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ABSTRACT

Formulae sre derived for the asymptetie neutron demnsity and the ourrent
emerging from an infinfite plane slab (thickness large compared to the mean free path)
which sustains & uniform production of net.xtrons. The slab is assuned to be weakly
capturing and to acatter ncutrons in accordance with the law: (1/4M)(1+ 341 where
f7 is a constant, p 1s the cosine of the angle of seattering. TFxpressions for the
asymptotic neutron deneity in the alab and the emerging current in the limiting cases

£3 0 and/or no capture are also given.
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ON THE LILNF, PROBLFY FOR A LARGN PLANE SLAB
WITH

r——pr

CONSTANT SCURCE AND ANISCOTROPIC SCATTFRING

Ve conﬁider the following problem: an infinite plane slab of material of
helf-thickness d bounded by vacuum on both aides contains a source oi' neutrons uni-
formly distributed throughout the slab. The neutrons are scattcred unisotropioallyl)
without change of energy and also suffer weak capture. The half-thickness d is ax-
sumed lerge comparcd to the soattering mean free path. e wish to obtain expressio-s
for a) the asymptotic neutron density inside the siab and b) the neutron current lexv-
ing either fage,

Knewledge of (&) and (b) ia useful for various problems; e.g., it gives an
upper bound to the thermal utilizaetlon of a unit cell in a plane pile where the modarxs
tor has the seme dimensjons, mean free paths, etoc., as the slab., The moderator giv:s
rise to ¢ roughly constant source of thermml neutrens. The uranium part of the unit
cell strongly absorbs thermal neutrons and approaches vecuum which is equivalent to e
black absorber. The actual thermal utilization is somewhat less than the "black"
utilization.

The transport equation governirp the distribution of neutrons in the slab i:
the case of linear scattering and with constant neutron production is (cf. Fig. 1):

.
»gé/(z»r)«}‘tzw = (1/20) [}%(2) +3f1i*}”1(2)]+ %0/ (1)
In Fq. (1) the origin of the zeaxie is taken on one face of the slab.
M is the cosine of the angle between the direction of the noutron a:

the positive z-axis, }Kz,yadp.is the number of neutrons per unit vol-

ume at the point z nith dirsction cogine between » and wr dr-, o is %)

c};\\\\\l\\\\\

Filg. 1 ratio of the scattering mean free path to the total mean free path,

1) we work with linear scattering, i.e., the scattering function is assumed to be ex-

pressible in terms of the zero and.first harmoniocs; the reneralization to a higher
number of harmoenics is possible buf-of terest at present.
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Qp 18 The number of neutrons produced per unit

measurs of the deviation of the seattering funstion from isotropy, and finally }%(2)

and ﬁ{(z} are the zero and first moments of the neutron distribution funstion, namely:

1

PV lthmdﬁ (1a)
1

K(z) = 1“"‘%" yap o (3b)

The quantity ﬁ;(z) is the neutron density and the negative of Qﬁ(z) is the neuiron
surrent, Iu the above, the total mean free path is taken as unit of length and the

nsutroen velooity is set equal to one. Ig. (1) is to be solvcd subject to the boundery

conditions:
Ao,w)

(bﬁ:/bz)a'ym

condition (A) follows betauso the vacuum does not return any neutrons, condition (B)

0 for w0 . (A)

0O at z=d (B)

because of the symmetry of the problemO: The use of the asymptotic part of the solution
for ﬂ%(z) in (B) is valid as long as d») 1, the opndition beseming more severe, the
stronger the capture.. |

Following the progedure outlined in Reports MT=52)and MT=265>, wa take the

lLaplace transform of both sides of Eg. (1). We get:

gom1s o)z & [Fole)+ e ()] 52 40 (2)
where

[> o}
gle,1 = Mz 4) e=32 dz

Q

. 1
Fo(s) = Jl Flagiap,  Fy(a)= jl M (s ) dpe

Integrating both sides of (2) over di from =1 to 1, we find;

2) (BM=110; NT-5) G. Placzek and %. Seidel - "Milne’s Problem in Transport Theory".

3) (BM=225; MT-26) (. llark - "Kilne’s Problem for Anisotropic Soattering".

e ——
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=5

e —————
sfy(s) = (Lfor=1) ﬁo(a)*qo/nj rﬂoprv)dr (3)

where we have made use of boundary condition (A). Substituting for ﬁl(e) into (2),

dividing by (1-+sp) and integrating over dp from =1 to 1, Fq. (2) is trensformed inte;

th £1{o=1 th £ th tk

(L)

+ gy (s) rZAELD) () 250 2

In Eq. (4) we have written:
' - "'yd(oﬂp) \
g+(=)— J. (1"39“) g" ' (5'
9
gso that g*(o) = [ P}’(O,wdw gf(o) represents the negative of the neutron current
=] '
flowing into vmeuun.

Progeeding further along the lines of 1.5T~265). we rewrite Fg. (44) in the

form;-

-

{aﬁo(s) % o’qo} X(s) = (51‘1/012) H(se) [sg+(0) +0’q°}+ lsg’(s) ¥ qu} (6)

where ‘
arth s 31‘1(0'—1) (1 arth s

K(s) = 1-
(s) de g2s@

)

arth 8

H(s) = (1 - —)

Expressing H(s) in terms of K(s):

6252 K(s) .= o{o-1) s2

B(e) = 82 $3(6=1)f7 ©s2¢ 3(c=1)f

we may transform Eq. (6) inte: .
"#(s) K(s) = &(a) (1)

whore . PR .
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‘Hle) = {Qﬁd(‘bf"‘lo} [08?+3(6°1)f1}w5flm’ (72)
o) = [og, () + ) [#024 5(a2)01] < 38 (0-1) 58, (0) + omo (7)

In Eg. (7§ &,(s) is analytic in the plane R(s) >V (whers » is the positive root of
K(s) ), 6(s) £s maé'lybié in the hhifnplano R(s) <1 and K(s) is analytic in the strip
sﬁ(a)‘c 1, Just as in the case of no capture, it can be shown) that in the strip

K(s) has just two teros, namely, +v, and aéprouoh&s unity as [a{—-—a . he may there-

fore adopt the usual device of defining a funétion:

e
) = (:2 w;) K(s) ~ (8)

The function Yoz T(s) is analytic and ;ninglv-valued in the strip iR(s)l <1, provided
a partiocular determination of the logarithm is chosens), and approsches zero asg

|s| —> @ in the strip. The usual de&omp'_osition then follows;

ale e
ORRROVAC | (8e)
wherc X - ’ ' 1
- 3 1B iw log “E{u)du
R T
[ i ]
T (s) = oxp W 18g T(u)du
= ‘211'1 i u=-8 ]

and 'Re(s)‘<ﬁ with Ve.ﬁ <1, Introducing (8) and (8a) into (7) yields;

(82-32) 1 (s-1)
o) o T we o)
The left<hand sids of Fq. (9) is s.no.iyt;c in the half-plane Re(s)>» and the right-

(9)

hend side is anelytic in the halfeplane Re(s)e(ﬁ. Sinoe there is a reglon of overlap,
onch side is the analytﬁ.c conti.rmuti'on of the other, TFxamination of the behavior of
the two &ides of (Q) as E'l"* ® ia the plane shows that they spproach infinity as
}8}3. By an extension of Liouville's theorem, it fdllows that each side may be

equated to a polynomial of oyder thres. We therefore write:

L) ef. MT=56, C. tark - "Some Constents and Lxpansions Used in Applications of the
wiener-Hopf Method" (unpublished),

5) The determination log 1= 0 is chosen. :ﬁi::_—:
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(s2 - ¥&)
(sel) T.(e)

where Cq, C1, C2s &nd 05 are constantsa.

(s=1) G@(8)

= o+ Cya +Cp02 +Cx83 = .
o™ M1 2 3 T.(8)

&(s) (10)

The problem is now to svaluete the Cfs. Fram (10) it is evident that -
Cop= = G(O)/i‘+(0) whigh is zero since G(0) = O (cf. (7b) ) and T (0) is finite. Cj is

also zero as can be seen by writing
(s=1) G(s)
Te()
differentiating both sides with respect to s and setting s=0. Henae;
' 82(Cp +C28) .
6(s) = LAl LT (s) - (11)
(5=1) *

inserting (7b) for G(s) and rearranging terms, we find;

Cle < 0282 + 0535 =

_ 62(Co+0z8) als)* 321 (0-1)fsg (0) + dugd (2-1)
[’3848% “qo] = (:»‘1)[“2,,,3(@,1) £1]" .

(12)

From (12) it would follow that [856(8),» 6q°] has poles et 5 =t vhere
{ = 3/3571(1~ 1/c); since this is impoasible it follows that the numerator of the right-
hend side of (32) muet venish for szf and 8 = = §, i.e5,
(02 +038) T,(6) - ofte,(0)r aag](41) =0 (13)
(2= 038 T, (-9~ - 4e(0) + o) (=4+1) = O (13b)
Egs. (13n) snd (13b) yleld values for Cp and Cz, namely: '
¢ - 82 800 +B/L) | Saole+fBE)

(a = 2) (w2 =p2) (3ha)
. = 8+(0){(x +£%) oy '
B e O ()
with | :
as BOLTCO, PRAGEASS (140)

Eqs. {1la) and (lb) express Cp and Cz in terms of the upknown constant

g ‘h(o); this is as it should be gince we still mus into account boundary condition
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(B). T6 determine g (O) . WO find the o.aympte‘bic aofution for }90( z) and then impose
the boundary condition (B).

To find the asymptotic solution for W (), vo write down the expression for
¢'°(s) given by (10) and {7a) and find the contribution to the Laplace inverse from the

polesé) For #,(8) wo have:

¢ (8) = d’qo §f1[agi_o)qo’q°] A_’f,(s)a(afl)(Cgﬁ@—(Bs)
8(s2=¢2) o(s2=~ £2)(82=12)

The contribution to ,Wo(z) (the lLaplace inverse of ﬂfo(s) ) from the poles is:

(15)

Ko = oy B h("’“‘*""'“* CORAC S
(16)
t E;(ggz—z“ ['t (v)(lw)e"ﬁ - (1-v) T, (av)c‘”zl
Ve may revrite (16) in the form: :
}4;;(:)’"};m 3 {:2) +Cah(v,§) coph él(z«e-z'o) +CzVA(V,§) sinh ¥(z4Z;) (17)
where - |
J0=98) T.(v) T (~v)
| A(v,§) = ﬂ(vaeta) ". (17a)
- 1 - -
%t o {ug{(w) T ()] - 2ogf(1-v) ca(-u)}} (170)
The boundery condition (B) applied to (17) noﬁ ylelds:
Cz sinh v(d +Tp) +C3v cosh ¥(d+ %) = O (18)

Using the definitions (14a) and (1Lb), for Cp and C3, Tq. (18) permits us to solve for

8,(0) viith the result:

- {(Mﬁ/é) (agsc)[%anh V(d+zo)/\/]}
g,(0) = &y, {( +38) - 2@ +B/¢) [anh v(dno)/,,]} (19)

It is to be recalled that § = 1/3y(1~-1/0),

6) The branche-point contribution yields the non-asymptatic &o

£ the solution.
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o= ’t’.gt)+ 7&(—&)’ ' pe a(&) 't"*(J)
20

Egs. (17), (17a), {17b) and (19) constitute asymptotic solution for the neutron density

in the slab; the negative of (19) is the current leaving either face of the slab.
If the capture is weak the verious T-functions oan be expanded in powers of
'Joa( >’°=.1/L with L the ordinery dj,rmsion'(length); neglecting all terms heyond voa,

ve obtain (cf.'m’o%u)):

[tanh v(d4Z,) - o 8/31‘1(@’1)] (20)

’ 84(0) = - q°6l_ vie B tenh »(d+Z,)

B £, u2 1*32?-)“ 1efy) S £
€ 2, £ Yy % ‘g*( 1)"8";" 1+ 3250

2 . .
T, s 2 q1 e [—-——]l-- I t?.:.’ﬁi,,,zoa(__l__c 1-1£, +2f12)]
e

(1-f;) 5 11y

v JI-5)

v

with
2z

STI0MY ...
51'{&6 o83

il

(o]

k

({3

It is interesting to consiaer the limiting case of isotropic scattering: al-

lowing f) and therefore ¢ to approagh zero, g,(0) becomss
[tanh v (d.'l'" (isot)) Ty (iaot)(o)]

S+(0) 2 = Qg9 l vq g 1":{,(15"*'7(0) '(21)

In Fq. (21), 2,(159%) ig cefined by

?o{isot) - _é%_ log [(lwo) rd (1sot)(vo)] - log[(lwva) f_(u(’t)(‘“"o)]} (22)
o - .
o evaluate To(18%%) 4t ig necessary to know the definition of & (180%)(5) ana
o . (-3

',i*i”t(a) ‘since Tn(iwt)(-s) = 1/'1?;180‘7)(8))3 vie have;

. =B#ico % (isot) s
;f.(lsot)( ) = exp{ 1 e log T — (n) au] (23)
' - « o ‘--..“:';T 4.\
‘\

: —
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"f.,,(ieolb)(s) =z exp[_.];'... ﬂ*im log T(isot)(u)d‘;g""“

23b
| o i s (230)
where .
- 2-1
’t(is"t)(s) 2 3; - 5 ( =ar§: n) | (23¢)

The term Tt(xaot)(m/- (iuot)(o> is the logarithmic der:wat.tve of T 180t(8) evaluated
at 8 =0 and can be found from {2%b). For weak capture, if we retain terms up to order

"02' (22) reduces to (this can be seen directly from (20) ):

= {isot)
g,(0) = = a0 tanh Vo(d:’ozn : ) -2, ‘,; \,02] (2h)

where - o
g, (2e0t) * zg(ll» '\"‘%‘) (2n )

It is just as simple to £ind the asymptqbic splution for ,wo(z) in the limit-

ing case of isotropic scattering; wé arrive at the expregsion:

V() eoym = (/ v1) q  #A(,) cosh Yo(det) (25)
where 62 :
2(3 - ¥52)
a(v,) = 2
( °). cosh[v (d+z (i”t))] \ﬂlao'(lnvog)] {o'-l} (250)
and z 180% ;4 Gefined by (22), IFor weak capture Zgq (1s0t) ;4 defined more explicitly
by (2a).

One final limiting opse is worth mentioning; the case of Isotropic scatter-

ing and zero capture. The gurrent, of c_pui'aea becpmes (qod) while the asymptotic

neutron density is: L ' i

;p (isot;zno capture) (2)
o

asymn ~

322 +A(z+ > {isot;no capuure)) (26)

where
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