fers to consider. One involves the sim-
ple transfer of a particle from one cell
to another within a single processor do-
main. In this case, deleting particle
data from one cell and adding it to a
new cell requires only copying of mem-
ory contents within a single processing
node. The second type of transfer re-
quires moving particle data to a cell list
in another domain, so the particle data
is deleted from the original cell list and
sent to the new processor by message
passing. The redistribution process
cannot use synchronized message pass-
ing since it is not known how many
particles will leave each processor, how
many will be received by each proces-
sor, and from what processors particles
will arrive. Therefore all processors are
put into an asynchronous message-pass-
ing mode. Asynchronous message
passing occurs in the background while
the particle coordinates are checked
(see Figure 5b). The messages are ad-
dressed so that they go to the appropri-
ate processor, and each node periodical-
ly checks the network and receives any
messages that are waiting. Messages
may be sent or received at any time,
and, in general, all processors operate
independently. The redistribution of
particle data is complete when all parti-
cle coordinates have been checked and
all messages have been retrieved from
the data network.

Our experience indicates that the re-
distribution of particles is efficient and
accounts for a small portion of the
overall iteration time. Generally, the
number of particles changing cells after
any given timestep is small compared
with the total number of particles in the
system. In addition, since most of the
particles that change cells simply move
to another cell on the same processor,
the inter-processor communication re-

State-of-the-Art Parallel Computing

54 Los Alamos Science Number 22 1994

200

150

100

50

U
pd

at
e

tim
e

(s
ec

on
ds

)

1
1024

1/(number of processors)

molecular6.adb
7/26/94

512
256

128

64

32

1024

Measured
performance
(number refers to
processors used
in simulation)

Theoretical
performance
for 100% scaling
efficiency from
32-node result

32

1
256

1
128

1
64

1
32

Particles

1,024,000

2,048,000

4,096,000

8,192,000

16,384,000

32,768,000

65,536,000

131,072,000

32

8.90

—

—

—

—

—

—

—

64

4.51

8.96

—

—

—

—

—

—

128

2.32

4.44

8.79

16.83

—

—

—

—

256

1.26

2.46

4.81

8.81

16.95

—

—

—

512

0.72

1.36

2.67

4.80

8.74

16.90

—

—

1024

0.44

0.74

1.36

2.47

4.49

8.54

16.55

34.26

Processors

moleculartab1.adb
7/26/94

Table 1. Update Times per Timestep in Scaling Simulations
Shown in the table are the timing results for a set of test simulations (rmax

5 2.5s).

Each entry in the table is the CPU time (in seconds) required to compute a single

timestep for the given combination of numbers of particles and processors.

Figure 6. The Scalability of the MD Algorithm
The figure is a plot of the CPU time required to simulate a single timestep versus the

reciprocal of the number of processors used for the calculation. The dots represent the

results obtained from a 4-million-particle simulation (rmax 5 5s) in which particles re-

arranged from a simple cubic lattice to a face-centered cubic lattice. The line represents

perfect scaling from the 32-node data point, that is, an update time that is inversely pro-

portional to the number of processing nodes used in the simulation. The results of this

series of test calculations indicate that the performance of our algorithm, at least for this

type of simulation, scales very well with the number of available processors.

quired for the redistribution procedure
is minimal.

The architecture and capabilities of
the CM-5 are well suited for molecular-
dynamics applications. The high-speed
communication networks allow us to
use message passing to efficiently trans-
fer data among the processors. An
equivalent domain was assigned to each
processor in order to divide the work-
load among the processors, and the cell
structure and interaction path ensure
that the interaction calculations are
completed in a minimum amount of
time.

The Scalability of our
MD Algorithm

In ideal circumstances, the speed of
a well-designed parallel algorithm will
scale linearly with the number of
processors used in the parallel comput-
er. To test the scalability of our algo-
rithm we repeatedly performed a test
simulation using various numbers of
processors and various numbers of par-
ticles ranging from 1 million to 131
million. The starting condition for the
tests consisted of identical particles
arranged in a simple cubic lattice. The
simple cubic lattice—known to be un-
stable for an interaction potential that
depends only on r and to undergo a
phase change in which the particles re-
arrange to a face-centered cubic config-
uration—was chosen to guarantee
movement of particles between domains
during the calculation.

Table 1 shows the results of the
scaling tests in which rmax was set
equal to 2.5s. Each doubling of the
number of processors used for a given
number of particles approximately
halved the update times (the CPU time
required to compute all particle motions
during a single timestep). For a 4-mil-
lion-particle simulation in which rmax

was equal to 5s, the increase in speed
in going from 32 processors to 1024
processors was more than a factor of
30, corresponding to 95% parallel effi-
ciency. The latter scaling results are
shown graphically in Figure 6, where
the update times for the 4-million-parti-
cle simulation are plotted as a function
of the reciprocal of the number of
processors used. The scalability of our
MD algorithm was also demonstrated
by comparing the update times for vary-
ing numbers of particles (see Table 1).
For a given number of processors, the
update times increased linearly with the
number of particles in the simulation.

Applications

As a demonstration of the practicali-
ty of our algorithm, we performed a
simulation of a 1-million-particle pro-
jectile colliding with a 10-million-parti-
cle plate. Figure 7 is a series of images
taken from the simulation; each image
is a “snapshot” showing the positions
and velocities of the particles at the end
of a timestep. The velocities are indi-
cated by color—red and yellow parti-
cles are moving faster than blue and
gray particles. The top panel in Figure
7 shows the system at timestep 1000,
just after the projectile has made con-
tact with the plate. Note that the parti-
cles in the lower third of the projectile
have higher kinetic energies (higher ve-
locities) than those in the remainder of
the projectile. Some of the particles in
the plate also have increased kinetic en-
ergies. At timestep 2000 (middle panel
of Figure 7) the projectile has nearly
penetrated the plate and part of the pro-
jectile has begun to break up. A shock
wave has propagated to the edges of the
plate. By timestep 2900 (bottom panel
of Figure 7) part of the projectile has
been absorbed into the plate, the re-
mainder of the projectile has disinte-

grated into free particles, and the shape
of the plate has become significantly
distorted.

The impact simulation shows the in-
herently unstructured nature of MD
simulations. Tracking the motions of
individual particles often requires sig-
nificant amounts of communication and
data management. We have been able
to achieve high performance by careful-
ly mapping the physics of the problem
to the architecture of the CM-5. The
fast iteration times we have attained
allow the calculation of larger MD sim-
ulations than have previously been pos-
sible. For example, the illustration at
the beginning of this article was taken
from one of the largest MD simulations
performed to date—our 38-million-par-
ticle simulation of a plate undergoing
fracture. Because our algorithm is scal-
able, the size of the physical system
that can be modeled is expected to in-
crease proportionally as each new gen-
eration of massively parallel machines
is developed.

We are now working to incorporate
new types of interaction potentials into
our MD algorithm. The particular
atomic interactions will be described by
materials-specific interaction potentials
like the “embedded-atom method” po-
tential. Such potential functions are
created by adding a “many-body” term
to the pair-interaction potential present-
ed in this paper. The many-body term
varies according to the local density
surrounding a given atom and thereby
results in a more physically realistic in-
teraction potential.

We are using our MD algorithm to
study the physics of fracture. We are
particularly interested in understanding
the brittle and ductile behavior of mate-
rials. In ductile fracture the propaga-
tion of cracks is accompanied by the
formation of a significant number of
dislocations (discontinuities in the crys-
talline structure of a material) at the

State-of-the-Art Parallel Computing

Number 22 1994 Los Alamos Science 55

State-of-the-Art Parallel Computing

56 Los Alamos Science Number 22 1994

Figure 7. An 11-Million-Particle
Impact Simulation
The three images show the progress of

an MD simulation in which a 1-million-par-

ticle projectile impacts a 10-million-parti-

cle plate. The particles of both the pro-

jectile and the plate were initially at rest

in equilibrium positions in face-centered

cubic lattices. The interactions between

particles were approximated by using a

Lennard-Jones potential. The colors in

the figure represent the velocities of the

particles; red and yellow particles have

higher velocities than blue and gray parti-

cles. The simulation of 2900 timesteps

required 30 hours of CPU time on a 512-

processor CM-5. The top, middle, and

bottom panels correspond to timesteps

1000, 2000, and 2900, respectively.

crack tip. These dislocations are re-
sponsible for permanent deformations
in the material. When the fracture is
brittle, the crack propagates with little
or no permanent deformation. Our goal
is to understand and ultimately control
parameters that influence these phenom-
ena because such knowledge and ability
will allow us to design materials having
specific responses and behavior. Large-
scale molecular dynamics is an ideal
tool for the investigation of fracture
phenomena because MD allows us to
perform simulations of near-macroscop-
ic samples using very few simplifica-
tions or approximations.

State-of-the-Art Parallel Computing

Number 22 1994 Los Alamos Science 57

Further Reading

M. P. Allen and D. J. Tildesley. 1987. Com-
puter Simulations of Liquids. Clarendon Press.

D. M. Beazley and P. S. Lomdahl. 1994. Mes-
sage-passing multi-cell molecular dynamics on
the Connection Machine 5. Parallel Computing
20: 173–195.

D. M. Beazley, P. S. Lomdahl, P. Tamayo, and
N. Grønbech-Jensen. 1994. A high perfor-
mance communications and memory caching
scheme for molecular dynamics on the CM-5.
In Proceedings of the Eighth International Par-
allel Processing Symposium. IEEE Computer
Society.

R. C. Giles and P. Tamayo. 1992. A parallel
scalable approach to short-range molecular dy-

David M. Beazley (left) is a graduate student in the Center for Nonlinear Studies and the Condensed
Matter and Statistical Physics Group. His research interests include massively parallel supercomputing,
high-performance computer architecture, and scientific computing. Beazley began working at the Lab-
oratory while an undergraduate in 1990. He received a B.A. in mathematics from Fort Lewis College
in 1991, and is currently working on a Ph.D. in computational science at the University of Utah.

Peter S. Lomdahl is a staff member in the Condensed Matter and Statistical Physics Group in the The-
oretical Division, where he has worked on computational condensed-matter and materials-science re-
search since 1985. From 1982 to 1985 he was a postdoctoral fellow with the Center for Nonlinear
Studies. Lomdahl received his M.S. in electrical engineering and his Ph.D. in mathematical physics
from the Technical University of Denmark in 1979 and 1982. His research interests include parallel
computing and nonlinear phenomena in condensed-matter physics and materials science.

Acknowledgements

It is a pleasure to acknowledge the contributions
of Niels Grønbech-Jensen, Pablo Tamayo, and
Brad L. Holian to parts of the work described
here. We also acknowledge generous support
from the staff of the Advanced Computing Labo-
ratory, who provided both machine access and
assistance. In particular, David O. Rich helped
with the use of the CM-5, and Michael F. Krogh
provided invaluable help with visualization.

namics on the CM-5. In Proceedings of Scalable
High Performance Computing Conference 1992.
IEEE Computer Society.

P. S. Lomdahl, P. Tamayo, N. Grønbech-Jensen,
and D. M. Beazley. 1993. 50 GFlops molecular
dynamics on the connection machine. In Pro-
ceedings of Supercomputing 1993. IEEE Com-
puter Society.

S. Plimpton. 1993. Fast parallel algorithms for
short-range molecular dynamics. Sandia National
Laboratory Report SAND91-1144, UC-705.

P. Tamayo, J. P. Mesirov, and B. M. Boghosian.
1991. Parallel approaches to short range molecu-
lar dynamics simulations. In Proceedings of Su-
percomputing 1991. IEEE Computer Society.

	Molecular Dynamics
	Mapping Molecular Dynamics onto the Architecture of the CM-5
	The Scalability of our MD Algorithm
	Applications
	Acknowledgements
	Further Reading

