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A course in neutron physics was given by E. Ferml in
the Fall of 1945 as part of the program of the Los Alamos
University. The course conslsted of some thirty lectures,
almost all of which were given by Mr. Fermi. 1In his ab-
sencey R. F. Chriaty and E. Segre gave several lectures.

These notes are, except for a few very minor rearrange-
ments and insertions, those taken down in class, The divie
sion into chapters and sectlons was made only when the notes
were put together for printing, but the chronological oider
of presentation was everywhere preserved., The homework ase
signments are given in their proper place.

Mr. B. T. Feld kindly read these notes before they were
printed and made some corrections énd valuable suggestions..
Miss Arva Frazler typed up the notes.

As soon as declassification peimits, the University in-
tends to make these ﬁotes avaiiable'for sale, along with the
other non-classified notes published by the University,
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EL) ﬁx 1) Reactzons

/ lare assigmnenta) explain why you can ugse alomic messes for such calcus

w Ll?(os B 5i11 mean LiThHe? —= B0+ gle . where G is the
energy balance, As an example, let us calculate G,
The ieasses of the atoms invaoived in the reaction are

avallable £iom massespectrographic datas

atomic mass '

° N . . 10. l60

7.01804 ' unito 0.01605
mu—cf'—l“"ggnagns.- ' 1000893

left side 1X. 02192 rt. sBide 11.02498

As un assigoment (and in the future, all remurks enclosed in rac'bavngleal

Lations, when it i.? tsue that puciear masses alone are involved

'
f

u)ﬁx ihe Beachion, -

T
Note that the mase, omn the right emeeﬁs thet omn the left by .00306 mass

units {the —eaoﬁop is Endothex'nic. i.ee § is neejatlve)

Now one mass unit g.a 934 Mev so ﬂﬁt (P rove that one Lss unit e ek 8
Q= o 285 Mev, . { L 931 Mov,using E."\T\C. . Con-
vert fran rass upits to gms

%o E"’BS 1o fMev.

They threchold for the Feuciion is, hm;éver, sozevhat Llurger iben 2085‘!:&6%

For 2.85 Wev would suffice omly if meither end-produet purticle moved.
in order to eatixly the conservation of mwomertum this cannct be so,for
’.&:T ™ p;-.,rtic).e is raqving at a stotionury Li? to bjegin with, aad so the

w.nea of gmuty has a wosmcatuxn which 1t w31l s1ill bave afier the

;!
reg»c tion.

APPRO\/ED FOR PUBLI C RELEASE
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Under this assumption of sta.ionary Li.7, Ldt us caioulate
the threshold emergy for the Reaction. o ®

. ’ - Cav -
Ve 4 she velocity of f‘t;he Conter of Gravj:ty is-‘*.m @.‘.’...) @ ~a.

THE BUMGERS

= ﬁ-\/ - The minizum k:}netic energy of thd - «ep?,:.:g“f
Reaction produt:'ts is them 3 x 1L x(%v)"‘ a
Therefore, for the reaction %o gzo, the ms.x}iimmn velocity
of the ©X particle ﬁm_st be given by ; o

£xaxvid 2. 85Mavs L x(FV)
or ‘i"!t(‘%f %4 *Vz>*2'85‘ MQN (!»G‘m‘-"j ‘?1 of the kinet enexgy of
the ©% particle is availalle for conversion to mass) Hencs .the

2L = L5 Nev

7

threshold is 2.85 2

(® Be? (=t JO )6t i the most probable reagtion with BeY,

al though 1369(05 V) BHeh plsp vecurs. This is exothermio‘<Q=5'.5 MQV)
apf is the basic resction in one of the meost comnon Deuiron sources

(radiwa = betyllivm). There is no sharp thresbold o T Torget

' “e\d

in This Reactlon, the yield curve rising slowly with

E.a( { becuuse. of the Gaméq formula for penotraiion of

a Coulomb .arrier by churged pariicles.)
]

Three natur.. neutron sou:r¢es in cbpmon use aré based Buw Me

-y b

] ! X 9
o ®his leaction : ' crrsett }p.'i's«s)

Ra Be (~5qms Be o ' 9h Ra) These soarces emil

Rn Bz (R 25 M 2 Be Gapule; Too ~wwamy s for
vary wahli~ 4 day half LEe) | Sowe uses.

o A&e (r:ib”(\\/@kj \ow mT'ensi?y) :

’

To ste whni OX S are emitted in each case, one must
tura %0 the Deecay Serivs of the Urenium family.

UNCLASSIFIED
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3 350
(At ieast that part from Ra Yo Ry REF) B/ SV 9
Nonml Radium is a mixture of K‘Q and the 5.&2-\{
i
products emitting the 4 'S 10 Ra D - \RaA
Rn emits 3 e{'S . Po emits tut 1 o : 3'/ 5.9 Mgy
: . . o At
and is quite & bii weaker, . 'Ra‘B Lt Al
) | SERIED
' ‘Ths tasch ;R‘écl NG talérhvs
: -m.ghgubhc - wnd SNSNGIRS
The sirepgths of these natural (0(;‘\) r&\c o s,
—————— “ - .
;5 . : “ Loyt ;
sources are : . 1R3C - .6 B Mawv / an
Ra Be Y 515 xa&% ..ERAD}‘ ' S d«cax
© Rn Be o s 3B
ST o e \Ba. l\, \dccax
~ I ;:g§ . :
where a cuyrie @f a subsiance dlsmte mtes 1904 - ]
i . & 40/ S\ Mav -
at the same mte av L gm of Radiunm. : "RBG’

In & Ra - Be gource the neuts will have all sonts of ensrgies

up 0 7684 5.5%2 13ksv, The spedtrum will Le 'tairly continuous .

P

* for in addition to the various X3 imvolved, there's the matiexr of

peneltraiing Bs cr,ysstale. and the f'act that C*® needn't necessarny be

left io the ground state. R ' | )

(3) " B Cp YN qwes ~2x1Q -"5-‘;5.“-:‘23;,”-‘,.?{ wirh Ra «'s,

(4 Floyn) 8a?2 . | |
Sometimes you can use Ra X'Y in BF3 Ygu)d get aboud 'OS %

A

Po W‘é in _BFg gives the *Wock Fission Spectrum’.

e e e+ o rop e a—

(2.} Fhoto Sources ("6' Y\‘)

Dy and D alone among the auclel have low enou._)\(‘{dﬂ thyesholds

(hatMav &z‘qM&v respectively) to de useful with matursd WS,

CLASSIFIED
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%e can get with such sources low energy monochroastic neutrons. Ra “65 on
Be however,give neuts in 2 groups (.l= Mev, .51 Hev) since 2 Ra 8'S

1ie sbove the threshold.

A practicai rule for the calculation fNeglecting absorption of W3,

of the total mmaber of meuts per sécona trhat‘s the strengtn of the

from Ra ¢ Be is: \ gwm. Ra a‘t : source shown? ; |

L o, Brom Lgm, 'Be gwes . |sphared Be
.q ‘meul voner vadive

3RIO sac., e - : Q\.\Tw r.\dtus 30«

Other photo sources,

Ms X D, ¢ « 220 Mev neutlrons

Ms °§ ke 2 groups <88, 16 Mev neutrons

Using artificiarly radioactive (4 emitters,

i.ReactiOn . beb& €T D,;O N&KD;O LAY BE NQWBG
.RBM&;..Q e Qidtf&v XY 2‘4 .6?»., . - 80
'Artzficml Neutron Sources. ‘ Y).eld for a thick tar@_,et of
; ‘r:*_,__!,f, “ . Heavy Ite
R G‘x) I‘he D-D Rnactiom :Bonmburd heavy ice or
Ene;cgg (KQV) iel (“ﬂtﬁ.)
heavy peraffin with Deuts.) Based om : o
. ued - 50._ O
DD HeE N excmermic | 39 8 .
alreyl | | FO0 et €9
half and half ‘ S'OO-———-———-19
— 1oQ0 S

=

B

. fHiow many"f\/goc, would one get from o bLeam ZQOQ 400
ts*if the current wgre lma

Advaniages of this Reactiom Raa:;onmle yields at low energies; monechromatic
yields,

Disadvaniages Troublesome target
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() Protons on withium: !his Resction .

L1+ > Ba” +7 - Loz Mav
can give wonechrom.tic neuLls down to rqther low energies. Ihe
threshoid is .§7!. % 1.62= 485 Mev
If the tarcet is toabarded with threshoid protoas, the neuts
co.e off with a finite energy (~30WV) for then they move with
tle specd of thr centexr of ran it;;. If »e rmiice the proton
ene ¥y, there 1¢ cooush energy to give the ueuty a v locity with
Jegeget 1o the ¢. of ;. Ffor the uét velocity, one adds vectoriaily
the volocil; of the center of gsuvity to the neution vzlocity with
resgect to tho center of cravaty. For hih enough em:rvie., neuls
c;xz shos resultants of zoro velocity, ov Q.;JC\\ backwanrd vetocies.
(3) Lieuterons on geryiliwmis The Cyclolron :ouice. Yield rises
midly with encrgy . For o Yhick tO«\ngt\ AN ¥ AV d&uj’av and
Give :OS’YWTV'OY\:& per second Pm» m.qr{}?\mp,
Sriaav wedtrons Qwe 10 naufvons pev SEC. par damys,
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CHAPTER IX . 6

Collisions of Neutrons with Nucled

Examples of such processes are (hg‘\ ) whieh are called scattering processes;
(elastic when X.B. of neut vefore collision = sum of K&.'Sof neutron and recoil
nucleus after collision; inslustic when the kinetic eizergy is not conserved -~ soms
energy may go into nuclear excitation). Reactions where a neutror comes in and other
*particles® come out are (N\,§ ) ("\,P ) (’\’\JO( ). A third distinct type is the
(M2N ) reaction. A fourth type would be (W, fission)

(1) Neutron Crossstections as o Funciion of Pnepgy.
Description of intensities of rsaciions is usually given in terms of crvase

sectiong. In unit time “™N\J@G" neutrops will hi% s

""""""" NU’ LEAR
auclsus. Acturlly the representation is rather TARGET
AR&A
fictitious inasmuch as @ is not a well~defined
: . - n Nq ‘\’v-
geometrical quantity. Ve might mnke more general per ‘c’ C.c:‘:f
our notion of (FF using wvemieclassical ideas. Ve bzaw

would consider T as describing the projecied area of the nuclens und of a zone
including the range of nuclear forces. But even this area would be of the order
2T shl Qb Ko would conclude that all O™'S must teas X S ¥t But there
are observed Q='S of the osder ‘06-.!61 > Ve must adopt a wave mechenical point
of view 1o accouut for this. A neutromn becomes a larze body at slow velacity, It
can’'t bz considered a point compared to the nucleus but may be much larger. Its
linear @imension would be given by A= .,‘-;‘b.-\*r . At low velocities O wowld

be resiricted (in orders of megnituds) only by @O~ 47\2' Let us sea therefore

how M dependa oo B(neutron energy in eléctron volts)
Lros2=E » 465 107" args
AR 22 "R V2IE. N -=J3’.‘2.xso""m& é“d m={,6 XIO"

24

EVa. .
In practical limits E goes from aboul .001 volts to several million volts. Thexmal

is called the De Brozlie wave lg ngth.

whence }\ = -W!l}{f -

APPROVED FOR PUBLI C RELEASE
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neuts, for example, are about <-:—°cv which makes W= 2 X|O 8<'.m. (of the oxder of

interatomic disiances.) For 1 volt neuts,')\ - 2% ;Q"g 5 for 106 volts, A= &% IO-R
{of the order of nutlear dimensions). At a high emough energy &\ becomes sinall

comparel i@ 10712, Then we oan use. the clasaical corﬁuacular no tion ’ana for higher
energies than this we must use & <1Q"'"d‘ Tabher than < ‘]\z" to szet

an upper 1imlt on (¥ .  In keeping with these ideas one could define:
cEssE%S DER. NUCLEUS PER UNT TIME

o= - NS

~ ' «24 (2
and we've ssen Q¥ will bs less $han the largeszt of the tvo quantities 3“0 3 7\

(2) The deasuyement of Total Cross-Section.

o HBSGRBER, NeUTRo™N
ol s B @’ berecron

%ithout the absorber, the‘ detector measurss intensity I, - Ve then pat in the
absoqber. The measured intensity is I. %e assume that the solid angle of absorber
at source and detector is infinitesimally small (one mmst make sure ithat neuls scattered
evon & little bit can't get to the detector.) Our geometry is thus such that any neutron

"osffected® witl not be fetected. Take a closer lock at the absorber

T Tae N 15 THE NUMBER, OF ABSORRBER MATOMS /oc,
Ja THE DROBMBILITY THAT B NEUTRON Wikl
-3 | = SUEFER, A COLLISION 1N TRE LAXER Y
%3 15, O MNAX ) WHERE. Oy Op gy ,THE CROSS
e Qo SECTION FOR aLe NEUTRON PROCESS®ES.
di‘:“G;NdX.I vhence I = constant » & - % and the L
constant must be I,. If the length of the zlab is "a®, L= IOQ € and

&% can be catculated from the measurements of I and I,

A X
%= aa B FE

A copper plate 1 cm thick reduces the .
L5+ .represend the sum ]
e TR J intensity of therma) newts by the facior
Selastic Finetastic ™ Oabsorption intensity of themmal newts &y the
clas S :
036, what is the S't for copper for
- where %bmrption includes all processes
thermal peuls? Express result in walis

of :o"""‘ cn® € Ba\”'ﬂﬁ\ y

in which a meutroa disappeara) i.e.,

(NyeD) (Y (N B €T
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{3) The Gepor catures of Collisiong.

3 ' Wt AL AL
As an exampi e,you may be thinking of an (ﬂ’oB STATE STATE
reaction altho what follows is quite general.
o - '
m 22) — R
N (& —_—
ANITAL STARTE BiNAL STATE . | SE—
Final state refers to either the O4 or the reocoil, FOR O GUEN ENERGY OF
\} THE
for if we are given the 05 womentum and direction, X‘{% ‘gﬁ:ﬁ‘;ﬁggﬁ%& ?;;;%..

\BLE FiuAL of eH8RGWES.
the lawe of momentum conservation assign the momentum and direction 1o the recoil,

and from the conservation of energy law, one can determine now the staite of excitation
of the recoil. Thus a specification of momentum and direction of the 0( specifies
the final state completely.

What is the probability that a transiiion will oceur for which the energy of

the O is E? (i.e. between E and E-~ dE) From Guantum Mcchanics, it can he shown

that this is given by a product. It ism*? where M is “;:f x‘ H \3 antl H
is 2 matrix element depending on the erergies of the initial apnd final states, and P(§>
is the density of possible Tinal states in the neighborhood of B .

The matrix element is too tough to calculate here, but we can gei P.
Actually the ©{ can come off with any energy and so we'd get a continuum (i.e. -PsOO)
everywhers. BHowever we can put the system in a box of finlte volume Q and this
will make the distribution of fipal energies disorete and f (the nuber of states
pexr unit ensrgy interval) will be finite. Thé question "How many states per uait
energy occuf at € 2" becomes *How many states of an o particle in a box of volume
’ .ﬂ. have ene:gyE- ?% For the answer to this we turn to statistical mechanies and
say, it is propordional to the volume in phase space which corregponds to this energy.
If h is the linear dimension of & cell in phase space (a cell can contain one state)
then the number of states for which ‘P‘ is between an“‘d M?dpx ete is
% dP *dp v d‘p3 : ' (where the integration over configuration space i.e. overdx,dy.d?

has already bsen done) IHence the number of states

APPROVED FOR PUBLI C RELEASE
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for which the total momentum is botween P andPidP is proportional to the volume
of' the spherical shell at P-C Fol s PY +-P 2'),7' in momentum space. This

volume is 4 T Pz’ dp

JL .
%N"‘ 'q“PzdP" wa (\ﬂo\t Pﬂa‘ﬂc.\%aﬁ CoR PHO'\‘Q:&/
REPRESENTS Tuz Num ER, W Xy Pa™ ' Bahy pe NC
QF STATES WITW ® . Ew gsm-\;zc B2 Sc TWAT
™MOMENTUM P To .P+dP So'ﬂ-\mv dec Phadp dE=Cdp

In general ‘ehe.r«émﬁz de= 'd'dp where ~\§ is the velocity of the particle or photon.

g

Thus the number of states per unit energy range ){Dﬁ -S-':E‘— becomes

2
41‘2‘ z: wogzneral or ‘.‘F_J_t}g.ﬁE for, porcricLas, T&%“V FoR PHOTONS

Klthough §) oceurs in 9 ¢ U™ will occur in I\ so that the transition

probability is iﬁdependent ofn as it must be if our taking of an arbitmxyﬂ is
t0 be justified. .Thus the probabiliiy of a transition to a state where the particle

. 2
or photon has momenium R\\T £_§ ™~ » _%L» . This probability will
LYo .

be proportiomal to S mepger * O where (J° is the cross-section for

neuts of velocity v:mcxdent to be *converteds" into outgoins particles of velocity
Your, czwr .....L-
: c" = X Uou‘r .U:N
) A Result ‘ Situatio
Ap an example note that for elastic scatbering (Vg * Yoyt ) ve get

edwply @ e Mxw®  (for p=wv)
so that for slow neuts (1] wouldn't change much in so small an energy rangs) O~ is
independent of the velocity of the slow neutroms, The slastic scatlering cross-section
of slow neutrons does not depend appreciably on their emergy. It should be pointed
out that for elastic scatiering from light auclet "\, 3 \Sg, ¢ , only in the center

of gravity systém end it is in this system that the above is true.
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I As a secomd example, consider one of the so-called absorption rocesses.
Let's say the recoil is heavy so that the light particle gets all the energy. Then
T= MU+ Q
® M= 2 ™

2 2 2
's ~ e | 28 A ___Q‘l
© out © ) (_nm‘ ¥ oy,
N e mcﬂ"m-f\ YABSS TN, = l\e\nt pav‘t\dz Mass

: “'3‘ N 2 % 1’/:..
Then =1 ‘ X \‘\'\. E“\\:Sm - ‘Q
\

Note that whenQ is positive (exothermic) and ’U;N is amall, then g~ goes as "ﬁ."‘N
|

K’the-law] . Obviously a negative Q and very smell \:\N doesn't make physical

sense. The reswlt we get ie imaginary. This chows mainly that the formula doesn't

cover the case. o 'should be zero for sxﬁch a condition.

‘ iFind an example of each of the processes (W\yT\ )t«,\as'hq 3nd melashc) |
(“\'\fG\C‘Y\P(\“\“ ’ e eco he crosg-section. { From the literature,
THE LGHT

EMITYED
PARTICLE

o

1 _ v
®-—> ‘ /— THE WEANVY

Vit . RECOIL MOVES
NEUTROR ~ THIS WA auT

TARGE T WITH LITTLE
NUCLEU D ENERGY

AN "ABsSoORpTION' PROCESS

CA NMEUTRON 15 ABSORBED RBY THE TARGET AND
PMNOTHER TYPE OF PARTKLE
13 E.N\\TTE'DD
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Consider next inelastic scattering (Assume that you're working in the center
of gravity system. In this case the neuiron mmss should be replaced by its reduced
mass ;?:%AA *4fs If M, is large, the reduced mass is practically the neutron
mass and the following results will hold approximately in the lal system.) If the
first excitation level of the nucleus is W , and the neutron has -2!-. ///7{_3'< w
then no inelastic scatiering can take place. ( 4/ mind you, is the reduced mass).

But if ZL,&/)f.i >W then, if the nucleus is excited

to this level, \WV/

2
3 A 7):“_ v 2'/‘/1 ot g
substituting in the cross-section formula
( % )2 s STARTY QFF
L (M Vout ou LiKE A
o= == = 2 RABOLA
Vn Vol .t/l// Vi PARA
At the right is a plot of the factor Meul \j
Y
. — 2 - !
writing ‘WS i—-/’f/\fo 3 ﬁou‘t‘ (’U"“ 3%1)/" /
which is CCV-VU’Q(V—UQI 2 ValTHRESHOWDY V-

<howing thut at ths beginning Uo 4 €ces as the square root of the excess veloeily.
There would bs a small cross-section for the production of slow neuts by this method
gince GV -~ vou't .

Next, we take up (Y’\)‘d‘) . Here p= bé‘,/ )Vou‘t=C so that = [Mix -\ﬁnh%l
Let's eay a neutron hits a nucleus (Z)N) 8o that the compound nucleuns ia (2) [\H—ﬂ
Neutron capture is almost always (exception'-; helium} exothemic. The enrrgy available
for photon emission is ‘-?E/!l U2 +W where W is the neutron binding energy (the so-
called energy balance for this case.) If the first photon corresponds to a drop Vo
the level L. (not necessarily ground) we may write h ‘L)-'-'_E'/f/vz-ﬁ-\/\/‘_ As VO, &%2

approaches a fixed pumber rdepending on \A/;&.Eut in the expression for (- the
. .
3 part increases rapidly. Slow neutron (‘(\)\0‘3 reactions go as ,:-3‘. (assuming again

sufficient constancy of I ). .
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Next consider the (Y\ ) processes . C’l‘he ('“)P) processes are of the same typea
N1+A = B+ ¢ These reactions can be endothemic or e xothermic ( () negative or

positive), The energy eruation is

! 2 . -
> /‘:/‘an == .-ZL. A/m —U;\ - Q (in center of gravity system)
]
First take Q > Q ; here 'U:,\ is at least <-——""‘ /A Here

om= DA+ 3 {/M« B /”/«‘7,_.5‘:

Vine .
For low energies, with (> the (n )oﬂ proce.s obeys the ‘/\p law (reasoning similar

20 that in the (Y\ 5"} situation above.) But for £ (), things are different. Thers's
)

2 ) 2
a threshold, Write Q = *i’//vo so that = :%_ 4 Vo> + ;MU 3 /ﬁ/qv;(z
ice, ViUt = ::"," Vo  showing clearly that W #1727 is the

threshold velocity. Again we'd expect a parabolic vise in

the value \'% , But the observed ¢ 1is quite different

as can be seen. The reason is the spharp variation of A ’1_.,..50‘ o
' ™
in this case. Slow charged particles have very much § ,
e
trouble getting out of Gawow Dbarrisrs. 7
14

(s) Some Exarples of the Foregoing Reaction Types.

o 7
e R L‘n +H e“+z.<)9 ™Mav (Normally Lo is left excited so
that only about 2.5 Mev are available for kinetic energy.) In view of the discussion

on page iQ this reaction should go as -{-—r Tor slow neuts. It does. In unsepa:rated

(1]
boron {B &B“ mixed) Q° is 705 barns for room temperature neutrons. [l.e have a beron
qre.
cince the velocity of such neuts is 2.2 X 105 Sac. the cross-section layer of . OB m-
5
&oes asa 703 xﬂi;‘LXIO It might be noted that for pure B‘o penetrated by a
the room temperature cross-section is 3800 barns. This reaction is one @V neutron bsam!
rather important inasmuch as several neutron detectors are based That is the reducdon
on it. For example in intensity of such
N B IOV ZATION
e CHAMBER. 12 bean?
Yo ] IampLRIER ] ESPECIALLY
VOLYAGE! SENSITIVE TO

SLOW NEUTRONS,
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There are many variations of this scheme. You might tuild the electrodes for more

mul tiplieation, i.e. cylindrically synmetrical. One might use argon in the chamber

and put boron {(in some compound) on one of the electrodes. If the layer is thin, the

28caping L\q or H@q might get through to the argon to cause the necessary ionization.
l_\(’..q. N\—> H3+He,4+ {5 N\w(‘l’ne most convenient way to make H3 )} For

ordinary lithiuvm ( le % L:’ mixed) the crossesection is 65 barns for room tempera=

ture neuts. And the # law is followed for slow neuts. .3lr wem )oQH?’

(up to about =\ Mev) The -;%-r law holds to higher energies Q‘L

for 1light nuclei (where the energy levels are spaced far Barms

I

apart) than for heavy nuclei with their close packed levels *!

(which would cause sharp variations in Iy 'l-} It is well to

'\r

¢
keep in mind that the i law holds for zelative velocities. That i3, when S

becomes smell for the neuts, the thermal agitation of the target nuclel must bs consider-

ed in the application of the -L'\)' law. Let us calculate the number of slow neutrons

captured ipn some material per unit time as a function of the wvelocity of the neutrons
andh

if ¥ obeys the %, law. Consider those atoms with velocity \/ . What is the

~lb
pumber of captures per unit time due to atoms of velocity \/ ¢ Since g™ goes as

.\‘}'"w’" and the number of "meetings® per goes as Nv “vv"e\ﬁ the capture probability
Yaldivg sec

which is proportional to the producti goes as N(; /‘\ where 3\ may be considered constant

Y
( N¢ is the concentration of atoms of velocity V ). The total capture probability

becomes g A N\y = AN y @ constant. That 1s, [ What is the average life of a |
the number of captures per unit time is constant and neut in a chunk of lithium.

iodependent of f

Al
'Uh.

relafive Thenever g” goes (or in BF3 at standard

as \_conditions)?

\
NHNHs Clq'\"H +0.oNav Although (R is positive, 1t is small and the Qawmow

factor plays a part, so that the cross-section is only 1.7 barns for room temperaiure

neutronse., What is the mean life of a neutronJ

DL S ACE
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CHAPTER IIX

The Chart of Stable Isobtopes and What it Implies
about Nuclear Reactions Involving Neutrons

N
(L) The Sewre Isotope Chart. - In this chart a nucleus is identified [“UILRER
MENTRONY)

by tbe pumbzr of protons and the number of meutroms it contains. The

1 SOTOPES
LAVE N
TS REG O

plot looks somewhat as shown at the Right.

For convenienpce the strip of sitable isciopes is usually bLroken 77

. Z(N;\MFB&':Q
up and plotied as delow. > - 0"5:
C ) ~| 9OTOPES ADPPREAR i THE
N - : / - — j SAME VERTICAL COLUMN .«
O - SOBARD (NUCLEL OF THE SAMZ
. =3/ W MASS NUMBERNAPPEAR 1N THE
' ,’ ' SAME DIAGONAL »
{ T
LJ__._ ! f
i d [
- =2 = : J

Slong with the stabie pucleld are plotied unstuile nuclel (formed by some sort of

bombardment.) As o example, let us plot the part of the diagram daround alumiaum.

] -
6 S . AT 15 warked with 3 &R
3 Mg TR S, T3 THE £MD PRODUCTS OF TriE
'S 210 FOLLOWING 3 MNREUTRON REACTIONS
Ry N QAT 18 ON  A\Y! PRE. ALYD MARKETD —
A
3 .NE;“ FAg3t Q REPRESENTS THE . PROODUCT 19
P
Ne**[nNat3 Mg A\ﬂ(sﬁfm AS
" 3 O ReprEsgTS THE DRODU:,.T N
U
W N AT (P Mg
‘ ~ TS THE PRODUCT \N
o |F S NS0 zu 3T Q RﬁDRQbEN;: N-z'-l‘ ’
AT (n, A D
1O

It so bappens that in the case of sluminum these 3 neutron reactions (and these
are the 3 most common omes) all yieid unstable end products. These are usua.ly /5

enitters. Thus in the (“n)p) reaction discussed, %e end uy where we started except

for the iact hat the neutron has become @ proilon + an electron

29 27 3/ , -
AT+ "—bl\l\ﬂ + 1 followed by '\qu """A‘zq + @
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The net effect can be written N\ —>p+ < . 'There existl also (p,n) reactions

for which the net result is g —= N+ Q+ . Consider A127

agein and note that vy
"substituting® neuts for protons spnd vice versa we obiuin a set of nuclei for which
Z;—;fN=27 . ‘hese will lie on a line of slope ~)1 on the chart,

5051 puekei in this set asre,o0f course, unsiable.

TO
NOGLE] Wikl DAOVE

Yo CUVE. OF 3TRBLWE BOTO Pe.S
\ AS s owN;‘rHOSE L‘{lNGﬁ/}BOVE

THE CURVYE QY T .

Eras310M OF & LECTRONS,
THOTE BELOW BY POIVTRAON
Em‘55(ONt Z

N

7 N\N

Actually the unstabls nuclei below ithe stable region need not emit positrons. They

may wove in the right direction by Y electron capture. This has been observed.
The 3 unsigble nuclei considered in cognsction with N are allk ﬁ smitlers as
would he expecied since they all are above the stabie curv:. ‘They all possess

characteristic half lives. ‘hese are

ALEB 2. 3 win M527 10 wmin NaZ4 15 hours

if 9 is bombarded by neuts of assorted energies,

Find 5 exanples each of
(”f\f‘ﬂ (W\)P\ (‘“)\0')

proeesses. Record the half

all 3 products may appear and some sort of chemical sepa-
ration wowld be uzsed to segaraste the activiti s, Tere
we to isolate ope of the aciivities Ly chemical means

lives of the radioactive
or by using neutrons of proper emnergy, we could

product nuclei.

examine the energy szpectrun of the emiltted \?’ particies, we
vwould find =z comtinuous spectrum. This was {and still is)
a somewhal upnexpected result, In order to explain this ?(E)
spectrum {there is no particular difficulty, for example,

with & spectra vhich are discrete)., iut here one usually

\ g >
asswes that the total equation is {(take radioactive i&ga? as \\

e

) e 0 ' éo
an exanple): {\,{91. - P\\ +& 42/ '(whereZ/ stands for Pauli’s neutrino.)

The neulripo takes the exira energy, i.e, = +E 2= = Eo where E is & sorstan$’

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

o)

vhich gives the energy of the (3 deeay, E,is the maximum energy on the graph above.

For «gl, this Eois 1.8 Mev. Thus the neutrino is here invoked to help conserve
eneIrRy. Before such a scheme is acceptablie, one should show that the maximum @’ energy
{and not, suy the average P energy) is the energy\lost per nucieus on (5 decay.

el us assume this in the case of ;v2g27 and see that it leads o observed reswuts

"1&27" A12?+£*l°8 J4ov. But now, we know the reaction ALZT+ p -» ;,16274- '+ 2,
and adding these we find 3 o75 Mev= [+E, (.75 is the difference in mass of the
neutron end hydrogen atom.) Thus (® — L.05 liev. Thus the observed ﬁ -gpectrum of
*‘4827 implies (if our assumptions are correct, i.e. if the maxzimus energy in the
@'vspectrum corresponds to the total energy of the reaction of @ e.mission) thut the
(‘n)p ) reaction on A1%7 is endothermic with = «1.05 Yev. tnd this is observed,
for the process has a threshold corresponding to this . If the observed { were, say,
~e 2 Mev, thi;s would imply that the energy ziven oul updn (5 ~decay exceeds the maximun
of" the (5 spectrum. Lo satisfy eneréy conservation ¢ne would assign a non-negligible
rest mass to the neutrinc.
(2) lsotope %eimhts apd (™Y ) Reactions.
One might crudely reason that all zuch reactions are eXothermic by acout 8 Lev,
because we could write
A+ — (Ar) +&Q
as the energy egualtion. A;.suming' {and this is guite crude) that the mass of a nucleus
containing protons and neufrons of total number A is egqual to 4, we find
= ,009 millimass units or alout 8 Jev.
Actually the true atomic weight differs appreciabiy from 4 in many cages. 1t has, in

fact, Le<n found convenient to define the packing fraction
Aowmic Waghl —A

Thie packing fraction a.pears in the expression for the energy of fonnition of

a nucleus per particle. Per particle the energy of fornntion = 0085 ~— Lacking
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fraction. This can be seen from the fellowing considcraiions. (o
Look up 10 nuclear

Total energy of formition is 2(1.,0081) < N(1.,0089) - atomic
' nmasses in the low end
washl. Assuming that Z~ N this can be written approximalsly

rd A ~
(2+ ) (LoogS5) — Alme Weight” of the chari and calew
Dividing by A gives the above resuit. For our present pur- late the binding energy
poses the implication of all this is t-atl (’Y\)ZS" ) reaciions of the neutron to each.
' f 6 n
are not always exothermic with Q@ = 8 Mev, but that in order Take ' R* L L

BQ.Q &!Q %l! Cl‘- C‘a‘”

$0 get O one must knov the packing fractions of the

nuclei involved.

“e have seen that neulron binding energies are of the order & Mev through the
periodic table, there is an irrezular variation of the binding energy with A but in
addition there is @ regular vaviation that should bs wentioped. This variation in-

volves the packing fraction which is not wholly irregulur with respect to the positionr

of the isotope in the periodic table.

€
PACK (NG ! THE STABLE 13TOPED
FARALTION DT IN A REGION
X o4 ABOUT “N4tS CURVE.
‘ -
\\‘ ~—thg> ) 200#\

iet us then use this observed packing fraction curve to determine any regular variation

of binding energy with A. WVrite

pé= T5B = E(AN
then M(A\’Z‘-“‘ /—\Y_\ 4 F(A\] similarly M (,a‘ +D=<A+D Y‘\ +* C(A"" h:l

The binding energy of a neutron {or protoun} is rowghly

-—(Aﬂ)[;% C(A‘H)]* P\‘._\ *‘F("\)]*‘ LOQOBY (wiere 1.0085 is the averasge mass of newbron

& proton). This is <0085 -[:(‘AH)F(M:)—A‘(A)]
which csn Le writtemn +OQ8R — G%EA 44 F\)] Ve F(A\
The function A F( A) looks as shovil. a»??\c. ENERGY BIDING ENERGY
. _ MEVY L K8Mme
¥rom the cuwrve, note that at very low A the : ’ b —
L
birdiang snergy ie erratic (it doesn't m=an wmuch Mﬁ AT
- Xt
1o consult the curve here), It soomn bec0ms> 8 Nev _
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Look up the actual mass
(the slope of the curve is negative). At
defect eurv:-. Find the average
fairly bigh A, the binding energy becooss less
) binding emersy for nuclei in the
than 8 Mev.
following neighborboods

Fe Ag P T

&-..'1)

At any rute, the (7 3’5‘ ) reaction will involve energlies of the order 8 Mev.
(The only "stable® isotopes th:t we feel do not bind pneutrons at ail are Hel* and the
neutron itself. Tritiws also would prebably not bind a third neutron, but this would

be irue of all ihe unctable nuclei with enough excess neutrons)|{ f

In the curve at the right we refer the nuclear binding of \SOTOPES / /

ASoveE THisS / M‘STABLE
oV S VY T W / 1300
NOT BIND ,/

tope is to the top dashed curve the morxe likely it will NEUTROUS,.
. 0

neutrons to the stable isotojge curve. The closer an iso- N ! Cumae

7
7 |50TOPES

s
emit neutrons (as does a fissvion fragment). Isotopes ,/ R BRLOW THIS
P & LING Wil

” NOT BiND

PROTOND
2

It should be pointed out that this 8 Mev rule for ('*n)'u ) reactions is just a

only slightly ebove the stable curve will emit(_’) particles

in order to became stable,

rough guide and would often be misleading. Ffor example, opposite process;or g,n )
reactions, on deuteriwu and Be? show thresholds of 2.2 ifev and 1.7 Mev respectively

showing that the neutron binding energies can be rather lower than 8 Mev.
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NIP IR e oSN I

Models of Nuclel and of Nuclear Reactions.

(1) The Compound Sugleus.

tie have seen that for en (‘\'\ ) proscess the cross-section near the origim

LS
{1.e. low energy) goes as "\‘-S.‘ (bg:-') . é—: . About 100 (*n)‘g ) reactions are
known and the :tr law adds for most only very close to =2 . This is becaunse O~

is complicated by the i values. These M values show very sharp variations of

resonaace lLevelis, An explanation of resonance ele, has 1o be mude in terxzs of

some model. Our picture of a nuclesr reaciion is soumewhat as
FoR. INCIDENT

foilows., A neutron when hittinz a nucleus will not knock k/PRDTDN
: )

. Nou S HOULD
out the irst particle it hits. It wlll distribute its , \ P\DDTHQ

L4

\ fm.me.ﬁ‘i

\
N N NEUTROF

- =~ a GRMOW
energy among the various wewbers of the aucleus. The Bap.&\\ﬁi\, e
combination of neutron 4 old nucleus iz called a compound
nucleus. uhether a particie comes out,depends on the  Tam PotTENTIAL
WRLL THAT 1S
probatdiity of concentraiing the necessary escaps anergy THE MNUCLEUS

on one particle' in the course of ithe interacitions within the nucleus. According

to this picture 2N (’Y\ )'6'\ process cuan be represented
AT —> (A +‘*€\3* YW here* resns excited
(A‘\"Y\\*% (P\ + Y'\\ <4 h‘t/ (takes a relatively long time)

One usually says that the compound nucleus is ¥relatively sitable®. This meansa
that 1t tekes many times the time 1t would take a nuclear particle to crouss the
nucleus for a compound puclseug to concentrate the necCessary energy on a coastituentd
so that the latter escupos. The crossing time is of the order % » 10'1‘ segonds.
The time of existence of a compound nucleus can Le inferred from R~ AE A€ and

a knowledge of widths of resonance levela. comstives Ntis of the order 10¥ seconds.

Tha.n is 107 times the crossing tlme.

;Find all the inforration in the
literature you canr atout indium

apdgcld resonances for neuirona.
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(2) t Res ces and Spacing of lear Ievels.
Having seen that the mechanism of a nuclear collision involves the formation
of a relatively stable "compound nucleus*, let us again consider the (‘r\ )‘G\ preocess

in order %o get some more information about nuclei. The cross-section for such a

i WTIAL STATE, oy STATE
process, we have shawn, will follow the == law for\J A¥wn,sepavate ( ) aﬁ‘ﬂ»d wdle
v neutcin + m. Fompoun Y

small, and will show resonances at higher “J° . These

rggonances can be related to the energy levels of the come

L e

pound nucleus, as is indicated at the right. Neutrons

-----

will be absorbed according to the —,\‘-}. law from very low

velocities until they have enough energy, such that the

sum of their encrgy <+ the binding energy of a neutron

to A becomes equal to the energy of some excited state g‘:DNCY?
' o
of (A *‘f\))the compound nucleus. At this neutron energy, WEUTROS
the absorption cross~section will show a peak. l
< GROUND
STaTE OF
A+

If the first such resonance peak occurs on the average, for, say, nuclei of
medium weight, when neutrons have energy of the order of magnitude E +» We would con-
clude that the energy level spacing of medium weight nruclei is of order S {(in the
region of excitation corresponding to the binding energy of a neutron). For mediuvm
welght nuclsi such "first capture resonances® occur at the order of 10 volta, Thus

the snergy level spacing at ~. 8 Mev

Find from the literature the first rescnances for nuclel A= OO to A= 1 50 }
tipate of the level spacing here. A 13 THE ™ASS WUMBER,

excitation is of the order 10 volts., Experiments dealing with such nuclei thut are

near their ground siates indicate however, that the spacing between energy levels is

of the order 105& lob volts at low energies.
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(3} Tweo Jodels of the Nucleus.

In construciiny a nucle:ir model we thus have at least two observations & account
(o (l)W‘rj-'erelatively stable compound nuclel formed in puclear collisioms? (.) Why
"does energy level spacipg decrease so rapidly with excitation enei:ry in medium or large
sizeu zuclei? (The altove discussion does not apply oo well to vy light auclei.)
The first problem 1s dealt with escentially as follows. no matter what the model. A
nucleus 1s considered to be a mass of close picked particles bownd by short mange
tnrcas.  the wteractions with noighbors are sir-ng. uLhereas in thé case of the slece
troasar-und the atom, these interactions between peiphbors are weunk and the collision
of a fust rx;oving particle wiih such un electron can be cousidured -pproximately as a
two body problem, in the case of nuclenr collisions this is not so. The strong inter-
actions act as shock absorbess, and if o particle succesus in colliding with a nuclear
particie, the ensryy of the collision is quickly shared by the nuclear constituents.
this energy is distributed and redistributed as the nuclear particles aov: about and
+t is only when, by chauce, vnough energy is concentruted on a single particle that
#¢ huve a “"disinteygrm:tion® and this particle leaves the nucleus. 1t is for this reasun
that 4 compound nucleus cin exist for so long a time without disintegrating.

n saswer to the second jyuestion, we shall consider two models. First lel us
vhink of the nucleus ae a wechkainical system with A members, each havelng 3 desrees
of freedom. This system will sustain vibrations and there will be 3A characteristic
frequoncies for there are 3A desrees of freedom in the system VUith a freguency of
vibr .tion 7/. theie is associated energy hv; . Lf the system i3 vibrating with
frequencies “2[ eand ‘Vj at once, i} has energy /‘)7/‘ + /’)7/5 . In general it will
LUvVe Qnergy

Gohe, + Cahty + QT+ e v+ Ggah T34

where the ({\S ure integers. It Z Yy #Vj ete., 1t is easy to soe that at
eizh euergies there wowld te more levels per unit energy: This argument was uali-
subive and quite inexact, but the basic idea is reasonnble. A\ system of meny uegrees

o ireedom will pack its enersy levels at hish enerzy.
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This type of conélderation can be refined somewhat. Bohr suggested that a
nucleus be thought of as a drop. Both nuclei and drops ars held together by short
range forcas {shortzr than the dimensions of the drop or nucleus) and the volumes
of each are proportional to the mass. So that nuclei are pot very dissimilar to drops.

One can ask about the possidle modes of vibration of a drop.

A

=, oo’ ' s .
TwE DROP A P eNTAL .
This can be calculated under various assumptions in a not obviocusly incorrect mapner.
‘ - k=)

All theories lead to an expression for energy level density of the form @&
but to say too much about F(K) would not really be justified. I%t can be said, however,
that resultes based on the drop model are in the right direciion.

The second model of the nucleus 1s one quite different. We consider a nuvcleus

85 & gas of protons-and neuirons in a well. We speak

of a temperature T of this gas. At T“O the - '

N .
nucleus 19 in the ground state (but some particles are ZiB ~

oy \ ground
moving rather fast nonetheless, because of the Pauli l/ 20May 61‘&‘\"9_

exclusion principle). If energy is fed in to the gas,

some particles get faster and T goes up. It can be

shovn that for a degenerate gas of the type here comnsidered the energy is proportional
2
to T rather than T » In fact, A
AULS L D Nt
4 I

vhere U is the energy,. A the number of particles in the nucleus, 3' the energy
in the ground state { ~ 19 Mev) and /&’:: KT 1£UJ is written u"l:z then the

3% — N ; ite Slefoq P +consT
[P 8 =2 2 T=200xT = _% It is customary to write .

where P .18 the probability of the state in question. Statlstiocally P is the number
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of states per wnil energy interval. Ve can thus write: .
I r"
. Number of states per unit energy = C <z V5 NI

(Thua — ;nf: m correcponds to the §(&) of
. the drop model) Applying this to aSmedium nucleus with 8 Mev excitation (z\m/ao )S‘wl@
we find as the number of states per unit energy C_¢2o or Co |08 » That 1is,
8 times what it is at the ground st;ate. This

the density of states at 8 Mev ie 10
is somewhat too high.

In conclusion it should be warned thut these points of view shouldn’t be tuken
for more than they are worth. They serve to indicate the trends. Essentially the
idea is thet a n}xcleus is a system with many degrees of freedom. Almost any attack

\
would show the lcogarithmic variation we have found. For more details see\ Nud zay

Physics. Parl B " = Bethe  §53  Rewiews of Mod.Phys. 9 April 1937

Make a table for level density for the following
‘ nuciei at the given excitations (in Mev) 'using the gas modedl

Be Fe Ag Ay 4 6, 8, 10
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CRAPTEA V

The Secattering of Neutrons

(L) TIhe Breit-Wigner Formula.

We have already spoken of a general formula for the crosse-section of a nuclear
process. (page_ & ) In the case that resonance levels of a compound nucleus are
far apart and we are interested in the cross-section in the neighborhood of one of
the resopence levels, the expression for the cross-section of an (a,b) process can

be shown 1o take the form ‘ s \'t r‘b
o
(_T—Co_‘b') :—T\:,ﬂq. (EQ"E‘\\2 *_P%‘

. T

This is the Breit-Wigner formula. >I\Q‘zw\d E o are the wavelength o and
R it 1

energy the incident particle. \:'—\" ie the resopance level energy and \ is the
width of the resonance peal at half its maximum value. Actually the above expression
for 3 should be multiplied by factors depending on the spins of the initial particles
and the compound nucleus. But, for simplicity let us consider these factors imcorpor-
ated in the ‘Q, and I\ lq_ & ||y are the partial widths of the resonance peak

and are associated with the probability of emitting "a" and *b* particles, respectively.

Their ezact form la rather complicated tut since the probablllty of emission of a

particle b of momentum P {(;.9 ) is proportional to F’ L is I .
0

The relative probability that the outgoing particle will be an "a* particle is

I3
rl

ei¢c., In order that these be true relative probabilities .'_.a.,.b =
t*Q,, D

(2 o

I{ should also be remarked that IR S T( = where
/Z‘Z‘ is average time of emission of a particle ( after the formution of the compound
nucleus. Thus the probability that no particle L' has been emitted from the nucleus

T e T@’tj’ri = 7 -t (,z" 7T \Zs 302 s) /el 1s
el ~—

andhthe average life of the
J

compound nueleus. It will be seen that 7T  , 28 well as the individual T‘:' S , will

up to the time

satisfy the Heisenberg relation [1 X v < ‘ﬁ, .
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The Breit-Viigner formula can be applied as it was given, t0 any nuclear collision
involving the formution of a compound nucleus provided that the resonance levels are
not so close together that they appreciably distort this one-level formula. It can be
applied, for example, to (‘T\.)’(S ) processes. Let us do a typical probleam. For
resonance capture in Indium E. =149 e. v. andO-'(Y\{ﬂ = 26,000 barns. M e .05 ev.
Find the number of neutrons emitted for each K e;m:.tted, given the information that
experimentally only &S and neutions are observed to be emitted {(i.ea T‘J',,,,*- x )
and that more U 'S are emitted than neutrons { R")PM) From Gl Tr,\m.m VM_(:: ,
T‘ \ X can be evoluated and knowing the value of p"n +‘ ¥ and that P‘Q’VT\M}
both | y and !m_can be evaluated. The result is that T\/«\ @ ,0008 ev and rs( o= .05 ev,
whence —\rl—%’-‘ .015. For Go\d) = = /.8 ev and G res is also ~ 26,000
barns and \“1'.0'7 ev. From this data, f:'.,\_ = ,0035 anQl PV ~s ,07. For silver,
B = 5.5 ev.f\;_gs = 7200 barns " = .19 ev. These capture reactions are

very useful in methods of slow neuiron detection.

(2) Sope General Congiderations on the Scatiering of Neutrons.

From the Breit-Wigner formula, the elastic scattexing

n. scaﬂ'nvmca "
. a4 ‘m
eross-section for low energy neutrons becomes ~ W M —é-z X Psv‘ a
<Q

\ Poul o \
Now )7\,,\ goes as 3 and P pO8S BE ———— or as "W,._ sot.

thid Vout Barws
Hence the cross-ssction is independent of enmergy. Thus one 19

would expect that T should be fairly constant for scattsring

of neutrons with energies less than the first resonance energy.

l:w \Kev vay
P I

The curve for scattering in hydrogen (paraffin) is given here. At

€=
low energies the crossesection does level out as predicted at about 19 bovn$S. But then

for very low velocities there is a sudden increase in G . This is explained as
follows. Since FM, is proportional to WA\ %* , O must go as ™* . In the

applicution of the B.V, formula thisw\ is the reduced mass of the problem and the
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velocities are the relutive velocities involved. For neutrons scattered from hydro-
gen,MN\ is therefore half the neutron mass, except where the hydrogen is bound in a
molc_cule and the relative neuiron-proton velocity p-ovides too little energy to free
the hydrogen or excite the molecule. Then the hydrogen effectively has infinite mass
and the reduced mass is the neutron mess itself. Since ¢° goss as yn\*, the cross-
section for hound hydrogen iz -~~~ 4 times that of free hydrogen. For slow neutrons
on chilled paraffin, the relative velocities are low and (O~ approaches -~ 80 bavns.
(3) Scatferine by s Potentiak.

The use of the B.W. formula for scattering involves the 'calcu;l.ation of N 'S
+nd it is often simpler to use the following approach to the problem of scattering.
Wie consider what happens to the wave function of a particle scattered by a potential
representing a nucleus. One advantage of this approach stems from the fact that quite

exact informetion on O~ is available even if the potential is but crudely kmown. A

2M - A
moving particle will satisfy the Schrddinger equation A'\\f T - (E‘ U)‘\V"O

wherev represents the potential of the problem. Let us consider av that locls eo:

} i

e _,o-cov\st ant 2t any
1

{

[]

{

AppACiIIiE
Aooul distoncz Fvove Tha
I0™"3 v, center o fovez.,

If we consider only s-scattering (zero amgular momentum), then the Shrgdinger equation

in spherical coordinatea is simply Y \V“.—l- 2,“{/'! - 2%“;.(8‘13)? V‘O

d* 2
or a-;‘z(V-V) * "ﬁi (E-U)(Y‘V):Q Thus for s scattering

y\\f (let us call it M. ) obeys a rather simple one-dimensional differential equation

N 3% (e - <3 L = which one would solve

(given a UJ ) under btoundary conditions \{f=o at infinity and finite throughout.
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Given an arbitrary potential, what can be said about ({ at sight?

® U
e f e Dy e B

7 < >

Aside from the %}\ » the ecuation reads wht = — CE "‘V) o,
Vhenever ( =- LI‘) >0 5 L' and (L have opposite sign. This means that the
function \Jd curves toward the Y~ axis., The concavity is toward the V* azis. On
the other hand (£~ J )<L Q) implies thut the concavity is away fiom the ¥ axis. -
In case E. - XJ=Q there is no curvature of the func¢tion (L . In a qualitative
way one can thus draw {{, fora U of any shape. {_01‘ course when am apalytical
expression for U is available, one can integrate the eguation, but in any case

our rough consideration cam quickly furnish information about tbe general ahape.]

. Consider the three situations, £ =0 \ E -0 , .a(o..
Take © = 1o begin with,
W0 JL o From s powl on, 0.
for Yoy YN i~ .
ynust bz ° 5

A vaahl ine
2 L e EU0 )
TS rapreseyls a well-bahwve
solulion, Rov athouginv dts.qvgz;\ ol o0, 1/‘ does nol.

The number of buwups in the region of the nucleus is determined by the depth of the

Bz, 5

well. The deeper the well the sharper the curvature and the more changes of direction
Uw  exhibits within the nucleus.
For © >C , the ecuation to be satisfied past R is (" + 2_'% Eu=0.

1<
The solutions are (QF a.’;—:\x a

and the sipne. This must be matched to the curve
within the nucleus { LL and.its first derivative must be continuous at the juaction.)
The wave lengih of these cosine and sine functions, it should be remarked, is the

‘ De Broglie wave length of the particle being described.

APPROVED FOR PUBLI C RELEASE



Q

APPROVED FOR PUBLI C RELEASE
28

For © <O , the equation at distances outside the range of action (<.

becomes UM = g.ﬁ.: (- E) tL .+ The solution is well knowa
2N v
o IVERes o
W= -E is a positive quantity.

~ linsar combination of these two exponentials would give a catenary that,growsi
rapidly with ¥V~ . Such solutions would have to be discarded because they are pot
well behaved at infinity. Saey the eneray is E‘ . andé U,
the curvature is such that the nmtehing exponential Uo : B vomTWE

solution is as in (L, . For a lower energy E; , the

curvature will be such that {; is the solution. Now
>

between E‘ & E-z there will be a sclution that does

not diverge. That is & is neither negative ncp “
~EBLE) v wEEY
“‘Btz

B reontiva
positive in (\ ﬂ:A ¢ w :

, but

is exactly zero. From thie vwe see that there are a discrele group of energies
giving allowable (non-diverging)\’f fuuctions in the case that & < Q .

Consider again the case where E >0 3 for this corresponds to the case of
an incident particle. Ve shall take up the scattering of such a particle im the
nuclear center. (See Mott8Massey for details.) The sine function that represents
the wave outside the nucleus will not necessarily seem to come (when extrapolated)
from the origin. It will have a phase shi.fto This phase shift will depend on the
wave function (within the nucleus) to which we must join the sine.

| ""E//’-——\QSM (2-.;“_.;_&\(- + ﬁ)

27 -—J\v
It can be shown (See Mott ) that for e scattering the cross-section for a particle

depends on the phase shift as follows

a- - < Tﬁ Z S VV\> B
. SCBt NCURS

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

k 29
When does one have oniy s scattering (i.e. the incident particle comes in \
. without angular momentum.)¥ If a particle would pass a nucleus at a distance b (if
it were wneffected by the nuclear force) and has velocity U™ at a great distance
. from the nucleus, then its angular momentum would be ‘n\'ub But in quantum mechanics

the angulan momentum is Quantized. ~on ‘\S‘\bsﬁﬂ Then b .Q. vwhere Q_
takes on integer values Jhe region D= © 1t H= -E- -\ gives the reglon 4in
which we have s scattering. We would have P qcattering for b between %’6‘

and 2 ’%’\S‘ . If, however, R < .\,j;‘.u.. there would obviously be no P scatieors
ing (particles passing aid "?-distances” from the nugleus would not be aware of itse
existence.) In this case there would be gunly s scattering. This condition

» . : o
can be statedthere is {olyf s scatterinvé"’;f the neutrons are alov.

For very low velocities, the above scattering formula is therefore seen -to hold
and takes on a very simple form. N\ is very big and if Q. is the distance of
the shift of the sine at the origin, the phase shift 4s 32 2T % . "Q." is

. pretty much the same for all low velocity paerticles. For very low veloeity, /SN

is big enough so thal may be substituted for Swn, ° In this case
(.3 _ﬂl‘_ﬁ—. o« AW2g2 ﬂBra‘-

. T3 > “wrus 7\& '

Given ] = .282 x 1071 (the classical electron radiue) and a depth of a ‘7

rectangular potentiul well of 10.8 Nev (the singlet state of the deuteron) and of

19.7 Mev (triplet atate), anewer the following questions concerning the scattering

'0of neutrons by protons.

(1) Are there sny bound states in each of these cases?

{2) W%hat is the value of %ar*?

. . - T "
It can be shown that the formula G;cat b XYY W‘*ﬁ refluces, in
. %‘I
the case of the existence of bound states, to o—;cat - ﬁ:'(%,r%} vhere

‘ €& 1is the binding epergy of the bound neutron end E the incident kinetic emergy.

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE
o L

Even when 2 virtual state exists, this formula is valid, tut here € 1is negative
and IG\ is used in place of & in the formula. In the case of the deuteron, the

triplet state has a bigger €& than the singlet. In fact the € for the singlet

{epin of neutron opposite to that of the proton) is so small that it is 4ifficult to

decide whether it is positive or negative. In any case the observed soutiering cross-

section of neutrons 1n hydrogen would be

—wnr\’- 2 A '
o= = ( 4 €+ 5 ‘} \éa.\"‘"ﬁ_)

The 3%} weighting of states followd from ‘bhe fact that there are 2.5\ states

of epin S, and in our case, 9%Q (singlet) and 3| (triplet) are the two
possible values of S . One can determine whether the "singlet" deuteron state is
real or virtual by scattering neutrons from paré and ortho hydrogen. It can be ghown
that the soattering for real states is about 180° out of phase with that for virtual
states. In para~-hydrogen, the spins of the 2 atpms in the molecule are antiparallel
and 1f oné were to scatter slo;': neutrons from parahydrogem, and if the singlet state
were virtual, the 2. atoms would scadter out of phase and the scattering crosse=section
would be Jow. For ortho hydrogen (the atoms have spins parallel) the scatiering amplie
$udes for the 2 atoms would always be in phase and the scattering cross-soction would
be greater. This has been observed and the singlet deuteron state is believed to be
virtual,

Before leaving the subject of the scattering of neutrons in hydrogen, it should
be mentioned that this scattering is the basis of an important method of neutron detec-
ti.oq. One exposeg a thin pare;ff:ln layer to the neutron fluz. The neuts get scatitered
in the paraffin and in eack scattering m proton recoils with energy of the same order
as thea-neutron enez“gy. One can detect fast protone with ionization chambers, Hence a

fast asutron Getector can be built &0

pates d: i alion

N g,\,m O\ SyemanTiem
-—-uuv

pavafém vad) _b'ﬁ'or,—j .
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In order to measure neutron energies, a collimating device can be used to allow only

forward scattered (meximum emergy) protons inte the chamber

=
=
paraffin - Co\\.m?i\’wsﬂ slos. .

The pulse in the chamber can be calibrated in terms of proton energy amd in this way

the origipel nesutron energiss can be aacertained.
5
It should be remarked that in general neutron =4-
scattering cross-sections show complicated variations 3

with energy, as these examples show. These irregu- 2

larities are related to involved resonance phenomena, ;i

which would not be covered by the simple theory of

I Barng '

NEWTRON

CROSS ~
SECTION

OF CARBON

this section. Imwidenially, one usually measures
total crossesections, Since the absorption cross-

section is very swall compared io the scattering

M U A Uy B

cross-section, such measurements give,in effect,

the scattering cross-section.

) tt of Neut .

If peutrons have energy of about |ZV or less, they have De Broglie wavelengths

of the order of Angstroms or greater. Interatomic distances are measured in Angstroms

and it might be expected, thefefom, that atoms will
interfere in the scattering of slow neutrons. This
“is actually the case, as we have seen in the discus-
sion of scaittering in ortho and para hydrogen of -
the last section. One might do an experiment of

scattering slow nsutrons from a orystal, in order

to obsgerve these effecis, for the/;regular arrangement of atoms in a crystal would tend

ENERGY Mev
U 2. 3 b | 5 &
Bar’ NEUTRON .
CADES~
SBLTION,
O OXKGEN
ENEROGY MEV ) . X
' 2 3 4 5 6

~adlron,

v e e e G -

CULR ~3

Yo emphesize any interference phenomena. If ons uses an apparatus of the fype
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illustrated, finding the angular distribution of scattered intensity as a function
of angle of incidence, it is found that neutrohs obey a Bragg-like formulas
Vi A =24 S
where Y\ 1is the order, 7\ the ncutr'on wavelength and (L the interatomic spacing.

For the first order this can be writien;

=

2mMNCL S

If a beam of neutions with a continuous spectrum impinged on a crystal, those neutrous
of the proper \J for the angle & would be reflected in a sharp beam at an angle
equal to the angle of incidence. Neutrons with other velocities would simply be
scattered in the material in a nomél way. One can easily oheck that the reflectef

beam really coatains those peutrons whose velocity is given by the Bragg formumla, by
taking readinge with and without a boron absorber in front of the detector for various
angles. The boron cross-section as a function of ‘\f is well known apnd from the oh-
served curve for O° va © one could sasily get one for Y vs © , and this

would be foun:i to give the Bragg relation (aside from complications dus to higher order
reflection, ete,) It cma be seen, therefore, that the combination of a crystal amnd
neutron detector can be used o apalyze a beam of neutrons for the velocity distribution.
In such a way, for example, slowed down neutrons from e tapk of water are found to show
a Maxwell distributionc.. It is found fhat microerystalline substances scattsr much
bestter than regular crystalline substances. The 7
explenation is along the following lineé. ihe

neutyrcn arrives at the first micracrystal. If

the Bragg condition is not fulfilled the noutron
can get through. Otherwise it will be reflected. Ther the neutron arrives at the
aext microcrystal and once agaein must pass the test af not fulfilling the Bragg con-

dition if it is not to be scattersd. Were there but one crystal, it wouldlavé but
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one test to pass. The more microcrystals, the mors chance to be scattered. Fbr a
siiuglo large cxrystal only those velocity neutrons are removed that satisfy the Bragg
relation: ¥or the microcrystalline structure, socnsr or later all velocity neuts of
the original beam will be removed as the beam moves from crysgtal to crystal in the
mierocrystalline structure.

There is one very imporiant difference between X-ray and neutron scatiering.
If the crystal is composed of 2, isotopss the Xeray séattering is pot particularly
disturbed, for xoras( scattering depends on extra-nuclear properties of an atom (and
these are pretty much the same for Z isotopes). For peutrons it is the nucleus
iteelf that enters into the scattering process. And nuclei are such that in addition

to determining scattering crossesections, they determine the phases of scattering.

@

& NEUTRoN :

Consider a neutron being scatiered by 2 isotopes.

For species @ the scattering intensity is propor~

tional %o OV . The scattering smplitude for WAVE
species (1) is JG{ . Write
’ e [ ygond . —y
= Bt VG-U% F_.gd‘é‘; R N T L
N 2 2 2 =

Thus 35;&5'62 have & part in common (they scatter the same for this part, the soe
called coherent part:) In addition there is an incoberent (opposite phase)partso
The coherent part does glve idise to intérferepce.. Tne incoherent part gives vise to

scattering as if from an unordered assemtly of atoms.

(For NaCl (using the (001) planed
oz;ly) nake a table of the N\
reflected (1lst & 2nd order) at
various angleg @

1,2 13,9,5, 10,20,30,90°
calculate the V. for each 7\
What is the relative intensity
of first & second order beems,

apeuming a Maxwell distribution

1 (T’ 300°K) zor the neut;gns)- ‘
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How deep will a beam of neutrons penetrate inside a crystal if the Bragg
reflection is satisfied? Let us take finite piece of crystal,
say a crystal of M pienes with N X N atoms in each plane. M AE209MO -

There are then NAMN X™]  atoms in the crystal. If there

]
tathez
were but one atom and its croscesection were O  the scattered %

D SpRtWg 1% 'q
intensity of a heam of intensity I is IO“ . This would be isotropic end at a

distance ™ the intensity would be -:\;1?0%2' e This implies that the asmplitude of the

scattored bean at this point is Ic‘z Since this is but an order of magnitude
J‘I ¥

calculation ws are doing, let us call the amplitude simply J_:f'_g_ . Now let us

estimate the amplitude in the reepforced direction. In this direction the amplitudes
add. Hence the amplitude is ‘I:]—:%—q: N= M This mekes the intensity %‘%Nﬂr’\z
Now we ask, "What is the width of the angular spread of the reflected.beam?" From
physical optics this angle @x :D. 5 where d is the dimension of the "mirror®.

In our case Q\ = N CL 'I'his gives a patch of "light" of size (2\'—;?& -

at the distance V= in the right direction. Thus the total energy reflected is
To- N2 M2
under the asswnptions a) that the crystal is so small.that there is practically
no attenuation in the crystal, b) that N is of the order of magnitude ¢{, . Vbre
the c¢rystal a perfect mirror it would remove energy I (N 332' It could certainly not

remove more. Hence certainly

ToN*M2 £ T (Na)*.

or T" A% < % whit 4oesthis inequality imply? It means that if p\ > \%5'- )
then the layers beyond M o-:.r % do not count. We say the beam doesn't penetrate
a 4 2
past M o layers. The depth of penetration, then, is Moa. or -%'_-, ~ Q. will be
c‘

2

_8 -
of order 3 X110 3 \78" will be about 2 X O } « This meema about 101‘ planes

play a vital part in Bragg reflecfion. This is of the order of microns.

If a heterogeneouvs (say Maxwe;lian)beam of peutrons is made to hit a laxge

perfec‘i: srystal, those neutrons of ths °right" velocity will be weeded outi right off,
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{(within a micron or so.) But the rest of the neutrons von't be transmitted 100%.

There are several reasons for the atten‘uation of even the *"wrong" veloclity nsutrons.

(1) The presence of isotopes presents s random irregularity and this would give
i‘ncohersnt scattering for all velocities.

(2) Another element of irregularity is the random variation of spin direction of
the nuelei.

(3) The crystal may not be too regular, but even if it were, the thermal motions
of che atoms would compliocate matters.

(4) The crystal atoms might absorb as well as scatter neutrons.

How to ob\tain very slow neutrons using interference phenomena. The Bragg
formula can be written N= 2&,-5-1[%--\'9 This ijmplies that N YO, Thus neutromns
whose wavelength is larger than twice the maximum crystal gpacing do not in any case
get tragg-reflected. ALl scatiering of such neuj:mns would be due to the above }
phenomena. Graphite has almost one isotope (99%) amd the siain is zero (atoms of even
atomié weight have spin zero usually). For graphite Z2Q = 6.69 lO’GCx\\.This makes
the volts of neutrons of this 7\ equal to ,0018 volts [:l volt neutrons have

7\"‘ . 280 Xans:l.At thermal distributions the peak is at about.025 veolts.
This implies that a pizece uf graphite will (in an bts‘w't\odﬁow
approciable distance) weed out almost the entire

\
\
:
spectrum of thermal neutrone. Only the very slow {
}

neutrons (shaded in dilegram) will not be weeded ouk : :
o088 OS5 NO\YS
(they have too large a N\ end can be scattered only by the 4 processes mentioned
above and these are small for graphite. Thus we can get a very *cold" beam using
thermal neutrons and a polycrystalline graphite *filter®.

Reflection of neuirons from polished surfaces. If one sends a beam of xerays

on a polished surface at a glancing anle, one observes a total reflection. (Most

substances have indices of refraction for x-rays very slightly iess than one.) The
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index of refraction of a subsf:ance is intimately connected with the scattering ’
properties of the substance. The interference of scattered x-rays and original Xx-rays
produces 2 change in phase of the original ray. This change of phase can be described
most conveniently by assigning an index of refraction that.'describes the change of

wave velocity within the substance. At any rate the same phenomsna of total rgflgction
from peclished surface cccurs for neutroné tco. ‘But the index of refraction for neutrons
is very close to one. This means. that a converging lens for xieu‘crone would have. to
bulge very much along ‘the axis to do any good i¥ it were made. of substances whers YT

is slighfly greator than one. For substances N which N<4) a converging

iens would look like the Qiverging lenses of optics. These lenses are possible ‘ip

principle, but because t‘h-l‘ is so small, they are not at all practical.

Show that if a continuous distribution of neutrons impinges on a microcrystalline AR
substance where (VA< M°>that the scattered intensity is of the order of that
expected from a non-crystalline substance of the same number of atoms for all

enerzy neuirons. Use the fact that the resolution of a microcrystal reflecting
¥

\neutrons of wayvelength N \ according to the Brage formula is given by "N ~“™
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CBAPTER VI

The Slowing Down of Neutrons

(1) The Change of Direction & Eperpy upon Collision.

Suppose a bsam of neutrons is made to hit some hydrogen. 4 neutron loses on
the order of balf its epmergy per collision. At this rate a million volt neutron
becomes thermal in abou? 24 collisions. (Hydrogen is particularly good for slowing
down neutrons, becaucse in addition to its being light, it has a high scattering
crosse-section for neutrons; <~~~ 20 barns compared to 56"4 barns for other light
avclel)

Assuming isofropic scattering in the center of grevity system, let us investi-
gate the results of a collivion of a neutronm of velecity W against an atom of wsight
A at ragt. The velocity of the center of graviiy is '\-\:YR . The velocities

of A and W\, relative o the center of gravity are v and 1\:1 respeciively.
t

‘&

In a scattering process, the magnitudes of

@__\:L___a. .

ait/ ITn e
cso\'\'&'R R

velocities in the center of gravity system

don't change. Only the directions change.

Going back to the lab gystem, we can get S ! the resultant vsloeity of the neutron
in the lab system by adding (vectorially) its wvelocity in

the center of gravity system to the velocity of the center

of mass in the lab system. From the diagream
L > NP A a oS e]
E~enas mw_m,.[:ﬁ +1+2A

Thus the ratio of neutron energies before and after collislon is
g/ _ A*>+1+2AcosE
T (AN
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It should be noted that € is an angle in the ¢. of g. system. If (@ is

1Y

the angle in the lab system between initial and final neutron directioms, it is

easy to show that

_ Accse .
COS@”'(*Az - | +2 A0S =

(OS> is (unlike COS® ) not equal to zero, but is some positive number showing that

colliding particles show a tendency to preserve their direction of motion. In fact,
T A cos® +) L2simpde . 2

©0SB= )T issAms AT ~ 3A

showing that this tendency to keep going in the original direction, is greatest for

collisions with light particles, as expected.

/
let us look mors closely at the formuia for % . The maximum and minimum

values ares A+l L2AC= 1 for =0 Cp(\a(‘:\'\(a\\s ~o colision)
(A.H\z . (AH‘) for @= T (hzad-on colhsion)

For collisieons with hydrogen ( A«..-.D the limits are thus ﬁ_ and zerc. For heavier

atoms )1t is, of course, impossible to bring the neutron to rest. In fact where A

is big | (%’;L‘ > = \— %- neglecting higher terms in %A- » Thus for

A=100 y the biggest possible loss in energy is 4% For A‘ 001t is 2% and so on.
Ve would like %o lmow now what is the relative prcbability of a neutron's coming

off with any energy E/betWeen the limits Jjust descr’bet. Let us assume that the

scattering is isotropie in the c. of g. system.

What is the solid angle betwsen & and
2Wswmed8d 5w
S+dO It is =T — cle
From the formwla for E/ '; ' A
2h SMede=-E (Hm'a-dP

aB'= - B iRy

where dP is the probability (Zl Slq\gde) that ithe angle is betwwn e ?-h'\d 9-\-@9
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- ,
or that the epergy E’ lies botween B’ ana E/+dE thus
' 2 /
4A E , .
Thus the probability of coming off with energy E ' 4is independent of E !
. <
The curve for the probability of coming off with MB
energy B/ as a function of % is shown at P : . '
the right. For hydrogen the figure would be a
square with a corner at the origin. s ,/
=y 1 B
¥hat would be the influence on neutron energy of a large number of collisions?
It is more convenient in this discussion to comsider é eéog E . This comes from
‘ .
the resylt that E/é is independent of BE . 1In fact since the percent loss in
ensrgy is on the average the same, the neutron's energy looks like this after
collisions |,2,B.v.. ...
0. } { E’O
$e 55 )
.~ ——E
and in each collision it is 1035 rather than E. that chaiges by a more or less
fixed amount. Let us call = E and evaluate it.
Juk ¥Elg g 2 a
™Max toq B AN JE
It is [09 g_, » P{E')C‘IE which is 9 =/ "4 A -E-
4 . " ‘-
T (A—‘A *h =
This is a fairly simple integrel and 1> Y A+l
- ‘ Y A (‘ A /eos i pay
\? 2 : Al
For carbon, for example, A-.-.. 2 & ? is equal to o!58 For hydrogen ‘f_‘._._\_

’
This means that for hydrogen -Eé- is on the average é—- « To reduce a 1 Mev
heutron to thermal energies (%6 e.v) by meane of hydrogen one would require (Dt__’) ‘3”0!,:“5

collisions. About 110 collisions(ﬁ%%=!'O) wodld be reguwced i, carbon.,
= H> He' Be® O% TS

Calculate ?
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(2) stributi N from a Point Source -- Eapsrimental Methods.

It is because neutrons are slowed down f)y collisibns, that the treatment of
. most problems in which neutron fluxes are introduced into media requires some
knowledge of the nalure of the slowing down process. The simplest question to ask
is "Given a point source of monoenergetic neutrona, what is ile steady-state spatial
distribution as a function of energy?® The solution will be basic, for any source

distribution can be considered a superposition of point sources. Consider a R&"&

source in a large tank of water. For hydrogen, ~
the scattering oross-section is prticularly large N WATER|
THE ™MEAN
at low energies and so a neutron does most of its FREE PATH
' DECRE ASES :
traveling on the first one or two of its paths if As THE =RNERGY DDOES

it starts with 106 volts., One could investigate the distribution of neutrons
from the source in water by using detectors sensitive to different energy neutrona.
For example one might use an indium foil and get a plot
? - - evar Nanon  Cd-In-Cd
WATO
such as the one at the right. The :

Tdw M

c¢ross-se¢tion for indium is shown

BARNS [~ at the left. To make the indium
o0 (o} F
o more useful, we preveni i*s respond-

. . i
) ing to thermal neuts by surrounding
o v L B AIRWATION
9000+ ‘ it with cadmium foils. We could p)
2

use K\\ foils { ~\ev resonance

epergy) too. e could use a 0

d-In-Cd" sandwich and subtract it

from the simple In (unshielded)

activation in order to get the distribution of thermal
neutrons in spuce. To detect the spatial distribution of AC,T\NATIDN
neutrons of about 50 volts one would use iodine. One

would geffor the detectors mentioned a set of curves like

that shomn. The curves hers are all normalized to umit O el

activation at T®Q.  A\ppROVED FOR PUBLI C RELEASE
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4)
am——
(3) Distribution of Neutrons from a Poini Source - the Calculation of rs,

We would now like to solve the following pProblem. A point sourcq of neutipns
of energy EQ is located in some mediuvme. The neutrons get slowed down by dollisions
upon leaving the source. Consider all the neutrons of eneréy E. How far away fiem
the origin or source are they on the average? What is their 7"-"" ? o

Consider a typical path. The resultent displacement

B il
V‘:Q\-FQL‘("\\ BWatty vy v QM-

& — 2 )

and r - 2[ +/ezz+.“\||,( *.im
- om - e

+.' 2. ( -e' * Q&"‘ 2." Qs + LI LISY I + E-z‘ E3+ "“”)
We would like to average this ex¥pression, and shall do one parameter at a time.
First consider all the lengtha Q fixed and all \‘

, . | L Pste
the anglea (?) fixed, but not fixed as to¢(eee ’ B\"Q\Q "

. ' e plavne
diagram). Later we shall average over various .- T o ’w?e
A { LKL .
lengths Q, and angles (?) » but for the moment THE B~ / ) :
or MAY

let us do this part of the averaging. LI ‘Q&rﬂ\(w HERE o RS
' CIRCLE.

Under these assumptions we should like to prove that

ey A A 2\ A )
57y = Cos i2 cos23 Cos 34 where COS V'S is the cosime of the angle
be twesn ‘zr&z o From the diagram at the right
A A A B A
CO5 14q=Cos 13 cosaq + sl spwi< cos 19
on the average COS{A4=0 (As 4 m’i‘a’ﬁzs about3)
Hev\cz Cos {4™ (o5 (3 (osFd and now ve

TAKE THIS AS unhiT
K= lENG TR

repeat the sauwe scheme and again en average of a

diedral angle vanishes » $tn {2 Co5 132
m = ;;-5—5_.& COS':{'\B . But COSl?- 158 . & ' 4
a constant. Hence in general, m“wsacosj.m...&osa \L"S'?S—) _J -mg aﬂabeb
where SL,.«r Q )ﬂ_m IOV -8 4 -3 succes@sre vectors. Cosﬁa cos%Y | | g_gk‘?ﬁ%ﬁgacgw

334 \S THE DIEDRAL ANGLE
\BéTW&éN PLANES @ g 34
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Now consider the rwan free paths. The probability that 0r liecs between ,Qr.
I —— oD &
and f+df is Zﬂ«- ~ From this we can get L= So Re ¢ TNe ‘i\&‘
2. a2 ¥ N
and (%= % Al These integrals are of the form (°° -t N
Cr (o ‘e"l < dle e oXve dx=-==

v -o('“"
and wo find ‘Qr=7\v. the mean fres path (this is why )\‘. can be called the

L]

ey 2
mean free path) and 4Q\" = 27\, .
Recalling the results of our average over angles and using these last results
A ey . _ A .
for the averags L's ) V¢ for the set of angles B'L‘-ﬂz) 823—‘-' 2/5 e IS

- A
i =207 + 17\2;.*...‘.17\,:%2{7\\7\,‘(053 + WA Ce572¢0523 +min
* NaNa cos 4 m']
In the case of hydrogen this calculation can be completed in an exact way. In general,
hoﬁever. i¥ is pow convenient to make some approximations. Let us assume it tekes
a large number of collisions to produce a small change in energy. This is more true
the heavier the atom collided with,

The angles = ,{; ete., may take on all values from zero to T(‘ + To deter~
mine ’F"‘ we must average over the various possible angles. Notice that the coeffi~
cient of 7\‘ sw—;’ s |

1[7\1(05 B+ Nycos 3ecosad + . 1

But since Cos® 3-3?:,;\ and since later termms comsist of products of an increasing
number of such cosines, for A large these terms rapidly become small. One would need
but the first few terms in the series to approximate the coefficient of ?\‘.Further-

more, the first few NS will not differ appreciably fram A\,. COSf. is on the

average '5&'& . Call this C.¢psidcos3™ is C* on the average. The coefficient
of N, is therefore 2N, (C+ c2+ C3¢..., )  There will not be much error
1f we consider this an infinite series. The true -;“-"- is then m 2
2AR FIRE + w1+ 2NF T AN S ‘%Z:Za, n;
This can be written as on integral over the /\'S rather than a sum.
Tia /:%{: 8 pEde 2 o o) dE | VvauD “D‘i
A )ee F RN E A=

whaeve G“'chE. S ?’ba %
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4=

1t was mentioped thut for hydrogen the formula for r? could be worked out exactly.

. vhe recult is

G, Q X -&
o= 2N (o) 4-2.7\"("«) 4'2(0 NOOdX “'17\(03&37\00 e z'd)( +2100) /\(&\@A 2
. = - SeX a, O~A %
T2NG So AR Fodx Y go N dokfo N ud e “dx

B B.
where = — 7 = =4
frowm about 1 vo.t (chemical banding forces no longer play a part, to - 10 KV,

O~ for neutroms in hydrogen is fairly constant. For slowins down in this region,

1% can te shown thut {becsuse /\ is fuirly constant).

L = - 6N leg,
This is derived from the complete formula for slowing down 1w H\{dvoc‘zv\,.

Using RaBe as a neutron source in a tunk of water, we find the following

data experimentally.

.
dowice, to .h resonance { > 1 volt) 2 =276 b cm*

. " L | » { ~ 50 * ) F'=)b2.zcmz

Using the \:O\‘mu\a for “Tg'- et hols g{gvv-\ Qv ¥o AKY  and subtracting

i ! ~ .
of 1 from thit of the "I resonance neutrons

THRA, —CHIY = 67 log B2 = i Gom®

L\l

wince (oge’:')'()is M. 3,9, this implies that 2\ = .61. lIn this way, one can get
the mean free path in water at energies from L to atout 10 &7, uhis is an averuss

wean free path ind compares well with actual appropriate averazes of differentinl data.

T v A 2 ° L 5 6 7 8 9 10 1 12

A(Rn) 1000 960 890 730 630 500 390 290 .10 150 110 8 67

v=sTaner Evam pcm‘\'
SOUNCE M CcmM.,

" A T A e A A= ARty Tmdwveed v
. ACRR) 57 3 29 23 19 16 12 10 Dateclovr

i
srom this data calcuiate '(-‘. You might have to extrapolate to greater distances.

this is best done Ly usigg the last 5 or 6 polpig g & g’;gy_r_g\,gg_n\g_lg;g,__~
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(4) Distribution of Neutrons from a Point Source ~= the Aze Bowation.
In the last section we have discussed one description of the space distribution
of neutrops in a tank, Namely 2 Ve shall hers discuss another. Call GSLQQE
once again end asswme that neutrons are fed into a system at energy qu within a {:ertain

region. We shall be intereslted in the space distribution of neutrons of various ener-

gies. Accordingly define a neutron density \{X \),E)G)de which is the number of

peuts per unit volume at X,\\,Z 1o energy range € to & +d€'
ConsideY a volume element and the neutrons in it in the dﬂ
given energy range. Pey unit time this volume will receive B ’.“T X
neuts in this range from 2 sources. First from diffusion

of neuts of this energy from other voluras. Second from the degradation of neubtrons

of higher energy. Consider first the diffusion. From kinetic theory the diffusion

coefficient is
¥

™S
( where we recall that

D 3(1~cG3B) 3—3-3-3__)
and is used as follows. Consider the face dﬁdx of our volume element. The net

nunber of neutrons in the energy range dé diffusing out acmes this face is
e R
oNn
: dé ‘ D ( 2SN dg C\Z ' per unit time
The number of neutrons diffusing in across the opposite face is
de- D ( -+ 3 T\ dx)dﬂdﬁ
The net number entering the volume across this opposite pair of faces is
1M, |
de D 5¢3 cudydz

and the total number of neuts in the energy range de diffusing into the voiume

per unit time is

D 92 kA de per unit volume.

¥ ==
Rl Y )

N

15 called the TV&Y\S‘PQV‘T ean ez PG'H’L.
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Next consider the other source of neutrons in the energy range de atb e
J
.X- would be the number of collisions of a neutron in upit time. ? ”d' gives the

degradation of & in unit time. Consider the interval & be-&-c\é oanané dx\e

' ?'}_{ sTHE vELoeITY
S -t TN Wit wWiteH
B NEUTRGR
el | l¢+ae PROCEEDS DOWN
THE ON\S,

At & the number of neutrons per unit volume moving out of the mange in Question

in unit time is

? '\:663 N e

Similarly per unit volume per unit time

D e rde5 (R F>.]

neutrons enter the energy range in questionat & < d & .

In the stationary state thers is no net change in Y\, at any point. Henee
considering both "sources” of neutrons, AU
DAW - a (%\)“3 o W\"IC"’Q'D'B(._g;D
This is then the slowing down differential equation for the steady state. It ias often
more convenlent to deal with
}‘J«t\- ':3% the so-called slowing down density
rather than with 1tself. The reason for this name for % follows from the fact
that, as was noticed, ?'\f is the velocity of a neutron along the & axis. 'n?.’\
is then the number of neuts per unit volume per unit time crossing any value C on
the € axis. In the steady state if % is integrated overall space the number of
neuts crossing any ensrgy value e per wait time is certainly the number of neuwtrons
fed into the system in unit time, a constant, i.e.f%(&) dx djd'ﬁ == oonstant for

all & , Thus % is in some sense a simpler quantity than Y\ . This is ipdivated
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e A

womewhat bLy the differenticl equation we get if we write our diftsrential e :u.tion

in terus of (& rather than Y\,

(¢ .
s+ 230
3 ? G-~ €
BA
Hleve the differential operators operats on % only ~- no longer on )(é‘)}\f etc.

In addition to transfoming the dependent variatle, let us transformm the independent

variable & according to WHERE T 1S

'd ED THE
T= 3 (l— RZ(Q3 6\72 NG T 1T HAS
1" 3A) DIMERSION &
(BN GR)E

a

a simple aad weld kpown classical ecuation (recali heat conduction).
€T
. T

und ’(:' ls seen to correspond to € , the time in this ecuation. lerhaps a better

thy ’2" is culled "ge“. ‘ihe heal conduction ecuation is AT:

reason for the vame is that "at birth* the neutron has enerycy €o - As time goes

on €& gocs down and the integrar ¢ increases as the "time since Lirth® or the "age?

of ths neutron increases.

Consider a substunce where TN\® constant.
To use our age differential

what is, in this case, the relation between
e untjon ‘we must specify bouundary

i and _the sctual *.ime from birth+?

conditions. 4el us do the point source

probaen to berin with. Given s point source of neutrons of eneryy EQ in an infinite
modiun (this corresponds somewhat to our experimental tank of water with the npe
cource in the middie.) what is Y\ as a function of & und position? le first soive

the age ecuation for C& o {Let us torrow the corrcspondin_ solution of the heat

equation, which is mth@er we;l-knov%‘n:—é. [TSN\AL.\.. For T=0
e T 4T WE
Camne % T biqger HAVE A
1the colution is a Gaussian function of v . Q \[ 8'FUN(T\DI
AT THE

18 the number of neutrons of energy EQ intro- ORI

duced into lhe syste. in unit timeaethe source

stength. The solution clearly shows that as E  decreuses from Eo {i.c. as
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7~ increases) the space distribution for. the energy E gets broader and broader.
This is as it should be. Fast neutrons are distributed close to the souree. Slow
neutrons are comnsiderably spread out.
It was mentioned befors that @ has the property that (@ dx dydz =comsL.

Iegt us check this with our particular solution

41Q x ¢}
«t (oo T8 (T

From Q calculate Vel

= Q y S CD‘ﬁStaY\t and see that it is the

o0 - Y2 ﬁ same as our value of the
since o <z 7( aX =

<A 3/ 2- lprevious section.

This establishes that Q is truly the source strength as we have asserted.

It might be remarked that this Gaussian distribution for Cﬁ of a‘ particuler ’t
could have been azfrived at without the detajled calculation. Let us consider W\
instead of Cb (The space distribution of % and Y\, for the same " is the same
except for a multiplying function of € ). The spatial distribution of “¥Y\. can
be arrived at somewhat as follows. Consider the x axis with the source at the
origin. Ve are interested in the distribution Y\, as a function of 7(, for a
particuiar . A particular T means @ particular number of collisions since birth,
or a particular number of path lengths travelled. If the number of patha is a large
number and all mean free paths are small compared to the total distance travelled (and
such is the case) then we can use a theorem in the study of large numbers which says,
*That if one sums a large number of numbers which are equally likely positive & negative,
and whose magnitudes are all less,by far,than the sum of their magnitudes, one finde
that the valuea of these sums (always teken for the same number of small numbers)
distribute on a Geussian ocurve provided no additional information is known about the
gumbers summed.” (This theorem, incidentally can be used to show why repeated measure-

ments of some physical quantity like a length fall on a Gausslan curve, provided ’chat
the errors are what we call random.) 1In our case the theorem implies that ’n*,,le ‘t

where W is some measure of the width of the distributiac-mo Similarly for the U and & -

directions. Hence "M\ T Y\y N goes as & w® °
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CHAPTER VII

The Distribution of Slow Neutrons in a Medium

(1) The Differential Equation for Siow Neubrons.

To find the distributidn of neﬁtmns of yvarious encrgies in a medium, one
usually deals with two separate proﬁlems. Firdt there is the slowing down problem,
and this was dealt with in the last chapter. Bub the neutrons do not continue to
got Slowed @Qown indefinitely, for the nuclei 'ﬁ;ey colllide with are no.t at rest, but
have vibrational energies corresponding to their 'cemperature.. The neutrons eveﬁt.
ually come into thermal equilibriuwm with thesé nudlei, and show-a Maxwe.lian distrib-
ution corresponding to the temperafure of the medium. Clearly the problem of the
distribution of these slowed down or thermal neutrons is quite distinct from that
of the distributions of the neutrons being slowed down and must be handled by
separate methods. .

In approaching th::Ls second problem we ask, "Given a souxce pf therimal newts,
what can be said atoul their distribution in a medium in a stationary state?® ¥e
seek @ differential equstion as our description. Let N (x)\,))z‘) be the
density of thermal neuts at % )\j’ #Z . Consider a unit volume. T_here are 3
mechanisms by wi:ich the numbér of neutrons in' this volume change with time. First
the diffusion. This gives a net contribution to %% which is DAL . Second,
some® neutrons are capiured or abseorbed®, This nuxﬁber will be proportional to " .
We write "“%\' Lastly we have th;ose neutrous generated in the volun.x by the slowing

down to thermal of fast meutrons. This tem is Cg-r the value of C& at this place

for ¥ corresponding %o thermal energies, Thus the desired differential equation is
OTL- D = ¥V eitons
D & T T Tk e
which is zerc in tho steady state. Here we must put in the proper space dependence

*This term should perhaps also have been considered in the slowing down process.
But whereas orders of magnitude are such that in the slowing down, the consideration
of absorption is usually a refinement, here it is a necessity.
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of “(&-( as determined Trom the age equation before we ettempt to solve this squation
~ < DAY
under the proper boundery condition. Recalling that D= ‘g the equation can be wr:.tten

3N 3¢~ m 347
-~ “+ =Q v - =
Fa'sy 7\1‘_9 7\\" | QX A= -+ T Q
for the sTeady sTefe . Haue 0= \]*V—- dnd s callad “i-h'z affusion lengtn’,
¥Q 15 often. winlfene DN and s e ca.p'f'ur‘z QAN 6}'% path..
VR
For a point source of slow neutrons, the solufpion is YL?A 9___;:_ wpere A

i8 a normalization coefficient., For a poini source, the last term in the esuation
1s zero everywhere in space (except that we have a delta-function source at the origin. )

In orxder to evaluate A ,» consider a small sphere drawn about the source, which we

assume emits | alow neutron each second. Then for y << Q_ 3 NE B and the flux

r
through the sphers is D X4TIW2& C.,\Féd(&) which must be egual to one. Since

D‘-‘- ~3 ~ this gives Az m One can check the now complete solution
of the homo o $1
gensous equation .__VZQ (T nome U |FFuS| o
3 < lengti! for £ stems
= g aw V- fvom s vole 1 s

SRPressiory.)
by substituting into

2 423 3m | AL
P + oy . —~ NS (&’Q.C&ln\s 2= T>

This ghould, of course, be zero, and it is. -The point source solution is particular’y
important because any source can be represented by a proper assembly of point sources
anﬁ. the corresponding solution would be a superposition of these peint source solutions.

To solve this equation for i '
o) o for a point source of fast BLEMENTARY

g VOLUMWAE GLQMKNT) AV
WHERE SLOwW ﬂgumoﬂs
PRE MADE .
. wWRAT 8 N\ FOR
SWOW NEVUTRONS
6 v HEREYY,

A L %

el

neutrons, one can set up an integral over a distribution

of slow neutron point sources all over space ihat arise

from the slowing down of the fast neutroné. Vie agk

*Bhat is the densily of slow neuts at a distance U from C"Qﬁ‘\' NEUTRON
SOURCE,
the point source of fast neutrons?* At anpy point there are %"’ point sources of

-2
slow pmeutrons per unit volume where %Tt‘@g‘ﬂ'—f)% @ 47T where 4\‘;
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corresponds to thermal neuts. But for a point source of slow neutrons at ( P) @)

the slow neutron density at ¢ is I-'-E "TFI
3 <Z
N EDIRv 1E-v

Snheve, I?Lﬁ?\==1[;;»+v'*—2¥9fubséa

‘Thus the density of slow neutrons'at ¥ is given by the integral

20 f° -~ W 2 g:.\
jsi:o(p:ofe:o(“ Ty IF TqTRY ‘%{:‘F\"

(2) dition the Differential ation.

ap P?-St’n@d@dﬂb

In order to solve the slow neutron differential equat.ion. one must know how Y\
or some function of Y\, tbtehaves at the spatial boundaries. Consider a finite
convex medium with a neutron source in it and free space everywhere around it. What
can be said of % or YL a1 the bhounding surface? To a first approximation one
¢can take % or YL equal to zez:o., This is made o mewhat plausible by the argument
that free space acts as a perfect sink. 1t absorbs all neutrons and returns none.
It therefore acts as so heavy a drain on the neutron density at the boundary that no
density can be maintained there. Actually a more refined calculation will show that
a more proper bhoundary condition is the vanishing of Y\ or (6 at a surface 0.66 2\
away from the bounding surface (where >\ is the neutron mean free path in the radium).
Adn even more refined argument leads to 0.70 7\ as the distance of this outside surface

from the true boundery. We shall consider at least the first refinement.

Consider a plane btounding surface. We shall assume FREE %
sPAceE % /)}f
that in the neighborhood of the boundary the neutron density : 'rt\\ ”f “
O
\‘ ) -~ e '8 --
N\ is a linear function of distance, i.e. ' e A ==
, S V24
= P("ﬂ-'r x) ———— }} ' l 2z
-4 't e o z'
, r\\:\'—sz’
Let us now calculate the neutron flux @ at the bounding surface. M
OENC=
4

Cerbainly it is gradient T\ X ( the diffusion coefficient) yhe,

— nY
q’ -~ P ¢ "3"" for p= % in this problem.
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The flux can, however, also be calculated as follows. Consider a unib volume at a
distance A from the boundary. There are ‘T\(x) neutrons here. The probability that
a neutron going off at the angle @ will escape is (—:‘.(Egé 9.7\ ,t
Assuming that neutrons leave this volume in an isotropic fashion,

the number of neutrons crossing the boundary per unit time coming

from this volume is

X
2 . J — —
z go Plrx) L @ N%B8 sgde .av

Consider that the volume has unit area perpendicular to the X axis and depth d)(
Then to integrate the above expression over % , would be to find the total amount
of neutrons coming each second to the surface from an infinite column of upit crosse
sectional area perpendiocular to the suz*facé. But this is readily seen to be the flux,
or the number of neutrons crossing unit area of the surfaoe per second, provided, of

course thui everything can be assumed uniform perpendicular to the ?C direction.

Hence / % °Q %) ...._7\_7.(_..._
T wrinns (
"P“ zfo' go P+ %) nE ®e Ingde dx

and writing //== COS® this integral is seen to be a rather simple ome. The solution

gives ¢ = E—RC 2 + %"3

Equating this to our previous result for ¢ (: P&_;I) we get ¢ =%‘7\

But &{ is the X intercept. Therefore we have shown that Y\. vanishes at § distance
%)\ outside the bounding surface. This is the boundary condition we sought to
d.erive. 1% is to be noted that this boundary condition really describes “Y\. at the
boupdary. The 72X intercept is used only io tescribe this. In particular'. the
boundary cendition does mot mean that <\ venishes at X'= -5‘.7\ and ie negative
beyond that distance. Our conclusion is simply "The density at a bounding surface

2 ¥
behaves as though Y. is a linear function of ¢ venishing at X< "‘3—7\ .
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(3 ihe Diffusion Lepgth

In order to be able Yo use the slow neutron differential equation one must
know the value of Q +« To measurs Q in the case of water, for example ,‘me can

use a pile and a tank of water. Neglecting end effects this is essentially a one

YT
. . WATER
dimensional problem:az I , l TRNK
m. 1’/" :
o xz ..0 ) //

and the non~diverging solution is = AEI One mekes measurcments with and
without cadmiwn separating the pile and water tank to ascertain (by a subtraction) Yt
for thermals as & function of X in the water. From the data obtained for vu
we can evaluate )2_ for water. It is<~2.8 cm. For paraffin we get a rosult that
shows that the absorbing mechanism in the case of water and paraffin is the sare,
hydrozen capturé. {i.e., one need assune no carbon or oxygen abéorption to account
for the observed Q_‘S)
There are other schemes todtermine { and related constants for H,0. Some
are described in a paper by Fermi and Amadj (P.R 49 853’3@,0 shows a temperature dspendence

and it is sometimes of interest to know this temperature dependence. For water it

has becn measured and QF 2.6Q + 0. Q06) T hIﬂ dogm;z,s&-r\‘\‘xgvad\e

Since QZ = M— where /\ is the capture or absoré tion mean free path and
~ '
AN is the transport mean free path ’T:::‘ ¢ P 4‘\))% can use our information about {

and )\ to calculats A\ or vice versa.

[Calculate I\ from information aboui . and /\ for water. Pe2.B8(m, and N o 6 I j
where OF at 2200 "Yec = .3Lb. 2:00 "“‘C corresponds to W in -mmi sk for
room tempemtures. But if thero is a Maxwell distribution U°% F"r Wz, \a (GKT)

as one can easily shor for water at room temperature, we would want OF correeppndins

to N not Ve Calculate n&,/\ gnd fipally 2} o bhe transport mean free path,
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For a substance such as graphite, the procedure of last rw.ie does not

sufficiently represent e one-dimencional problem for us o obtain Q. by ceasurement

THE BLOCK 15 12
?t—\ag\,u‘V\FD PRALT~ ~,
¥ 3

‘N""‘i“\yv \9

as simply as for water. ( ,Q. vecomes a length of the orxder

of the dimensions of the medium.) One must solve the 3 dimen- olx: e:ms /
sional probiem. Consider a block of graphite as that shown at l ‘
the right with a fast neutron source placed at ( whuly O). i @~
It can be shown that the solution of the slowing down equation L 300
aq - %‘-Zac =Q \P”“w;\YQ}
Q\ Q/

N

is)in this case ‘ -E Tpt(y%-g-s‘) il '7]’51\,
Q <z SM 'ﬂ S

4C
CL 2y T nsei
where (3] is the source strength. This solution is obtained by fairly straighte

o0
)

forward fourier nme thods.
Experimentally it is found that a Ra-Be neutron source has 3 well defined

neutron energies.du a sourcz Ywes 3 Super‘posed. astvibulions.

% T:"‘d\u*“ Rasorance /CT\'\OV‘NM Rasonamce TIodwxn. Resonance
N 15,0 130 cm* /83 5<
) 2.3 340 396 268
3 15.7 &5 2067 736

his table gives the vaiue of ‘¢ for the 3 components in graphite at different
energies, and the # of each component pregent. Sometimes such data is given in terms
of the range Yo which is equal to :.\Yi‘.

From the numbers in this table, it is seen that at 30 or‘-.’sb,centimeters from
the source % becomes very swali. Then it will be true that the "source*® tem in
the slow neutron diffusion differential egus .. .n will be small. The slow neutron
density )'71. will obey quite closely

Adn - L =0 at such distances from the source.

‘Q'l

Because of the boundary condxtmns one assunes a solution of the fom

)
A
n = Z_, N (2) sim -% Stw “zf

V'S"\
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Substituting into the differential ecuation, we get an eguation on Y\ m(E)

5‘3.11"2‘:5-‘:. ~V e+ -]st =0
< e

This is of the form

'aﬂ\. l -
¢ vs = TVys® Q
dza* bes
and the soiution is vwell knowm N & I%vs of which we omit the diverging
.
solution @. %/b")so that ~
oL
" brs nry LY
o = Z;_-._Z Sive ~3:‘5“"' Y
f5=1
where I G P WL A
s
Bec . uae for \")S > \ the solution for ¥\, 1is one quic i;damped, experi-

mentally it will suffice to compare activation measurements by slow neuts in such
a column with the Ve%$=| component,
- {21\1 -— . ,
n= g Va='z 2 Sw»%-\-’lsw»%
Yor a typical graphite sample, wa have constants
p=1.55/ . b, *28.38 Gz 150.49 cm,
(we must add 2;(%7\ to ‘o Ep.SlJ so that the effective dimension) Q= 050.49+g—)\)
which happens to te 153.29 cm ( 7\‘: 21 cm)) This information and some good measure-
ments wiil allow ws to fiad Q . Since Q, depends on density, by convention, Q for
all samples of graphite (graphite is tested by measuring its ,Q in this way) is ree-
duced to the value it would have at f * 1.60 in order that one may compare different
samples of graphite and make statement. as to their purity.

Here we briefly record some of the results obtained in this wey for 4 common

ubstan o

e [< Ao, c. 2 YN
H,0 Lo%—%‘ , 0334 xloaq 2.-95 owm. O/14q2 om
b0 ) 0331 100 80
Be 8 1235 3 .87
- o2 687/ 50.2. 903
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Actua.ly the 2 microscopic constants in such problems are P~ and O-Bbs
For corvenience let us list some of the relations between these and the more easily

measured constants. -

l

e QA E 3 A
NGRS N G T TR TR R

shere N i3 the avefagé number of scattering collisions made per capture.
(4) The Albeto. t flection Properties of Boupding Surfaces for Neutrons.

Yie have sc¢ far in this chapter outlined the isethods of obiaining neutron
distributions in m:dia due to sources within them. However, neutrons are often intro-
duced into a medium from the outside. It is convenient to define a reflectivity, or
as it is cairled, albedo (whiteness ~ Latin) for a surface. It is simply the fraction
of the incident neuircne eventuaily returned or *refiected* from the surface. An abedo
of one means perfect rcflection; an albedo of zero means perfect (black body) absorption.

See Fermi's paper on the wotlions of neutrons in hydrogenous substances
#3ul moto dei neutronl (lenti) nelle sosfanze idrogenate" in Ric. Seci. 7, 13, 1936.
let us soive a typ.cal problem. We shall calculate the albedo of an infinite

plane surface for slow neutrons. [ut first it shall be necessary to

| /F_ =
solve the following probiem. *Given a medium bounded at X=Q VALLUN m : \\L\N\
BTN
and occupying all of space to the right of this piane, what is ?Z‘: —_—
) \\\\\ »lwm“ /h
the probabiiity that a slow neutron starting at a point ol QN \Y\’WZ*

i
A

o’y
.

units distant from K=Q wiil escape from the mdium, <. will

-~
-

reach X=Q 2
‘e shall do this problem twice, using two very different approaches. First
vwe shall use the slow neutron diffusion equation and assume that the problem is one

dimensional, i.e., that the neutrons move only in the A -direction.
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Assume a point source of neutrons at <\ on the »C axis,

Ve must calculate the flux at the origin for unit source étrength
(for this is precisely the escape probabiiity). The slow neutron diffusion equation

is in this case, AL - n. =0
. 0=

(everywhere but at Xx=¢| ) and since this is a one dimensional problem the solusion is

X
= Al T o) T
for Q<X L d . assuming the boundary comdition - (O)=QO

X
- m
For X >d)\'\=B@IIhese two solutions must join at ¢ 0
. ) ) dY\ /x\
so that Y\, is continuwous and the adient has
gr ax o P

—» X
a finite discontinuity. To find the amount of this discontinuity, integrate the c_omple'te

diffusion equation throughout a small "volume® surrounding the source.

c+e (_}2 - dve CH'éi
= - ¥ (p.49
gd —e dxz. chx - 4( m dx ( D P )

d-¢ -¢
dn jdee an
The first tem is T3~ the discontinuity in a—- . The second term vanishes
X jge K

as > O for N ' must for physical remsons be a continuous function of X , The

last term is simply - % where Q is the source strength. Thus the conditions

an .
on Y amd == at d ares
ax 4 d d
A<z T "Ae L - Pz ¢
d d d
9 L J D
d
Q2 LR - _ -2
whence A-_—:..T Zﬁe ) = > \_\;6 I
.'1‘he flux at X'Czi is then ((\X KeO Qe f)and for unit source strength

it is simply @~ X  This gives the proba.ility, P(CD that a slow neuiron &t a will

«vantually escape from the edium.
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Before we use this result to find the albedo of such a one-dimensionul medium
for neutrons incident on the boundury from the outside, let us redo the provliem in
another vay. In addition to the me -hods of diffusion, there is a more exact, more
rigorous way to attack problems of the type being discussed. To find the netwn
density in a priticular volume v at a time 't' ‘. ons could inve:tigate the density
of neutrons that are moving toward v and are in other volumes at various eariier times
t, so that (considering théir velocities and distances from \/ ) they would be
in \/ at the time T . The neutron density at V at the time T , couid be expressed
ag some sort of sum or integral of these other neutron densitises. .e would be led to
an integral eguation in the neutron density YV .

Thus in addition to the differential equation method‘of solving diffusion
problems, there is aﬁ integral equation method too. It would be well to stop a moment
and compare the relative merits of the two approaches. In setting. up the diffusion

dn

differential eguation it uad %o be assumed the cuantities like Y\ > T etc. vary alowly

with respect to the mean free path of the diffusing particles. Further it was assumed

that densities of particles were large enough so that speaking of cuantities like dn

mde sense. In particular one would not expect that the soiution of a problem like

the following by diffusion me ‘hods would give physically true results: - *Find Y\(\G@,dﬂ)
the density of aslow neutrons in a sphere of radius % » 1f there is a point slow
neutron source at the center of the sphere. ( 7\ is the mean free path of slow neutrons
in the medium of the sphere. )" There are, however, no such restrictions on the

use of integral equation methoda, No assuuptions atout the variation of g—% with
distance, etc., need be made. Integral eguation methods are mbre gesneral. However,

they are usually more difficult. It often becomes expedient to do the diffusion .
problems by means of the differential equation and proper boundary conditions first

in order to get a rough idea about the functiom in guestion. Then one gels the nmore
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exact solution by means of an integral equation. This is the procedurc we shall
follow here. Ve have obtained P(d) the probaiility that a neutron Cl units from the
bound.ry of a one dimensional medium will escape it, by means of the diffusion differ-
ential eguation. iLet us now apply integral methods.

Consider a neutron at d. As it leaves d) one of two

®

thin,s may occur. It may go to the Left or it ray go to the © d X
right, each with a 50% chance. If it goee to the left, it may escape before it suffers
a collisi~n or it may collide. The probability that a neubtron at d wiiLl escape without
a collision is therefore the product __4
$ e e

where 7\ is the total neun free path. However a neuiron may escape even it it suffers
a collision. Say the neutron suffers its first collision at X , and that M(X) is
the probability that a neutron from d suffers its first collision at £ (either to
the right or left of d )e P(x) is the probebility that a neutron at X will
eventually escape. Clearly then, P( cl) can be written as some sori of sum or integral

P(d)sl.e"R + 7 T00 ptd

all x
where it is assumed that there is isotropic scattering in the lab system, i.e., that

P(X} depends oﬁly on X and not op the side from which the neutron arrives at X.

In detail the sum should be written:

. [ d s -1 ) _
— - d¥ (X —= vwhere the firsi integral gives the
< Jo < =~ P N probability that a neutron starting
from d will go left, suffer a collision
> at ¥ but will eventus.iy escape
? .
4+ L o0 -x=d dy N-l
2 < ™ ~ P(XW - The second integral gives the probability
d N for the same thing with initi:l motion
to the right.
y
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‘The factor N -1 appearing in these integrals gives thepmbability that the collision

™~
at X_ is a scattering collision. There are N scattering coilisions per absorbing

collision. Thus the integral eguantion is

[ d = _1x-dl d N-|
N2 Rl I Gy S A
| ! _ - d
the solution of the differential eguation zaie P(d} S /’Q « Lot us

Ry
therefore - try P(d):’Ae as the solution of this integral equarion. So doing,

a
we find - N
(d\ mﬁ'\ <

( AR s {3 D ; see p.55). Thus this soiution goes as S V34 rather than

-

we are now in a position to do what we originally seb out to do -- to find

as the differential ecuation solution

the albedo. S£ay a beam of slow neutrons moving along the % axzis fiom the left hite

the plane X #( . That probability thut a neutron of the beam will make its first
R

collision in OX at X is ol ~ d—% ‘The probability of not being absorbed and

escaping from here is P(X) Dﬁ-‘ Hence the albedo is,
N

0 X N\
(3 g‘ 7\dx P(x) m_’_‘

A pon-absorbing medium would eventua.ly return all neutrons and have an ulbedo of \
If 'we wish to know (3 for an angle of incidence 6) we are forced to drop the

one-dimensional uttack and the provlem becomes more difficurt. The resuit is that

R -\
(J(e\) Ju + 130058

This is inconsistent with the first result { &=Q), only because this soiutlon allows

for the fact Liat although 6*0 for the incident neutrons, they are not restricted
to move along the X axis in the wedium. The effect of allowing motion ut angies
to the 7( axis is to allow longer paths and hence morz chance for absorption. This

makKes (3 ssightly smaller.
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Suppose we wish tQ mea.urs the albedo for slov. neuirons on paraffin. 4 direct
measurement would be difficu.t, for even if a colllmmted slow neutron beam can be made
to impinée on some paraffin’ reutrons would be coming off at all angles from all over
the surface of the paraffin and their detection would be no easy matter. 4 much

.neater way of finding ithe albedo is the foilowing. Place a thin
foil slow neut:on detector somewhere in the middie of a mass of

paraffin whose boundaries are far en.ugh away from the foll that

the paraffin can be considered infinite in extent. (By a thin
foil is meant one where there is little modificatior; of the neutron distribution due
to the presence of the foil, i.e., one for which G~Y\ %-44}. where O™ 1is ithe atomio
cross-section,f\the number of atoms/cc. and g the thickness of the foil» By
means of some neutron source we induce on activity im the foil. Cail this activity A
Next back the foil on ome side with some cadmium (enough so that
it can be asbsumed that the cadmium absorbs practically all the

slow peutrons hitting it, but not enough to distort the neutron

flux field appreciably.) Remsasure the activity in a detector —(ﬁ‘
CAdmuny POl
foil. Call this activity B. Now the ratio A bears a simpie relation to the albedo.
B
1o see how this comes about, consider the number of neutrons N hitting the foil each
second in situxtion E . It is clear that for a uniform distribution of slow neutrons,
the foil in case A wourd have ™ neutrons per second hitting it from each side, und

would have at least 2™  slow neutrons hitting it per second. But that is not all,
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&\
for some of the neuirons passing through the foil can return and pass .
through it again (for there is no cadmium atout to prevent this.) 1In \ g @ NEUTRONS
- e GET BA

tacT we can calcwate the averuge number of times a neutron atout %o \

\ N

L
impinge on the f£ilwill pass through it before it is eventually ab.:-rbed “‘~¢\

in the paraffin. Certainly the probabiiity that this neutron will return through the
foil is (5 the albedo of the paraffin for slow neutrons. The probabiiity that it
will make at least two trips is B x(3 or (\52 and so on. Thus the total nuaber of

passages through the foil for a neution about to hit it is on the averzge

\
B4R BT L =

t.gnce there would be 2 slow neutrons hitting the foill each second, rather than

-5 A_ 20

simplyZN neutrons. From this it follows that ——=
OG-8

the two activities A and B suffices to let us calculate the albedo. For paraffin A
B

Hence a measurement of

is l l . This makes 6‘-‘? .82. This type of measurement would not be feasible.with
poor absorbers of neutrons for it has to be assumed that the diffusion length in the
medium is small compared to the foil size, i.e., that most of the "reflection® takes
place close to the foil., Further, if the detector is not thin it acts as its own

cadmium, so to speak, and a correction must be made for the absorpiion in the folil.

if %‘ is the average fraction (averaged over angles of incidence) of incident

neutrons absorbed in the foil, find the re’\tion between% and the albedo.
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CHAWPTER VIII
Huctear Fission .
(.)  Ihe sinding Epenzies of Nuelei.

Before we proceed to take up the subject of fission, it is necessary to get some
understanding of what it is that kolds nuclei together. For this purpose we should like
to find an expression for the nuclear binding energy | or the nucieur mass -- since
mass and binding enerzy are related throuzh
nuclear mass = (number of neutrons X neutron mass) + (number of protons X proton mass)

- binding energy ]
in temus of the gcneral nuclear paralcters, & and &. & is the number of particles in
the nuclieus and # the nuwnber of protons (4 « 5) is therefore the number of neutrons.

In the absence of exact knowiedge concerning the nuclear forces, the prol;lem of
finding the dependence of .inding energy on - and A is a diffiéult oue. .8 mast examine
our empirical knowledge about nuciei for implicatioas cohceming the huclear forces or
the binding energy.

A. The sizes of nuclei and the binding energy. From scattering and other experi-
: YA
wents with heuvy nuciei it is found thut nucliear radii o as* Asln fact,

R.= 1.48x10 7" A" (.

fairly well fits the known data. (It should be remurked thut this formula does not
zmean very much if applied to the very lightest nuclei.) For our purposes the foruaula
impiies that the average density of constituent particles is avoutl the same in all
auclel. It is quite likely thut the density within a singie nucleus does not vary much
from one region within the nucleus to another. If a certain binding enurzy due to
nuclear forces is to Le associated with two nuclear particlies uifh;‘m the pucleus a
given distance apart, it is c¢clear from the fore;oing that this binding energy per unit
voluue of nucleus is constant inusmuch as the average distances between constituent

JAarticles is everywhere the sume. ‘e conclude. therefore, thut the binding energy
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of nuclei is essentially p'roportional to their volume or to A. In terms of the energy
of a nucleus (the negative of the binding energy) we have then B ~ — Q.. A
where Q\ is some positive coefficient which these considerations have not sufficed
10 determine. |

B. The surface of the nucleds and the binding energy. Ve know that the above
digcussion is not the whole story. For example, even i, it is assumed that nuclear
constituents are everywhere spaced the same distance apart and are subject to equal
f;ames everywhere, it is clear that an exception mmst be made of the particles at
the surface. They are not surrounded by as meny particles and are therefore not bound
as strongly as particles ir-ide a nucleus. The number of such particles is proportional
to the. surface, and we must subtract a number proportional to them from our previously
discussed binding energy, for we see now that we have somewhat overcstimated the binding

2 2.
energy. Since surface area goes as R we must add to &= a factor QZA /s Thus
S =-a,Arq, AY=
= KL, Qg
-

~
E ]

C. The "act that & tende to be % and its relation to the binding energy. In
addition to the “oregoing, we have other bits of information about nuclei that have
certain implications about how E must depend on Z and A . Let us investigate these
relations and incorporate them imto our expression for £ as correction terms. Fc;r
example,1t is found that the number of protons and neutrons in any pucleus are very
nearly the same. (It is true that for heavy nuclei there are less protons than neutrons,
but vie shall assune that this is due to the elecirostatic repulsion between protons
which ve shall consider next. Th:t is, we assume that if it were not for the Coulomd
forces between protons, there would be equal numbers of protons and meutrons in nuclei.)
There are at least 3 types of nuclear forces within a nucle .8; neutron-proion, preton-
proton, neutron-nsutron. In view of théeq uality of the number of protone and neutrons
in nucliei, the last two types of forces must be of the same order of magnitude. For

were the proton-proton forces stronger, nuslei with more protons than neutrons would
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tend to be more strongly btound and hence more stable than those with equai numbers
: !
of each. If the energy E of isobars (same A , different 2 )

were ploited against =z s w@ should get a curve symmetric

i
}
A L |
about Z= 5 for nuclei with 2 protons and (A—=2Z ) \\;/
' |
|

neutrons would have the same B as those with # neutrons

and A-‘Z} protons since neutron-neutron and proton-proton

forces are assumed egual. The curve as drawn shows a mini- O s 2 &

A :
mum at Z = "2‘ since nuclel for which Z=% are the most stable. Thus - E; the

&4

ener.y associated with the dgparture from equality in the number of protons and neutrons

must go as some even power of (Z- %3 For simplicity consider that in the neighbor-

hood of % 3 E x &oes as (z- ’%}1 To see what the "dimensions® of the coeffic-

ient should te consider two nuclei with the same value for —;-“- y one having an P\
twice the other. {(Thus both nuclei have the same fractionul excass of neutrons over
protons, bul cne has twice as many paﬁielese) The larger nucleus will .have twice the
Es if we associate with each extra or unpaired particle a certain fixed energy. 1t
appears, therefore, that €= should be proportional to A Vig writez_

Eg= + Qs A(E-L)* or a3 (& ;%_).

D. The Coulomdb forces between protons and the binding energy. The problem
of finding the energy, Eq s+ dus to the elscirostatic forces between the protons can
be approximated by the solution of the following siraightforward elecirostatic
problem. ®That is the energy of a charge 2 uniformly distriluted throughout a sphere

of radius R?"

3 2%
The result is 5 R

written with a proper coefficient so that the ene{gy is in mass units

Eq= +.oooc>2.7%—-,/3

E. Even or odd numbers of protoma and neutrons and the binding 6nergy. It

is found empiricaily that there are very few stable nuclel with even atomic weight P\
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and ¢id atomic numbber (&). In fact it can be said that the most stable nuclei tend
to have both & and (/‘\"3":’) even. uLlightly less stabl.ity occurs in the cases
z-odd'(‘\-‘aeven and ~ ~even ,(A’Z) odd. and, as we have said, & - odd{P{iM is the
least stable arrangement for a nucleus. Clurly forces between nuclear constituents
must therefors show a dependence on whether an even or odd numbcr of neutrons and
protons are alout, and so must the binding energy. Scme sort of explanstion has
been advanced based on the idea that comstituents tend to fill the nucleus' lowest
energy levels and that strong forces exist between the pairs of neutrons or protons
that can fill the same level. It has been empiricaily determined that = 5 = g

can be assigned as a ceorrgctilon terma to our expression for E  on the following hasiss

g i Q A odd
= - ,030 2 INeN
T S3EAven 3204

“we must now evaluate the coefficients Q, @, Q'S in our compiete expression:;
) 9 A -2‘)1 ZZ
MCAE)=100 893 00012 -G A+ ALY » a3 E)L oo 62T 7+

Az gzet Cc\i‘\é and set this equal o zero. The resulting eguation

. To find

betwsen ;_z and A
O0o8) + A A

Z,= 2Q3 +. 001259 A™3

is one for whichl"\ is a minimum and therefore gives the stablest values of Z for
any A . Fitting this eguation ito the known stable isotopes gives one a best wilue

for QS . It is .083.

(7 I A . s N .
This makes Z, = TSBT T 5I5RY3 Compare this with the known stable isotopes
l;..mgkin&'\' 1O __of them und plotiing a graph. :

One determines Q, and Q, by fitting the equation for M ( A)Z) to the known data for

nuclear masses. The result ia that Q2_= 014 eand a." - 00504
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Hence

: aa .
M/AZE) =.99389 A -,00081Z +.0) aA™ oea(-é-?-n— \ 000617%3+ S

Dempster in the Physical Review ( 53 P 810 ‘328 ) gives a curve of packing
fraction, L\,-‘-{ﬁl;)—:ﬂ y VS, A. Using the atove ecuation, plot packing fractions
expected *theoretically” along with Dempster's experimental curve and note the
\degree. of agreement.

Uéing the formula for M| one can caiculate the binding energles of neutrons
to isotopes of uranium. This infomation wiil be viry closely connected with the
ability of slow neutrons to fission these various isotopes as we shall see. Let
us calculate the binding energy of a neutron to p225

M (Uz‘i-‘s) = £35.11240 (gsiven by our formula)
+ M (D) = 1.00893

SUP‘\ = 36.12133
— ™M (U236> =  236.11401

BINDING ENERGY = .0073 mess units = 6.8l Lev.

In =such a vay one finds that the binding energies of meutrons to 0236 . Uzﬂ ’ 0238.

would be 5.51, 6.56, 5.31 .ev, respectively. This altex*:na‘cuon. of the magnitudes of
.\ ‘o .
the binding energies comes from the factor 8 . This alterndlion is superposed on

the regular variation of TM(AZ) with A and Z given by the other 5 terms.

Casculate the tinding energies of neutrons to

m23R A9 quth9 5 55
Use the formula for M(A)z) as we izave done to obtain the masses. Iufficiently
accu ‘ate experimeptal data for nuclear masses (for such an application as we h.ve

1 t nuclei.
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In what follows, we shall try to account in & rough way for the existence of
fissiorn in the heavy isotopes.

A examination of the packing fraction curve shows that in the region of
uranium the packing fraction is of the order =+ .0006 whereas for middle weight
nuclei the packing fractions run of the order = ,0007. This implies that the
heavy nucliei are not energetically stable against breaking into 2 wmiddle sized nuclei.
let us look into this more closely. Ciearly the energy that would be released in such
a tplitting is of the order M(A,2) ~2/M(4 &) and if this 1s positive, the

eplitting is energetically possible. This difference can be written

I:M(A,E)-P\ _ M@ E) -2
ALT A Az

or A times the difference in the packing fractions. o that when the difference ag

of the packing fractions 1ls positive fission is energetically l
- _ A l TRE

possible. 1t is to be noted, however, that A \_P*(' (n) Pp( 2) cuRNe

. 3 (WA
does not give the ensrgy released in a fission process. It RNUCLE)
gives the energy for the transition from (@ to @ (see
curve —>). Actually the end state (2) is of lower energy
than (1) Hence the total enorgy released in a fission is >A{p.fam-p.f-(§)) =>

1t A were 240 y % is 120 and EA comea out 93.74 for the

nucleus A (p. 65 ).gz‘.-‘-\- is then 46.87, but using % and the formula for zi
the stable Zwis 51.15 or about 4 unite from éz'?- This means that atout 4(3
pariicles wiil be emitted per fragment. From the packing fraction curves it appears
fission is exoenergetic for all nuclei with A greater than about 100, ™. then

is fission such a rare process? Consgider @ nucleus that breaks into 2 fission
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QE.( Mev)

M= THE (OULDME
FORCE “BREAK!
townl" AT

CLOSE SEPAR-
ATION.

fragments. Plot the energy of the nucleus (i.e., the fragments)

as a function of the distance between the 2 parts, At infinite $'80
separation we t.ke the emnergy at zero. When the fragments are

|
combined { ¥=Q )} we know from measurements that £ is aiout 180 t
1

or 200 Mev greater. This lets us pilot a point for v=0.

Y~
What about points between y"=Q and infinity? Up to distance of the order of the

diameter of the fragments, it is the Coulomb energy between the particles that alone

coniributes to the encrgy between particles since that is the only force acting between
(ZeY

them_. This energy is The value of this term at distances the order of the

nuclear diameter is either smaller, equal to, or greater than the 180 or =00 Hev at

=0.W%e would be able to draw three Qifferent transition ~ E1 -

curves from Y=Q to suchk distances. (E;e‘e diagram) Preswuably .-;_:. ;_ '

stabie nuclei with A 7l00are represented by curves of the ) ';, :

type XL , with barrier heights of the order of 50 Lev. Presum- ."/I |

ably, too, uraniwa vwould be represented by a curve like Jh !

where the barrier is about 6 Mev. Sulstances whose curve vould A\ 'B_~ =

be given by BL would patura.ly not exist for long in nature. This curve presumably
represents non-e¢xisting transuranics. For a somewhat more detailed discussion of
the transition distances ( re0 40 V'=B) , See the Bohr-theeler paper in the Physical
Review of Sept. 1939, ILet us think of t“hB as belng of the order of diameter of a

: - ~13/ A\ Yz
fission fragment. Then B=2x h48x 1D Y

‘e can draw a curve for EB as a function of atomic
welght. The curve for EA gives the excess of mass

or energy of a mother nucleus of weight. A over

ATOMIC
-NT A
o et —lg

that of its two Tragments. This curve becomes negative
' 100 )

below A”BS It crosses the curve for E3 in the neighborhood of Pf‘Z‘SD. From such

a graph one can get(E&-E ,b for any A, (EQ_EA\ is a measure of the height of the

enargy tarrier against fission.
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Cpne cun of cour.e inveslipube wore preciseliy tue shape of the euergy vs
separation ¢urve in the neightorbood of =0 if sowe epecific model 1is asswnéd,
Conaider the sohr liqui;i drop model., Here ve aussume that the original nuc.eus is a
sphere aad we culculate the change in energy for e;t aiasd deforwation. ..o assSume that
the first deforwation of a sphere that is be inning to split is a very simpie onse,
namely that the sphere sireiches a tit in ope direction and flattens out porpendicular
to this direction. The cphere becomes an ellipsoid.

If we as.wne that the sphere does not chenge its volume on becoming an
cilipsoid (and this is reasonable in view of the fact that ail nucled tend Lo .mintuin
the same density of nucisar particles, ms e huve seen), the change in the eperyy
of the pucleus upen deforuation will be due to only two of the five factors discussed
in the last section. First there winl we the surface energy which wiil tend to increase
with deformation because wore surface will bs exposed .wd second we have the sleciro-
static energy which will decrease upon deformution becuuse the repelling charges ure
effectively eepa;mted a Little.

‘Yhus we have at leasi itwo energies changing in opposite ways with defommation
of u spherical nucleus. Lince the surfege or capillary ener.y goes as the surface

20 ! F2 .2
area or A and the électrostatic energy a.— or.,};\ the latter epergy bscones

A3
more inporitesut Tor heavy nuclei. Thus, for weavy nuciei it is likely that the snergy
of a pucleus tends to decreuce with deformation aad 2 spberical nuclieus is umstauvlie.

“he opposite is true for lighi nuclei. Llrua this pictuze 1l is in heavy nucler that

we .oukd expect fission. .el us investi nte the chauge of enesgy of a :pherical

nxcleus upon distortion,ia cosme detail. The electrostalic enexgy
\

of a charge # distributed throughout tae voluwe of au eillipasid A
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can be shown to he: ,.._....._..__-.
‘ -
3 2e” 2o (g Qtial-O"
0 4 ar- b O.- i - D™
And the surfuce energy is proportional io the surface area which ¢an be shown to bes
a*b
2 42T b
2Tb . T2 GACOSE

Now consider a sphere of original radius K - W& stretch it in one direction
CL‘?R(H‘CB “hat should b be in oxder that the volume of the. ellipsoid is that

of khe original sphere? ﬂ"" @bz %Rs whence ) & R Substituting
‘ iv+&

for Ca and B in the two energy ezpressions above and developing the resulis in

povers of @ we find:

the alectrostatic enerygy is

3 72 g2
FEE (- e+ )

(where it is 1o be noted that the first term is simply the elestrostatic energy of
the sphere and the second, a correction term that gives a decrease of epergy wiih
defonnation as predicied. )
The surface epmergy is proporiional tos \
‘qTRl<| + "'"'6 4 e )
Using the proper coefficlents for these epnergiss from the formula for M(A,?:)
{p.65), the excess in energy of the ellipsoid over the sphere is: 2
c2[ 2« .014A% — Ly oco627 E )
The conditlon for stari.dlliy against deformation is that the bracket be positive,

< 447

That is, that Z_"

A
z_&

For uranium e =X{5 and for lower elemsnis ites value is even smaller.

At whut atomic number is insbtalility reached according to this ineguality? Use

the expression for zh tbe proper value of Z  for a aucisus of weight A

as _teen developed (2.665 )
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A SHALLOW!
TREOUGH: . &
LOwW a&RR\ﬁl

Actually inetabilily will come quite & bit before £
that poimt given by the. solution of the preceding problem,

For curves of the shape chosn, the barrier is already rather

trapsparent and one could eipect appreciable Spon‘;aneous fission.' Even for U238
there are ~~ 20 fissiqns per gm per hour spontaneously, so that for heavier atoms
this quickly becomes a prominent phenémenon. For exaﬁple, for plutonium 238, the
spontanecus fission réxhe is already 107 per gm hour,

Ve siua).l e pore interesteé)in what folf'lows)in fissions brought about by
neutrons than in spontaneous. fissions, Neutrons can ;:ause 'fgssion by comiributing
their kinetic eneryy ar.an. their binding epergy to the nucleus. Thisenergy is at least
r~ 5 or 6 Mev (ihe binding energy of the neutron) and way reise the energy of the
nueleus high encugh within the basrier for é' fission to take place before the exceas
cnérg,y in Yomst by a E radiation. Because of the fact tlail the binding encrgy of
neutrons to nuclei with an odd number of neutrons is lafger then it is to tbose with
an even number of neutrons (p.€6& ), it is reasonable io ezpect fission for thermal
neuls to be more prevalent for 'bho#e nuclel with an odd numnber of neutrons. Thia
is s0s (238 won't fission’ with thermals but 235 will.)

From facis like these and photofission thresholds, one can estimate that for
uranium the height of the fission barrier is of the orﬂer Mev, .

It i3 to be kept in mind that in the consideration of the competition of -
fission with other processes, it is not sufficient to congider eneﬁgies, aloue as we
have done. For' fission, vne must Have the energy . rise to the top of the barrier,.
bui in additicn it is necessary that this energy be conceniratcd in the proper nedes
of motion for fission. This may lake some tiwe ‘apd cdﬁpeting processea'msy therefore
oceur at the expense of {ission. Since the nux;xbor of modes (a.nd hence of u;.sela‘«

non-fission wodes) increases with excitation euerﬁ it mmy itherefore be very llkel,y
APPROVED FOR PUBLI CR &E
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(3) Particles of Tissi
Iﬁ addition to the apgpearance of the fission fragmeats, one can observe
neutrons, (3 pa'rticles,‘ K3 rays and vary often fast N particles following or
accompan,y:.ng fission.
As to the fission :.zagmenta themselve:a, bheir atomic wsi@*ts present as
_ interesting problem. The distribution of Tission fragients as a functlon of atomie
weight appears at the right. At the haif point (if y235' l@
is fissionad by a naufmn and 2 are qm&. tted in the course t
of fission, one wonld gt A =117 if it is assumed thatl

. : . 4
a nucleu=s splits into 2 equal fragmanta.)) the observed 4_0”

yield is very low. Instead of even splitiing, the split- t‘ul&

ting is very uneven as this experimentzl curve shows. This .| S \
: : . CHTRRTTTGE TR S
phenomenon has not as yei been explained theoretically, C T MASS RumBeER

Ag for the neuirons of fission, they are classed as elther prompt or Gelayed,
*prompt™ meaning tbat they leave the fission fragment after its formution in times
shorter thun wg can measure. One can eatbimate that they leave within 10"15 aeconds
under cireumstancés such as the followings Consider the fission process once agaln

as the splitting of a drop.

'l'he final fragments are not of sphemcal shape. ﬁance there will be a consiéerable
vibrational energy assoéisted with oscillztions about the eguiliblfium (spherical)
shape of the fragment. This éxcitation energy vay b;e'ﬁpfficienf Lo evaporate a
neutron, especlally simé neuiron binding energiés in fission fregmenis are small

" because of the excess of noulrons. 'For example, assuse that g2 is made %o fission
by a ﬂeutro’n amdl 2 fraaneﬁts with Avﬂ'lla and & = 46 appeér. Using the formula
for 'WA,E) {p. 65 ) one can calculate binding encrgies for various nuclei of
~weight A ™ 118,

[
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(ahere Z= 50 is the stable value for & if A =118). Thus neutrons may be lightly
bound‘to fission fragments.Whenever neutron emission is energetically poésible,
neutron emission is likely,because of the absence of a barrier for neutrons. As a
matter of fact, one wow.d conclude from observations that considerable excitation
energy must be present in the fregments because “z/ , the number of neutrons emitted
per fission, is for 0235, to take un example, equal to 2.45 or slightly moré then one
neutron per fission fraguent. '
The energies of the neutrons that come off at *‘%&;Pﬁf;v
fission are given in the distribution curve at the right.

In the center of gravity system of neytron and fission

fregment the neutron energy disiribution would be sort of ; N

oL B -
Kaxwellian with a "temperature® corresponding to the 3 = § 1 ™May

excitation of the fragment. To get the theoretical curve for the distribution in
the lab system one would have o take account of the motion of the fission fragment

and the dependence of emission probabililty on neutron energy.

Derive an energy distribution curve for fission neutrons assuming a velocity ava
for the fission fragmesnt and a Maxwell distribution of ensergies in the c. of g.
system. Also assume that the probablilidy of neutron escape is proportiomal io

Lghgix velocity.

The observed resulis agree roughly with those to be expected on these considerations

except below . Mev whers no sufficiently accurate measurements have yet been made.
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In éddition to these prompt neutrons soms { ~v 1%Z) come off
delayed. To explain the emission of delayed neutrons, consider
a f{ragment f%. which undergoes a @ ~disintegration to a nucleus
B . Usually this disintegration will go to the ground state of BE

B , but occasionally the nucleus B may end up excited with

excitation energy greater than ”.E., the binding energy of a A B
neutron. In such a case meutron emission becomes quite likely. Such neutrons
would come off very quickly after the @ decay and would therefors show decay periods*h

thut correspond to the periods of the @disintegmtion of 4 to the excited state

of B .
: delayed neuts
The delayed neuitron periods that have been 1/2 1ife pér prompt
observed and their yields are at the right. The first 55.6 sec - 00021
2 periods are rather well verified. The short time 22.0 «001L39
ones are as yet not definitely confirmed. 4o 51 . 00178
1.53 «0020
42 + 00071
Fortal .00
(3 e C ~ections for Pigsion and Compet Processes in Heavy lsotopes.
In pe38 » a8 in other heavy elements, the only ' .
R 2.5 Bavng

likely processes caused by neutrons outside of scatter- r Thayvaal
L~ ad
ing are (’Y\;G) capture and ("Q ){:3 processes. The Brang

cross-sections for these ,précesses in U238 gy plotted,

Note thut capture is more probable than fission for ; - ;- ALY

neutron energies up to ~~ 1 Mev,
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Therwdl | The curves for U235 are drawn below
?“5 T LOW ENERGIES SBamE Hiew ENERGES
- .
1.32Bavns
ot 0 eV 0 lggl

For U235 the (’\\\Iﬂ cross~section follows the shape of the (Y\)F) curve at low energies
(being about 20% as probable at thermal energies). The ("(\{(ﬂ process does however
have a few of its own resonances ( ~ 2 volis, - 5 volts) also. At high energies

the @\W )process is quite improbable compared to the (“(‘“F) process,

For Pu23? , the thermal (.025 @y ) cross~sections are =3V Cﬁ'ﬁ (Bav “g

G?_- 705 barns, GQ\)X = 345 barne, and the total cross- Thermmal ‘70'5
\
section is therefore - 1050 barns. The variation of fission A 102 | hs Law
. -3 {6000

croaa»section with energy is indicated in the table et the (Resgmn@)
right. The capture cross-section becomes relatively less im- ‘
portant at higher energics. ' 33('& 2.

eygh 1006
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CHAPTER Ia

Chain Reactions

(1) The Properties of Natural Uranium.

1% will be shown im this section that a neutron Achain reaction cannot maintain
itself in uranium of the isotopic composition found in nature. Whether or not a chain
can be maintained will depend on the relative probvabilities of (Y\,n to 6(\5T) pPrU-
cesses for the neutrons in the material. Although a fission in uranium will release
on the average 2./ neutrons, it will be seen that the (‘Y\;S'\ crosgegections (for
the various energies in the meutron spectrum) are sufficiently high to drain away
most of these neutrons, and to make the probability’for the progeny of one fission
to cause at least another Jless than unity. Let us plot on a single graph the

capture & flssion cross~sections for the two main isotopes of U.

-~ THERMAL

10} '1'3‘ The isotope USD i
present in about 1 Bgart

in 140 parts of ve.

- natural U. Its effeciive

' crosa-section, /140

is plotted here.

'O."
s
[l e
. \<- Kv\oww
% Ko~ 1 - SR [T M TR gy Y S5 ek
The cross~sections observed with a piece of patural U would be the sums of the
e L
above cross-sections and these are plotted at the right. lor ‘{-‘:‘:ﬁz.‘;{g"x
- ¢ RITONANCES,

It is to be noted that below «.!;ev and above f\t. L.4 Mev :;T

6z > and in between Ta 1ia greater.

W

One would conclude, therefore, that if it were possiﬁe to get a chain .

reaction going in natural uraniuui. it would be sustained by neutrons whose enorgy
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is greater than ~ l.4 iev or by neutrons near thermal, for in intermediate regions
the neutrons wowld more likely be absorbed with the emission of a ‘{ , than lead
to new tissions.

Consider first the high energy region. 1t will be shown that the existence
of & large inelastic scattering cross-section prevents the dealization of a chain
r.eaction. Civen a big mass of natural U (big enough so that surface leakage of
peutrons is no consideruiion) and a fission occurring somewhbere in the middle, let
us see what is likely to happen. About 2.4 nbutrons will be produced. The fiasion
neutron spectrum is such that we can assume that 1 neutron is produced with energy
below the effective fission threshold of U238 ( ~ 1.5 Mev/ and 1.5 neutrons with
snergy 71.5 isv. The low senergy neutrop will probably be abaorbed‘ because of the
bigh capture cross-section at its energy. (In fact, the probability that it causes
a fission is only ~ .05.) Vere thexfe no inelastic scattering, the remaining 1.5
neutrona could start a chain reaction for they haveas four times the probabiiity of
leading to fission rather than to capture (i.e. ~ 1.2 of our 1.5 faast peutrons would
lead to new fissions, and since the necessary condition for a chain is that the num-
ber of neutrons per fission that lead to new fissions be greater than one, this
would certainly start a chain reaction). But there is inelastic scattering of these

fast neutrons and the oross-sectlon for scattering from above to below the 7238

threshold is of the order 2.3 barms. Sincse O'F' is only ~ .4 and Oé ~af

only _é.g_ of the 1.5 fast neutrons (rather than 4 of them)will produce fissions.
5 .
This is about .2 neutrons and there can be no seif-sustaining chain due to the high

energy neutrons of the neutron fission spectrum. We. s3y the *r&produc}\o‘w

Fadi:r" of the sTvufure 1 Q2.
Agsuming the following data,

Beliow Threshold Avove Threshold
(above t0 DBlOW) - v = o ot o e = e we i - 2.3 barns
€096 __ Y47

cx\clmﬁ
% A e e SRy ——— S — —-—

%--—-—p———-—-’-—-——-.l?——-—————mo—-*-ola

and a fission spectrum whers 40% of the neutrons are emitted below threshold and

hat _is d or_an_infinite mass of metal? |
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Now, let us consider the thermal region. For .025 volt neutrc;ns 0‘{:3 3.9 and
G:-: 3.2 barms, or G%y4qy = 7.1 barns. ALl of these cross-sections behave as f\'-’..
and so their relative values are roughly the same throughout the region. If the 2.4
neutrons. produced in a fission manage to get slowed .down to thermal energies without
absorption, one would expect them o meke %—? X2:9%1,32 now fissions. One
would have a *going" chain.
(2) Use o derator.

The problem, then is to reduce the fission neutron energies to thermal before
the neutrons are absorbed. On@ would be led to a séheme such as the following.

Mix the uvrmnium with a substance that doesn't absorb neutroms, Spread the uranium
thin enough so thut a fission neutron will make many collisions with this other
substance, cilled a moderator, before it is likely to meelt some U again. Iun fact
it should make enough collisions so that it is probably thermal when it hits its
first U nucleus.

One might consider using Hel as the moderator for it is believed He® does
not exist, i.e., Hel will not capture neutrons. However such a moderator would not
be practical, the mean free paths would be long, and a structure of about one cubic
mile might be required. One might think of using liquid helium in such a structure,
called a "pile®. This is also obviously not very practical, but & remark might be
in order about dimensions of piles in general. If one can succeed in increasing the
density of a pile by a factor f, as in the case of liquifying heliwn, then the linear
dimensions of the pile can each be reduced by the fac1;or §f and the operation of the
pile will be exactly as it was before changee were made, becauss the ratio of mean

free path to a distunce in the pile stays fixed. The Lverall result is to mul tiply

the volume by £-3 and the mass by £~2
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One is forced to use substances that do absorb neutrons, but that do not absorbd
them very much. Chuin reactions have been obtained with graphite and heavy water.

Possibly Be or even HyO may be successful moderators.

(3) Homorzeneous ¥s. &m&%&éﬁﬁ‘fﬁ

Consider a graphite pile -and assume that it is so large that leakage from the
surface can be neglected. 4ssume that the U is uniformly spread through the pile.
For graphite at thermal energies ¢~

3 Tsesl .
the maximum ratic, R, of the number of carbon to uranium atoms reguired to keep the

= 4.8 barns )O-E. = ,0048 barns.What is

pile going? The maximum is set by the absorption of the |_Fission
(2.4 NEUTRONS)

carbop at thermal energies. Assume Z/=2.4 , i.e.,

/\ i
o £ \
there are 2.4 neutrons emitted per flssion. Assume To THERMAL ENERGIES

further (in order to get the upper limit on R) thal 39 F15510n5 |3, 2 capTURES
+ N t W T}

no absorption tukes place during the slowing down 1o PER NEUTRU J| PER HEUTRON
thermal. From the diagram at the right, it is seen that L s THE TaTAL

5 CROSS-SECTION FOR,
for the pile to go 92 x 2.4 must be - ABSORRING PROCESSES

€t AT THEAMAL ENERGIES,
This gives .Q00O 5\R< 29 ar R 4170 t=39+3.2+ 0098 R Bans

or in terms of weight, the ratio of weight of carbon to-\jmust be < 25. Actuslly a
congideration of losse; during slowing down, and the consideration that U is not
spread uniformly through actual piles (resulting in higher neutron densities in t_he c,
away from the U neutron "sinks')octh tend to make even lower this upper limit. There
is clearly a lower limit for R (for, as we have seen, a pile will not go without.
moderator) and this lower limit must be less than our upper limit if our whole scheme
is to be feasible with C.

These considerations lead us to the problem of capture during
the slowing down, which we have hitherto neglected. Assume that _Ca\

the slowing down Censity, is constant. That is that

the number of neutrons/c.c. that change from energy above E to

below E in unit time (1) does not depend on position 2) does not depend on E. The

physical conditions ‘hat would give such a % would be a uniform medium with a vniforme

ly spreau steady sowee, APPROVED FCR PUBLI C RELEASE
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Ge have seen (p.45 ) that the velocity with which a neutron drifts down the

G (-.loqg) axis is } "Uff:? where § = bog:‘i: Hence %r'ﬂ(ﬂ? \.’;7(\%6)

t.e can write the number of neutrons per c.c. in the logarlthmic energy interval d¢ at é 3

N de= @l\-— Now consider an atom of \UJ in the pile. How many neutrons

E.
in this energy interval will it absorb in unit time? Clearly this wiil be

) d¢é v . T(e)
and in terms of E, the total number of neutrons absorted per atom per unit time 1s then
4 fo=E

The upper limit of the integral need not be plcked itoo carefully for the integrand de-

4

creases rapidly as E increases. The lower limit is usually taken as the cudmium absorp-
tion edge ~ .3Qv. Under these circumstsnces the integral (without the &ﬁ ) is, for
U) 240 barns. (This is determined experimentally.)

vince % neuts are produced per unit time per unit voluns, and each atom

absorbs qxlg neutrons in uwnit time, one can assocliate with each atom
3. .
an “absorption volume” ——( o = (note that this truly has The dimensions of volume)

where we can say that each atom will absorbd all those neutrons made in the *absorption

volume" surrounding it, and only those. For \J , this volume is 4 =z 10-2L ¢ ..
which is much greater than the size of a U fincleus ( 10-35 c.C.) BS is to bs expected.

The total number of neutrons absorbed per c.c. per sec, in a pile would be

F At & T
%* 410 21 N Nuymbev oc.c'ms

and the number of atoms of \_J per c.c. would be 1.6 x 1020 and the number of carbon

Numbey of ¢ Awis
Number gf XJ Afom

neutrons are absorbed per c.c. FQ(‘ s2c.or 64% of the neutrons are aisorbed.

atoms per c.c. would be 8 x 1092 if we take ‘500Thus 64 (6
However this is a considerable overestimate. This stems
from the fact that the absorption eross-section has sharp 2~

resopances. The absorption of ¥\, atoms is not the same as
.

YU times the absorption of one atom. The atoms absorb each

other's neutrons, so to speak, and so *shield* each other. This can be clarified
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somewhat as follows. The spectrum of neutrons in the pile ls not
what it would be if OF wers smooth. There are depressions in ——
.the .spectrun at resonance energiea simply because neuts with such
X X Eay
energies are quickly remove&. Nuclei of U are therefore pre-
- ao
sented with relatively few (cross-hatched areas) absorbable nuclei. , B =

Po cut down the slowing down absorption, one would lump the U in the pile
m‘ther than spread it, for them within a lump there would be no moderator which would tend
to even out the neutron spectrum by continually feeding neutrons into resonarce regions.
Those nuclei on the surface of a Lump wouid guickly remove all incident resonance neutrons
and interior nuclei vould ses very few.

But how would lumping effect the absorption of thermal neuts by the 'U and the C ?
Ths carbon absorption would be

Nex & AV kN

’ where Y\, is the denaity of neutrons of thermal energies at the carbon )andoz and Ng WG

the neutron capture cross-section of carbon and the number of atoms of carbon/c.c.

regpectively, For uraniw., the absorption per c.¢. per second is simiiarly

Y\.v *G"'Vx\f XNU

and the ratio of absorptions is Jg™Nc MG
TN Ny,

neutron sink if it is lumped ¢, > Ny vhereas ¢ would be ecual w W for a uniform

- Since the urunium acts as a
distribution. Hence from the point of view of absorption of thermals to get fissions,
dumping is undesirable. .

This result and the previous one that lumping is_ desiraﬁle from the point of
view of cutting down absorption during the xlowing down of neutrons suggest that a
complets consideration of the problem may lead to values for optimum sizes of the lumps.
In the next section we shall calculate the reproduction factor for a plle with spherical
lumps and shall see how the various factors that go to make up the reproduction factor

depend on the size of the lumps. For the present we shall record the empirical results
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for the self-absorption effects in homogeneous and lumped piles, It is found

empirically thai for a homogeneous mixture of Jé& C

‘-, gO‘ QLEE leﬂ-ec’zwez 2.95 (o;@t) -3

(holds for Tyt £ 160D)

where G;tbt is the scattering cross-section of | atom of J plus that of the number
of _moderator atomg per J atem. Wwe have seen that if we were simply to add atomic
absorptions, (O“ QEE is 240 barns., Substituting the known scattering cross-
sections for \J¢& C in the empirical formula, v.e get ~ 124. Zven for a uniform
distribution the "self-absorption effect” is of the order of a factor 2, l.e., the
Sabsorpiion volume® around each X nucleus is but half as big as it would be were there
no resgonance absorption effect.

If, however, ome lumps the U, the discrepancy should be even greuter. It is
found empirically that the "absorption volume" of a lump of U in some carvon is

Vol, “—'-6385 x Mass oF U m Q‘MS3+G 03 &Surfboz o(’ Un'\clb

Apply this 1o a U sphere of 3 cm radius.
Actual volume = 112 cC

Eapirical absorption volume = 990 cc

AlLsorption volume calculatad negiecting
self screening or
self absorption = 23,000 cc (or 20 times the observed one)
Can one construct u pile by uniformly disbursing T in c ? lo finad out,
let us calculate the reproduction factor. Take 'L-J: 260 {i.e. 200 . atons / J atom)
to start with. Take =2/ (no. of Zeuts /fiss,) = 2.4, Empiricaily (we use the formula

for carbon is ~. 4.8 bams and

of x‘:ove) gr-—g = 75 using the fact that T <

¢ is ~ 10 for \.J’ . This gives as the total zbsorption per c.c. during slowing down

2,6 -24 20 . ‘ -
%~K 158 x‘7 L XGQx IO = .5% (in each =ec.)

or ~. 50% of the neutrons are absorbed during slowing down. Thus l.2 neutrons per

fission reach thermal., Now '3"<_ for carbon is .0048 barns and GZ'-‘- 7.1 for T

Since there are 200 C  atoms per \J atom, the number of neuts absorbed by the \J is
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- le 2.
(250 x.0098Y+7d 2 -
or 1.06 neuts are absorbed by the T, Since ﬁ absorptions in J 1lead to fission,

A
we get HOQ6 x %_c-? .58 fissions, This pile will not "go®.

L}

Show that for no uniform distribution (i.e. for no value of.é, Ti_.s a chain reacting

C)

pile possible, by finding the maximum reproduction factor as a function of T and

Seeing that it is less then L. o

One could design an inhomogeneous pile by using one of the geometries at

ithe right. The cubic lattice of spherical lumps of
uranium is slightly more efficient from the point

of view of neut:ron utilization, but the cylindrical
geometry has the advantage that energy can be removed
(the pile cooled) by blowing air, say, through the

cyitinders.,

(4)  The Reproduction Factor in a Lumped Pile.

The reproduction factor for a pile with spherical lumps.Start with one neutron

in a sphere -~ & neutrons will escape the sphere,where < is somewhat greater than one,
for there iz a small probability that the original fission neut will (while still fast)
give rise to a *fast fission", Let FK be the probability that a neutron ié either

resonance or graphite absorbed during slowing down. Then & C - CR\ neutrons will

‘reach thermal energy. Let C-‘- be the probability that a thermael neut is absorbed by

}
U rather than C, ° Then FT € O' pp\j thermel neutrons will be absorwued by the

uranium. In order to find out how many new neutrons, on the average, are made by such

an absorption, multiply the above by which is
probability that absorption of ¥ = 1no. of neuts
thermal neut will give a b4 per fission = 2.4
fission = %% for ~J for J

Thus 1?-,-, l°3_2 and the reproduction factor is K = ’\"’)‘:-{ C"‘(\Rxé
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let us see how the 3 factors FT}C\—gpf) and & can be calculated. Let us
first get an order of magnitude calculation for & . The average length of path of
a neutron escaping from a spherical lump is the radiug Assume that there is only a
60% chance of the original fission neutron to lie at the high end of the fission spectrum
{(in particular that it has energy7 loh ev, tuken as the U238 fission threshold). Now
0? °« .45 barns and 7\fiss “w 50 cim. Then our original neutron would make this

ANy New oness: =

60 x = .,l("l/"l)
™

( where (’V") is the net neutron
production per fission )

due to fast neutron fission. Thus in order of magnitude
€ ~ vl » B—' x 1.4 (where we have taken
50 N~ 50, v=2.4 ).
Actually & can be calculated by somewhat more refined methods, giving more accurate
resul ts.

Next we calcuiate ( 1-Cp) . Ue have seen that

v 1]
M CELL

empirically the absorption volume of a lump of v for
tre A
absorption during slowing down is (P. ) | cuBC
Vol = 385xMass + .03+ Surfece Avea (| LATTCE
WOULD RE TWAT
?)Y-Vo‘. neutrons are abtsorbed per second by the lump. VOLUME OF GRAPHMITE,

CONTAINING A T SPHERE
But % Vé. (where% is the volume of the graphite AT (TS CENTER . ANG yurICH

C3uid B8 CONSIDRRED THE
cell) peutrons are produced per second per lump. Thus BULOING UNIT QF THE

F = VO‘« LAETT\CE..
T R A
Actually a somewhat better calculation gives F R= - & e ,» but the resulis of

this and the simpler formula are not too different.

are aid symmetry planes for an infinite medium and the @

|
!
Now it remains to see how F\- is calculated. If @ @ | @ @
: }
the lattice is infinite, then at any symmetry plane, the |
|
gradient of neutron density -~ for thermal neuts for exdmple == @ ‘ @ @
E ‘..
must vanish. Now the boundaries of a cell, as defined above, 'bﬁ P"__ﬁ ,m.
| SXTAMMETRY
I
I

problem of finding the neutron density as a function of
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position becomss a typical boundary value problem. Actually, for purposes of calculation
the cubic cell is replaced by a spherical one and one
finds N ; the thermal neubron density, as a function

of position in the cell under the condition YN =0

atl the boundaries., Having found this, one can calculate

-

the rate of absorytion of thermal neutrons by the "\I"

In this way one obtains

- (8- -
F _ 322(=-=0 (42 ( N)...(wx\(t-(ﬂ 2
T @303 @ +A AN ) o T 9 (s hvmh) (1-B) 2" T =

where o = Radws & Lump 3= Radwus of Celf
TikCus. LQ.Y\%W\ wm G == D.flus, LQY\Q\‘V\ O

1+ %
and A = T:? .‘5:: where N = Zrotal (for graphite ™ ~~ 1100)
™ Clvs

and ¥ is the albedo of the sphere (looking from the outside)

S_._. 2R .
\-:-'?} = 3 ‘Qb e"_b.'l + | - _Q_‘I.\% vwhere Q.C & NC are the
V- R RS R diffusion length andGi ¢ /o7
AN Q%: ! : (for X ) respectively. absarp.
249.0

For U).;Qu"’ T ;7\‘.“2-?‘!') JN‘L'—"ZV@
q\dew\s\tg

Take a 3000 gram lump of \J ( ?c 18) which is spherical in cubic cells of side 20 cm

Calculate FT‘[One must use the above formula with high accuracy, because numbers tend

to _cancei., ]

And so oge caiculates the four factors in Y\.For a typical lattice, these
numbers muy be of order ) =132 fi=.88 CR" 2 € =105
For such a lattice IK = 1.07 (the best K'S for a \J-{ system are -~ 1.10)
In ipdustrial piles -- or even in lab piles to ':_;ive strong neuitron fluxes -~-

one runs the pile at high power. The Argonne pile { A 20 ft on a side) cau't Le run
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higher than 2 X because no speclial provision was made

for cooling. For higher power piles, one must introduce

a cooling system. In Clinton, for example, there is a

rod lattice with air coolinz thmu,gh the chanpnels in which the rods lie;_*-":]-.‘:ﬁ; power
of the Clinton pile is ~ 5000 KW and the air coming out is at 100°, Other piles
are water cooled and sl jackets must be used. The point
of mentioning the cooling problem here,is to indicate that
because cooling malerial must be introduced high‘ power
piles cannot maintain K at | but will show a lower

value of K, the cooling materiul being a noneproductive

absorber.

(5) Relation between the Reproduction Factor amd the Critical tize of the Piie.

Assume we have calculated K » the reproduction factor, for a particular iattice
and it turns out to be slightly greater than one, say, 1l.05. Were we to have an
infinite lattice one would hive a supercritical pile. How big should we make the pile
s0 that it can still be under control, i.e., just a little over critical? If Y\ is
the thermal neutron density in the pile, it will have a

(N
maximua at the middle of the pile and show a general Wt\}\
N
dependence on distance within the pile as shown. Super- \/\
- g oy -

posed on this will be the fluctuations due to the uranium PosTions oF T SPHERES

lumps in each lattice ceil. Let us assume that there are many lattice cells und that
we can, in what follows, consider only the general shape of Y\ as shown above, ic.,2%%ume
that the bumps in v, are ironed oui. We have derived once before (p. 4‘9) the differ=-
ential eguation for Y\, the demsity of thermal neutrons, )-\-é‘r AN - }'{*f\ - %r =QO

It is to be noted that /) , the absorption mean free path, is to be considered

as some sort of average of 1\. for pure uranium and of ./ \ for graphite. For pure
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graphite )f\. is A 25y, and for the proportions of U and graphite usually used the
"average® j\_ is about a tenth of this.

In addition to the slow neubtrons in the pile, there are fast neutrons from
fission. For these we also assume that the density is & omooth function of position
.v;ithin the pile. The equation obeyed at ecuilibrium is the slowing down equation

0q =3k
ot |

This equation and the preceding one are simultaneous descriptions of a pile at
equilibrium. The Ct) of this equation and the v\ of the thermal neutron equation are
related. .et us investigate the relution. ‘-\--r“(\.. thermal neutrons are absorbed per cg.
per sec. Of these c..‘.}\-;—f\, are absorbed by the U , and as a result ‘?F % Y\ hew
(fast) neutrons appear. One would be inclined to write for %‘(’t) at T=0D )‘which is
the number of fast neutrons made per second per c.c. ) simply Q( (ﬁf)}‘}{ﬁ However one would
have the problem of reconciling the continuwal absorption of neuirons during the slowing
down with the use of the slowing down (or age) equation. For in the derivation of the
age equation no absorption term was assumed., It was assumed instead that all the fast
neutrons eventually become thermal (p.14). We can however use the age equation if we
decids not to be interssted in the actual amount of fast meutrons in the pile. but only
in those that will become thermal. These neutrons not sbsorbed will obey the age equation
and they will be &€ (\‘FTA of all the fast neutrons due to fission. Thus ¢ (p(@‘?‘f}{*\

fast neutrons are maede per c.c. per second@ that eventually become thermal. This is the

effective %( O} and we shall write

J
(o) 7€ C!*F\{\’QFT }f-—\-‘ﬁ“ KKT\

This is the desired connection hetween ﬁ and Yt , and we are ready to apply our ecuations

io an actual pile to determine its size for equilibrium. |
For simplicity assume that the pile is shaped as a cube. Becauss vy

vanishes at the toundary (actually, as we have seen, the true boundary

condition is n=O at ,77\ outside the surface, but in this cuse

this is but a few ¢, which is swzall compared to *Q.* for piles)

e

T .k
we expand Y\(X,\»\,Z:) as Y’\(x,b!,£§= 2 Y\i)\\ sw\‘—a)-('ﬁm‘%‘i‘— S E%?—
L)K |
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T
Take only the ™, term for our solution. That is, we assums ¥\ = Y\ SN aSm-iSW\q‘

(calling Ny ‘-.'-_‘.Y\' ) and also write % 8 S a‘ S v ’ism_c_fi, anéd
%(03 ’%"O) fine X sw T.B- S, E hese must solve the pair of ecuations
oo O. a. -
AL oOn - Y
=y .l\.“ Al % =0 (for slow neutrons)
/NG = _._((2.3 (slowing down for the effective
% 27 number of fast neutrons. )
sub ject to %( o))<= K}_f. ™ Substituting the assumed solutions
- DV T Y v +q!'=0 (=)
=F Oz n AN , %
2
-3 g’ 3 (T
K R'Y\ = g'(O\ (m)
The second of these readily lets us evaluate the constant
2
' L / J %g'
a
g/=g(c) = @ or @'—'KEW e
!

If this is substituted into the first equation, we get a condition on the constants

of the pile that must be satisfied for a solutiom_s
7\V ;;T" - N T ay T\ =
’T\ ( a* I\ * K N < ©

This can be written K = & %‘g tC\ + 3%7; .’\é\' where K. is the K for
the infinite lattice. Since our eqﬁabions have been solved for an egquilibrium pile,
this equation gives the length of side "a* of a pile that would be in ecuillibrium

if K were the reproduction factor for the infinite lattice. This can be writtem in

1 kg A
somewhat simpler form if the exponeatial is expanded. K=+ sa"'"x. (T + =/

wet us put in some nuwbers. ¢ 1is usua.ly ~ 300 (Afnz and 7}:;—\«.350 Cyn®. Thus

K2+ 29—-0,?2 or K& |+ = where (f . is in meters. Since
@ Q..
the best ) for a graphite pile is ~ || , then Qpp, ™~ heb . For Ko 1.03 we

o 5
=\

as ¥ approaches one, *a" becomes infinite, as is reasonable.

3. __’/z
or the volume is GQ°° -1

would need an 8 meter pile. In gemeral Q,, =

If the pile were a rsctangular parallelp-‘..ped, it is easy to see that the condition

on the dimensions would be K= 1+ T <Q‘ ¥ — )(T«i— 7\/\) instead of those
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we found. It can now be shown thal our neglect of the

“OLutions V\‘)K ({,)hy\ >.D in the Fourier

eapunsicn iy jurtified for an uctuil pile. Had we

assued the t) K harwonic to exist in the
plle we would iind that the cdimensions of the pJ.Le, when the L, l& harwonic 1y in
eyuilibriwa wouid be given by WK T 1+ T? ("' ""L‘ + 55 )( 7\_5/\>

the pile is of such u size that the ), i, )\ hanwonic is sligntly over critical, suy l.02L
it can be seen that for a pile of the dimen:ions to uake the h '} hasmonic critical,
the higher harmwnics will pot be critical ana will die out. For any shope of jile it

cun be shown thut the main harmonic present in 4 pile is the fundamentai.

For A bowm , Ls7/m , C =8 m what values of & are

ngeded for criticality in e , Y2n , M, 5 Mg ? !

Calculate the rei.tion betwesu the helpht and the rudins of o cylipdrical piie

;g;_,vep ¥ for the infinite la ttice if the pile is to be at cquilibrium.

(¢)  ihe {ime Lepepdent Ecuntions of the Pile.

o e S ety

~

e Lave derivea 3 equations to describe a1 piie at e uwilivrium. Ve shall Lere
discuss the time d.peudence of the behavior of a plie. Ve shall a.sume for simplicity
at tirst th:t all the peutions prouuced are prompt. Actun.ly he celayed neutions niw
vacy importuut in ruoniag a plle. ‘'they often uwmke the difference bLetween ruunins nd
not running. Fowever, for simplicity let us at firat make the assuuption of no delayed
neatrons. e also ussuwe, wnd this nol such a bad asswuption, that the slowiny down
tukes a time thub is negligible conipared to the time spent by 4 neutran as a thermal

(en:buanly the rutio of btime.is of the order 1 <100 ).  .he slou neuatroi. diffusion

squation becomes in the time dependent case,

Wav-Ln +g= 7
AN

T
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and the other equations of the equilibrium description

nge b g = k ¥
remain unchanged because of the above assumgtions, i.e., it is assumed bthat %(o) is
8till proportional to Y\ at all times, there being no delayed neutrons and no delay in
the slowing down of prompt ones.

For a general shape of pile, the problem is to solve a differential equution
of ¥ha form A¢ +W¢=O where the (. are eigenvalues, and the boundary condition
is that 1) 0O at (really near) the boundary. %e assume that the time dependent
solutions are expressible as products of a space dependent q) apd a function depending
only on the time.

n= (PGB g= FHETIBRYE) =gl )P 9E)

The age equation becomes

84=9(t,D)LP= -w g(t ()
3
<P 3%" ?ﬁ‘--w@
whence %_ g(o)e-wc

\ K\S' -wT
From the )™= equation af twiop of tha Raz, ato)ﬂl L{ana (a. fo)

we cun therefore write for 5
- T
G = KK Fid) 4) <z

Now let us find the form of solution for Y\. From the fthermai neutron diffusion

-wT

equation and £\N = (:('t') Ad> = -wF(ﬂ ¢ S - wNn we get
't-
MWY\. — 2{“ + NV - Y\ = élf}t where T is the age

an

of thermal neuts. The solution is ~A= “(03 Q A

exponential,

TAT R

decreasing function of D . Recall that o\_) is a constant denoting some harmonic

Let us consider the exponent,

of the stationary solution. Because the set of equations is linear, the time dependence

t Flw Flw
of the various karmonics is vl ) C’.t 2) +
3 e 216,

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

I

and since F( uh decreases as (W) increases, it means that after a time the fundamental
harmonic will outgrow the others even if we started at [30 with a complicated distri-
bution of neutrons in which some higher harmonics were important.

When the exponent is zero, we have a time~independent or ecuilibrium solution
:‘._J: - “J\T — _\L 7\17 :,—o
K Ae: NS 3 . ,
This is preciesely the equation we develioped giving pile sizes for equilibriua, i.e., for

piles just critical, just "going®.

K= ‘Z.w!TC\ . 7_\3\_5'(}).3
where, of course, the proper W is substituted as determined by the shape of the pile.
(For a cube W, = }g_: ; for a sphere W, = 1:5‘_ etc.) Taking (D to mean WWJ, N the

W for the fundamental, let us rewrite the exponent

N L ew T ewt PaYA ‘
—r— — L - . L)
KR < S‘ = O 3 )l
1f the reproduction factor were \¢ ( 1o DD }3 Zw then the pile

would be just going,)aa we have seen. Calling this value of I simply I« o)the exponent

can bhe written
- T
kK M < <\ - KXo
TAN 3

z %e""t(k- vat .

or the time dependence is

S €
Write 2 Q'QT\' (k=-k)T = & /T where | is the period of the pile.

o)
(e have neglected e‘wt Lecause it is of order unity). T can be written
N /AL T LFE TWME OF A NEUTRON
%= Ko or | 1s - Ko

LY

Let us reconsider our 3 equations in order to find a better expression for T)
teking into account this time the delayed neutrons. The eguatiorms
LSUN A N )
3 N % CA% 2 4 % 3T
remain unchanged. The last equation must be changed in the following way.. If a neutron
is absoried at 'E'O) 99~ of the fission neutrons are delivered immediately and 1% are

delivered later. At any instant therefore ~99Z of the neutrons delivered are prompts

und A. 1% are delayed neutrons from previous fissions. If P is the fraction of neutrons
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that are delayed, the nuwber of neuts mede per unit time in an equilibrium pile is
~J = kN or the same number
Q(D) k (l P\“ * PK “ K /\.ﬁ' as if all neuts are prompt

PROMD 1 55 D% Lh\(eb \ (as is expectedy,

NEUTRONS FROM DREVIOUS FISSIONS,
But if the V\'S in the 2 terms are different, i.e., if we are not dealing with a

pile in equilibrium, it is necessary to know the time distribution of delays. The

fraction of delayed neuts emitted in interval 4t at the time . after fission is
mwo

dtZ. 5 € eo

Y] where the eg are the
various detayed neutron periods. If, however, we are at a time L » and we look back to
¢
an interval db at a time &~ £’ , We see that there were kY ﬂ(t—t’) dt’ avsorptions

then. The number of neutrons appe-ring as delays from these absorptions in unit time

. tl
at T is l<\""' Y\(‘t-t') dt Z ". & E:_ Thus
!
Qo= KR RN () (:—3 +,<v§ Nt-t7) dt’ (Z.E— e /C'">
PROMPTS DELAYS

Thls then is the equation we must use instead of simply Z{o) k N vhen we wish to take
the delayed neutrons into account.,

ke seek a solution of the same form as before

n= constant % @ (x%y,2) x T
Substituting this into the g(o) equation, t/'v - _t 7T ,(ZP.:’ . gb)
glo) = KL (P + SR -const PO A&

whnmcz glo = K-“f\ ) [\“P) * Gu .\.\ )] = An

Just as before we find .
-w -t
g=3d2” " =Awe

for the % equation, bui for the W\ eqv.al;ion)

-DY v A @ "Wt oAl
WM - BNt g = ==
3 ~ T

so that the life time is T
N S v .
T= f’f‘é‘ “~ T RR( ‘-P*;\@H = )E _]

This expression for ~| can be rewritten Te i _é_ S |34 (\- (G.,*'T ’Wtj
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eand one can solve for Kas a function of the period T

A .
_ ‘ew‘Z‘ =8 | o+ WJ
Y - R @»
; T+ &1
where (\ Ny ﬁ%w")zw‘c is recognized as Ko)the I, needed to keep the pile
in equilibrium, i.c.,
/AN zwt
Ko + note that as L' =Ped
0 " ng A
'Q: - Y : (pile at equilibrium)
| = 3" B8 l<, =3~ Kg 8s it should.

v TS
3
Since the 2nd term of the denominator is smalli, we can write without appreciable eITor,

- N vig g
K—(ko ‘U e (|+’Z- -r+9t3
The orders of maznitude are /\.\300%' A2x 105 gs%g ew'i’~‘ T~ | sz

50 that the 2nd term in the first factor is small compared to \(Q which is ~ | .
Therefors, multiplying out tae expression for K and neglecting the product -%. -—T-—'

tines Z' T+91‘ since both factors are small

wtT P @L }
e' 13
L+ De Z
The relative excess of reactiviiy L\_:_‘ﬁg can be written
Ko
, u.:’t
K Ko . @0 Z _P_;E: -
KO T - D+ where @o

N wt

®O is approximately —w (since @ & Ko are of order )} ) which is the lifetime
N5 .

of a neutron.

The expression for K- ¥ cul. be interpreted physically quite easily ifT is
ke ZRO!
either very big or very smali. For ') 1arge)‘f.'..‘£.° become s ®° rs -
o T

that is the physical meaning of the numerator in thie expression? The average length

of time of a generation is simply @o(':?\) +~Z P (9(, + @Q) where @Q is the
[ 3

generation time for prompts and @J.\. g‘.‘ is the generation time for a neutron delLayed

-\¢
@.; seconds. This expression is exactly equal to the numerator in k_K..? for T large.
Q
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] s XI0 (=}
Some of the kmnown delayed neutron pericds for 235 E‘:a‘-'ﬁg ‘ .6 seo
. 220 2.2
are given at the right. Using this data let us get an <194 6.5,
.152 3L.7
"idea of the magnitude of the average length of time of .02 80.2
.6

a generation, (Hz"\voOOl,S sec. Z p,:@c ~ . 083
.

Thus the contribution: to the generatior time of the deleys 1s ~~ 60 times that of
the prompis. "ere there no delays, it is seen thatT viould be very short even for
small excess K . A
¥riting the formula for E‘.F'EP for short periods, i.e., | <4< ¢ Then
‘S:EEP —®° +{ and the excess K depends mainly on the prompts for P is small.
In practice one operates g pile with T>> @; and there, we have seen, that the
. b

delayed neutrons 4o play a comsiferable role.

'U\Ve.:\’\. @°= 0015, plot .E:........? vs ...‘.. using the

complete formula K=Ko - -t éPB;
Ke T+ {

(7) Einding K and Proper Pile Digensions Experimentally.

Since the critical dimensions of a pile depend on ¥~\ where ¥ is close to one,
small errors im Kgi've rise to large uncertainties in the pile dimensions required.
To determine KexyerimGntally for a partic'uJ.ar lattice ome can proceed as follows.

Construct a emall (say _L_pile size) lattice-work of the type to be used ant place a
10

constant neutron source at the middle of one end, An equili- i /
! il

brium condztion will be set up which will stild be described =z
by the equatlons }%{ [ -"—TL*%#Q A,%:s a’t

Ve assume again the solutions for - a d have the spaca
%

dependence of a function R x % obeymg LHD+»WwDP=0Q,
)"i: %/
jie S R e b

Q& NoouRc®
HeRk.

Because of the boundary condltions. asaume ¢ $W\. (where *Q," is

the side of the column and b is the decay factor in the exponential). For such a CP it
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g5

2 .
can easiiy be shown that (D= 20-'7:-’; ."'5"" ~ ve assert that the equation relating the
reproduction factor for the infinite lattice to ¢V (of page 9\ )is stil) true. That is

wT |

K—..: C' * 7"\'5& ww % where T is /tthermal again ¢

This is true for essentially the same reasons as for the full size pile. éiven a Ko 3
the (O in this equation will give the dimensions of the pile at egquilibrium. In ttyis
Case "a" is a true dimension and "b" behaves as one. Wers ve to keep *a* fixed and
enrich the lattice ( K larger) certainly the decay wouid be slower -~ i.@., b longer,
and this is bormne out Ly the formula in the seme way as the dependence of the true .
dimensions on K o For a cubical pile ipn eguilibrium | = ( i+ 7}3{'\" W\ v 4 w T where
'"2.

s - >
W is Az this time, &\ being a side of the cube. Hence 3:,. a }C{I’: - ..;3.’.

or a measurement of *b* in a model luttice permits one to find the size of the R of

the equilibrium pile.

One can find the properties of graphite or uranium that determine \( for the pile
in another way. This method has to do with the effect on equilibrium piles by absorbers.- .’
let us consider for a moment the problem of the control of a pile. A pile is alwdys
constructed @nough over critical size Spaai&caw axlylsg brought below crifial by maans
of Jesorbers. Trdnond be dddaud , K 13 temperature dependent and one must be able to, compene \
sate for this. Oae nust also be able tc compen.sa‘be for the ebsorption due to foreign
materials, 1f one wants to use it for, say, making radioactive substances. Thus a pile
iz planned with excess activity and control. rods are relied upon to vary K from below 1o
above l. One might use a cadmlum rod which one inserts to various depths in a channel
of the piie. To see the effect, suppose one placed an absorber in the pile where the
neuiron density was Y\ . It is not true(as might be exxnected\that the absorbtivity
at any point in the pile is proportional to ¥\ » Consider an absorbing atom at the
center of a pile and one near the periphery. The absorbing effect of these atoms is

proportional approximately to the sguare of Y\ at the 2 positions. The reason for
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this is ai@ng the following linéésj Neutrons mbsorbed by the centrally lo;:éted gtom ara
more likely to be of service in the pile then pe:é'ipheral _ A;?o%?’ﬂo‘\i
neutrons. = The &ffective absorption i8 really (neutron densit;ir %\Og |
R effectiveness of neuts). It can be shown that the second |
factor is proportibnal to "ﬁ. and so the product, goes as e

Thus if a control rod is insertedl into a pile to depth 4 ’

the dependence of the absorption of the rod on d is o =
Q § e ; -

proportional to go (S\“ T&l\f-dx in a cubical pile U X ’Y

of side X . One can use control rods o test samples of gréphite or absorbing mater-

ials as foilows. One builds the pile with a channel for the insertion of samples.
' ) puy

SAMPLES
- HERRZ

The critical {equilibrium) position for the control

rod with no sample is determineds Then new critical sy
o
Z

positions for the various samples are determined and cou"_i‘:i‘o\' s
Rob  F s

S

the differences in critical position are & measure Z.

of absorptivity of the sample. One can use such a scheme to determine reactivities for

pleces of uranium correct to Y places.

(8) The Pnerey and Ffadiation Production of a Pile.

The number of fissions produced per c¢.c. per second in a pile is-?TY\ 3.

N TZ

where the factors are: the fraction of thermals absorbed by the \J , the neutron
density, the reciprocal lifetime of a thermal, and the fraction of neuts absorved by

‘T that iead to fissions. Assuming 200 Mév per fission, we must mul tiply the number

. ™av . -4 €v9s ' 2v0S
£ fi . 0 200 s =S LN . *in oxder t ] s In
) ssions/sec. ct. by 00 == 2,200 Cioms An onder to get =EEE

the resulting expression the produét ’Y\U')the flux, appears. We should use 'vﬁ? » the

average fiux snd it can be shown that for a cube ybhis is related to NV , the flux
_— . -4
at the middle thru NV= Y\o*é‘-% Finally, killowatts 3 Ylg U"-%V f—{- 3‘9';_....3.2.‘:7.'»'10

Putting in proper numbers this is <A 4 x 109 MoV, One can obtain powers of the order

S5 x 103 K% (Clinton) which means that the flux at the center is~ 10%2. At Hanford

L 13 meaulvon s
neutron fluxes at the center of the piles are ~ 10 | SZC % o

*VSS*\\Q volume ot Yhe ple,
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Ina Y killowatt pile there are ~ 3 x 10%3 fissions/sec. Assuming 20 Mev of
‘ 8 radiation per fission, and that 5% of this is not absorbed, then the total radiation
from the pilé is 3 x 103 \"5 of A 1 Mov or the equivalent per second. For a pile of
I< killowatts, we must multiply by X . The surface area of a pile is =~ 4T ( 50002

g0 that somecne near the pile would get in one day (105 sec) :
W= 3% 10'3 \Ds O“' K One Meav Pholons
* o <
2T 500y~ / cmz - Dy
Now a daily dose is ~ 108 photons/cyn® - day. (This corresponds to aboutl lKunit). Thus

a pile gives of the order Danx DQsSES

‘Oq ‘KK DAY

This gives aun idea of the difficult shielding problem, since W is usually ~ 5 x 103.
f“or large piles we must shield by a factor of a biliion or so.

In addition to the problem of shielding from the €S one must shisld from the
neutrons. One can use cadmium to shield from thermal
neuts, but one must be; carsful i¢ put the cadmium insids

' the Pb shield used to cut our the pile's VW'§ since the

(Y\,’ls‘} reaction in the cadmium mekes many | 'S . However

neither the Cd nor the Pb are very effective against the very fast neutrons. Concrete

can be used %o help cut out the fast neutroms. It helps slow them down and capture

thew. However, concrete is bulky. layers of Fe alternated with layex:s of paraffin

form a less bulky and somewhat more effective shield. About 4 feet of this will absorb
2

by a factor 10 for the %1%, and a reasonable amount of the neuts.

Let us estimate the minimum bull of a radiation shield for a pile. Since ['§

N . oM gm
will attenuvate A é- in 2§ -E-;Z;_ we would need at least 500 papwes X to attenuate only

the ¥'$by 108, Since we need neutron protection too, a compromise shield will be
at least 1000 - Zo%, . This i3 the minimum bulk of shield that can do the job. { This,
incidentelly, is one of the difficulties in making cars diven by piles.y The lightest

. portable nuclear energy source based on these principles would weigh about 50 tons.
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Iet us consider the radietion the pile emits via the cooling system. In Clinton
the cooling system is an alr system, which blows through the channels for the uranium.
None of the fission product gases give trouble (the\J siugs are in AL cans) but some
of the arg.on in the air becomes radioactive. The air is disposed of through a 100 foot
stack and is guite dilute and harmless. At Hanford the cooling system is a water system.
There the problem of disposing of radicactive water arisess It is diluted to harmlessness.

(The salmon of the Columbia River are stil. healthy.)

(9) Other Types of Pi L'Qg.
In addition to graphite piles other types are possible. For eXample, there's &
D, 0 pile at Argonne that can run abt 300 K4, For this S T Rovs W
: : N AL JRRETS
pile WU = 1032 or the same as for the 5000 KW Clinton @—, -B //
pile. The reason the latter has so much wore pover is \
simply due to the fact that one can put wore uranium in &\/ - ) =

the Clinton piie. Heavy water has some advintages and
some disadvantages over carbon. It makes a pile easier

to cool (at Low power). It is still, however, expensive.

The advantage of smaller size piles is very important. A
very important disadvantage is the deccmposition of wafer
by the energy of the pile. Only 100 &v will decompose a molecule. ‘ In a h@ens
pile, a solution, this would be especially serious for most of the 200 Mev per fissiomn
would be picked up by the water and A« 2 mg per KW per sec. would be decomposed. This
would necessitate schemes for recovery of the ADZQ-

One can use different materials as moderators Af enriched rather than natural \J
is used. Since for every 3.9 neuts absorbed in 235 giving fission, .782.5 give }j"s
in 235 and 238 respectively, it is seen that the number of neuts, per thermal absorbed

x2.4=2.05 rather then -3"7-—-?'- x2:.4%/1.32

vy \J would be ZI‘Z
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if we used pure 235. Actually even a 1l4% enrichment of *® makes a considerable

/
difference, and this is the material used with the water boiler at Omega. TWater

LER

makes a good enough moderator. This particular pile
can run &% »~ 5 K¥. One problem connecied with this

pile is the disposa. of radicactive fission products,

Such piles are small and it is feasible to build thenm

for use as sources of neutrons for experimental purposss. Cavbon.

G99
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NEUTIRON PHYSIGCS
CHAPTER X

Fe st Reactors

(1) a N : osion.
Vie have spoken of chain reactions maintained l.ay‘ thermal neutrons. We shall
see that in order to produce nuc.l;;ear explosions ohe had best meke use of the fast
neutrons to maintain the chain. :-It will be convenien;t to speak of € -folding times,
the time it takes Y\, , the neutron density, ito be wultiplied by a factor & ina
supercritical assemdbly. We have seen (9.9\ ) that this time is the lLifetime of a
neutroa -%.—- divided by K=WKe For a thermal pile, % ~ 10™3 gec and K=1<g < ol
or the e-"b\dmg Tfone is & 107 -2 sec¢onds or longer. In a vater boiler .A.“'BO cm ‘\fﬂ-los
and ¥~ 2. so that ’cheé ~folding time 13"“/ K=y A 107k seconds. In a fast reactor
(séy U23_5 Cor Pu) I\~10"cm and ' gos 5\‘-\ ’v '2 A.so that for a fast reactor, we
get ‘;%q o or the € -folding time is A4 100 seconds. ALl the times given
are minima ~- i.e, we have assumed the most favorable conditions in each type of reactor.
For the industrial problem, the advantage is in long @ -folding times, for 1%
is such reactors that are most controllable. f‘or explosives,‘tt is short @ ~folding time
reactors that become important. .
In a kg. of fissionable materisl bhere are 4 2 x 10%% atoms. 1If o is
the reciprocal of the @-folding time then a i-eaction could continue for at most
t seconds where 'e“ ~ 1094, This would give times: t" «5s <005, . 5‘,{ , sec  for
the grephite pile, water boiler end fast reactor respecﬁvely‘ Actually mechanica.l

effects begin to take place 5 or so e-folding times befors the using up of all material.

] y -
What happens here is that after many generations '3'“\0 NTY , _Pr:f’g RERE
the energy release 1is great emough so that pressures NEUTRONS S RE“‘\%TOR.
: o SURSCRITKI

expand the reactor. Its surface increases, lecakage . 1 A

EXPONENTY ‘ :

below
increases and eventually the reactor falls belo L iv\e.meS\ on

s'mR‘\"
! t-»

S T

critical and from there on the reaction is jusi

dying out. -
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Let us consider this more guentitatively. Say the pressure goes as P-R’,@

end we are dealing with a spherical reactor. The surface will feel an acceleration

that is of order .l‘:i ~ ER?' - Pt eqt c(-msa:ﬁe‘\
g} ™M RIa'é\':'a’s' Ro

Since the exponential varies much more rapidly with time than R_, in orders o

magnitude the displacement of the surface as a function of time is
™ DA >

where P is the pressure at the time T°. WHE' 1S The falsl amount o(-eﬂu,\‘gj relenwed ¢

“The Civel S8R will be of order of the difference of Rg and the madius of the *just

critical * sphere. The enersy released up to the point that the criticality goes below

4 is of order Ruax ¥ ﬂ—gg- Thus, the eneray W~ MX* R(R g -R Qand 1t is

seen that =4 enters as the sguarg. Clearly, to produce an explosion, ‘we must use a

reactor with the shortest possible € -folding time.

(2 i istribution.
Let us calculate the critical properties of a fast

reactor of the type shown. 1In such a reactor the size of

active material is 10 cm and the mean free path is A10 om.
Consequently we cannot use the approach we used in pile theory, that is we may not use
differential diffusion theory, for it is not frue that mean free paths are <& dimen-
sions of the system. .In the foilowing approach we shall havé to introduce among other
things the tmnsport cross-section (i.e., the cross~section modified to teke account
of the non-isotropic elastic scattering). Let us call Q” the sum of the transport
oross~gectiong(p.494 ) of all the atoms per ¢.c. Then (since G‘!\W\“\) this cross-
section is simply the reciprocal of the mean free path. The processes that can ocecur

upon collison other than transport (elastic scattering) are:

No. of neutrons No. of neutrons

hitting nucleus leaving
Capture i | 0
Inelastic. Scat. 1 1
Fission i 74
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On the average, for every neutron hitiing a nucleus, \-\-F come out, where I is
elither positive or negative depending on the type of material used. H-F ‘e¢an be

O Ggps + 4G+ ¥ p, =Thes -1

written in general:

w b=

In a non-fissionable material § = -,-93. and F is negative € lF’\<\ both of which
q;c*v‘a'

are reasonable. For a chaln reaction to take place, it is necessary that at least in

some part of the system F 7Q. |

In a pmpér calculation of the operation of a fast reactor one would consider
what happens to neutrons in various energy ranges, but for our purposes we shall assume
fhat all the neutrons have some avprage energy (one group theory).

We shall establiish an integral eguation for the neutron densit;; in terms of Q¥
and F . If at a certain point, one neutron is produced each second, what is the neutron
density at a distance ¥~ from this point if the emission is ieotropic? The time spent
in a shell of volume ABV AV by a neutron is dr - The average number of neutrons

5
found in the shell is C_Z\_!‘ since 1 neut is emitted per second. The neutron density at
oV 2 \

3 3 w *—M. -
the distance §° is then ~ divided by RV AV or v It is to bs re
marked that this result is based on the assumpiion that there is no absorption in the
medium. Suppose we now wish to find Y\ A+ the neutron
density at a point A in a critical reactor. To find this,

find the contributions to 1':his density of a volume element

at B, l.e., we try to find how many collisions at B result in
scatterings in the direction of A. Ue then integrate the voiume element db over all
space. In the volume eclemsnt CiB there are ‘n( B‘V o* (3} dB collisions per second.
And o B‘)dBO'CB) ' (\‘\CA(B\X neutrons come out of the volume OG> each
second. Thus dB can be thought of as a neutron source of this strength. But we have

seen that such a source will give a density

B dB v oy L+ ]
qQ TrE A&

at a point Vv 'aWay if there is no absorption and the emission is isotropic. Ve can
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< Somdr 1035
account for the absorption by multiplying by a factor & A '
: LLodv
- B o-(8) [ +fa)] =4
Thus  YW(A)= P rLf' : dB
al AB
SpACT

and this ie the integral equation we sought. For a system in equilibrium another

equation must hold,

vl NCA) dA TA) ) =Q

all
space

for there will be no net production of neutrons in the system.

(3) The Critical Size of a Fast Reactor.

These two eyuations can be considered the equilibrium equations of a fast

reactor {assuming a one group theory) just as whe differential equations of De a8
were the equilibrium eguations for a pile. ¥o shall use these equatio.ns also to
determine the critical size,
™~

But before we do let us return to lifferential theory. ®e had 227\%—
(p.55) vwhere (N = %:,;—T:l— and’ we assumed that N vwas a rather lerge number. This
assumption crept in som;wbat as follows. We assumed that the flux of neutrons is
everywhers proportional to the gradiept.neglecting bigher derivatives. This is the same
as assuming that W(X) is a function thet is fairly linear for distances of order M\ .
In a one dimensional problem 'Y\(X) goes as @ 7‘/2', and for this function 1;0 show liftle
curvature in a distance N\ , it is necessary that -}: be a small number, or that N
be large. Thus our original diffusion equation implicitly assumed that N was large. Try
to modify differential diffusion 'l:héor_y to be valid for N small. Say we have a gradient
of neutron density along the )¢ axis. Because of this gradient, the density of neutrons
travelling at any anglee to the ’)‘4 axis, is'.not the same for all @ at a given point,
but is a maximum for neut’fons movifxg in the directioan of the gradient. ﬁrite as the

neutron density moving at. the angle e at the point ‘)€
'Y\.(X)e) . d'c « 22T S)meda or writing §ﬂco§6. this is
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“(Y:F) ar 2Trd? where 277 d? is the element of solid angle. We wish
to establish an equation for Y\(x)i.) . We follow the procedure of examining all
the factors for the variation ofﬂ(x,§) with time.

Since we are assuming that all the neutrons hav’e the same velocity, neutrons
everywvhers moving in the direction ‘?o wiLtl have an X component of velocity v.?o
If Y\ varies with . , then the change in n{x ?\ at x in time Clt will be
Y\(‘X Vidtﬁ" N(X) vwhich is simply -.‘u-? dt 3‘3 ., where we have considered

neutrons moving in the specific direction E:
Another source of neutron loss from our element d)(.d? is the fact that in
each unit time, a number of neutrons, ..};-\J: Y\ will suffer collisions. If the neutrons
in de were inditially mbving in direction § » onGe they have collided they will be
moving in some other direction and will no longer belong to the same d* d? o
%e must now find how many neutrons are scattered into the- solid angle dw by
| collislons where d\d is ﬁds For the various directions ?‘ dt ‘X. there will be
~N-d

w\(x)}')olw icolllsiona out of W’ in unit timg. -I:X— of these neutrons will be

moving in other directions after collision. L will be absorbed, Therefore the

N

number of neutrons initially moving in direction ?' that are scattered into the
direction ? in unit time is d ;
v N- dw |

I =

We must integrate this over du)'to get the total number of neutrons at X scattered

into the direction ? . Pexr unit solid angle, the term to be gdded to our ecuation, is

. I
\‘:-x'-:l-l . i:‘_;’-\ gY\ (X;f‘)d?‘ ~ (where we have put
-l 2TAE ror dw! )
At equilibrium 'l-ham. s
?______ ___ -~ z_N7\ Y\(X?)d§ ""O

To solve this we assume that the solution is separable, i.e., Y\(X )?) Ng)gf)

Further, we assume, because of our past experiences that Y\(ﬁ) will be of the form
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*®
eI' where Q must be detenuined from the constants of the probleum. Lubstituting into

tite equation, we find thut ((é)ruu«t obey the follow:nr eguution.

f-@n—?f—f@) SR fEHaE
__.H)L( £)= 2 ,.j r-(f)dg

but the right side of the etluation is some consttaut, so that 3 must be of ihe

C L

form F(ﬂ T~ = ¢ w»€& must now make sure, however, thit this has at least some
| - ?
values of f" that uo give solutions. That is, we have established th.t if there are
”~
N
‘solutions, they are of the form - " 7\% y but we have yet to see if this is
n e

true for ali ¥ , for some ¥ or for no !L - Lubstituting intg the equation, we find:

-_I:I:L(' d¥
_,H—

F= 28 o
. L ¥

hence 1= ML LR a0 . .
whence = Y - _7.-\- q m This is an equqtion that teiis us

1,
whut value of . will golve our problem. 1o ses what the solution is wher ™  is

‘ +7\
still a fairly large nwnber, eipand 2—’:'- ‘Qo%( g
N

|

‘\T_'_"““’ 2 - ..;.:‘ L (‘ ™~ N - : which is developed in gowers of

Ji:i because ™N is > | . uriting __7_\_;-_ € . znd asouminy that €& 13 small,

€ (.O% "’G'=Z Y(é - S "“')"‘(G‘*‘-z T g %..)
- 4 |
= Z i 62 g—-f- ...‘\
*Z[.’ = T 5 7
! -]
Hence .;...,,._\'.- =:+%

N NE = = 3 i
The first upproximation gives @ ¥ = = , which gives yrecisely [= N :S%
result from our rougher differential diffusion theory. In the nekt upproximation we

<}
way substitute for the correction ter., §..- y the first approzluatlion re.ulit. Then

*' {ix'i T g
e
or ....(‘.. 3 which gives _;7;\_ =_.J .’z._(;.. g.’—\?)

giving f‘( correct to the second order in N .
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vwe shall now return 10 our integral equation making use of what we have here
developed. In the integral eguation \+€ stood for the number of neutrons coming
out, on the average, after a collision., For a medium where there is only capture

\ .
(no fission) F' -‘-"’ﬂ-. 7 was -!7-\- . One can therefore write for = ’

ﬁ- ol o ENICEEES
It can bs shown that this fozmula:;é:plles even with F‘ positive (say for 023.5) in
which case the density goes ase i and e T or we have sines and cosines. Ths
method of proof that this applies where F 1s positive would be essentially a repe-
tition of the calculation, where allowance would be made for fission. It shouid be
remarked that the eguation QY\ =+ 1‘{ = now holds whether there is production
of neutrons thmughout the volume or not. The % term in the complete equation (p.98)
becomes unnecessaz:y Neutron production is taken care of by the new more gen»ml
expression for 9. . This expression was developed under the assumption that Y. goes
as € % end is a funetion of ){ énlyo Vie shall howsver apply this in our more general
3 dimensional integr:l eguationé- (for a more exact and laborious calct.zlation can be

shown to give quite similar results). This method was developed by ) . C(O

Serber and we shall apply it to the simplest possible geomotry, i.e.,

. Redius
! - Qe
LT~ EY\&O whers Q. ie the corrected @, i.e., we begin with a

somewhat improved diffusion theory. . On the inside Qf <.O and the solutions are

C>Oma spherical core and F(O outeide. We begin by writing

like sines and cosines.. Outside QZPQ and the solutions are exponentials.

%e may summarize the essential results to this point,

msma T\-\e IPHERE: ( ma) - c;wsm. L Cr >ob
‘ ] . ; N l
R - 1+h'
vy o i e i
whaw.z. : : wh'
Eaiy Ao
W tan ST W T2 T W

[“ \_.\ Mﬁ-ﬁ"‘- H z' 5 O"\[‘gfr (lu?;‘)
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. 2 "2
In either case AY\C\') = arz ““'F
thegguation by v )

o
>

bl

B

so that multiplying

cdi L ogdn
“are y250= il

but the left side :i.asz-{d---rz ( 'YW') » whence we aave an equ?"tio,n of . the' one dimensional
form in (Y\f‘) . The solution is ¢y =-Ae- £’+ BZ. 2 on the outside,

On the ihside Q=' 'o:‘;\ s0 that the solution is ¥ Y\ "‘c s, CG‘HP}%*DCOS(‘THV')
In terms of ¢! rather than Q' the outside solution is Azo"h‘l/'_‘_ BZ -
where we may certainly neglect the first term because it represents a dlverging solution.
Similarly the D Los(o‘H T'X term is eliminated on the inside because it gives .

infinite at the origin. Let us pormalize our solut:.ona o that T\(Q\ -l Then

R AN -% S (O'H“'.s which implies { = "T—'i . The solution inside isY\ % .5,‘,'*‘;;%,,@'“2’,_

g YN / Y
Outside, the solution is Be rethe where B is det_eglned oy an appeal to the
two integral equations that must be s;:;:sfledo %@“ d wihers P
. XESE) gg)ay-yﬁ@) ie st @
“(*ﬂ A ‘ are two
Thp! x i;;:m"“s m
. . B ermednum
f“mf’)%“?‘@:?(P‘) =0

R .
Ces %, -

he vill be unéble t> satisfy thein exactly. " Ve shall satis;izy the 2Znd eqﬁation; but instead
. 0f satisfying the firsi at all points P’ %2 sha.l do so only at the center. The and )
equation will suffice to determine E Y:e then .substltute into the first equation.
If 1t checks, we say ve are" deaJ.J.ng with a crit:.cal (equilxbrium) assembly. If, however,
the first equation does not check, the sphere is either %oo large or too small for the
particular E and C’ and we must try a different radius. '

Let us theiefore substitute into the znd squation. The integral must be written

in 2 parts (inside emnd outsidé)
4% [oE Mrdr‘*qnfc’ 0 BET pdrao

Since F ! is negatlve, ‘we may write ;,ﬁ-owf-

o ‘
TH - @ ¥l
oty ST raar = ovlFiB § e
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These are simple integrals and the result is ERIC)
3
B= 3t s (RTQ) — Hoa. 0S HO'Q 'Zhb'
Hi>(~F) | +nlo'a

Ve nous substitute into the first integral equation, letting A rafer to the pointf‘@

Sincée ﬁ(d}-‘: \ 3 We may write {once again splitting the integral into 2 parts)

Ou - e
\,j' 21,‘».‘9:_\'12‘_. .o—.mc).m R dr
‘ : _o.lh'r .
32) e,( Fj) -33‘0,-€r3(k“-°¢§ T 3 Ci’“
These integrals here are slightly more difficult than the previous omes, but they

are in the tables, Putting in the value of B s the result J.s

g——d
H;F ‘chn)z' T At = fq%ﬁ*-fé—@" z_!:;'h @ore o~a.( | ) f e X
SmlHea)- Ha‘q.cos(ﬁe'a.) | +n'a /o

On the left appear quantities related to the core. On thg right are the quantities

related to the outside reflector or tamper. We substitute in this equatiog the values
for F and i‘—{ 'for the particular materlals being considered. We can then plot the
left and right hand sides as a function of * C.* The curves will intersect at soms
point and this value of *Q.L* is the critical or equilibrium redius.

Having found the critical radius, we may find [% -and we can plot Y& as a
function of P‘ . It will be found that the curves ‘ .
show & discontinuity. This discontinuity, of course, n

will not exist «~ but it "almost exists™, i.e., the

\.

N ——
Q -

gradient of ¥y, is fairly sharp at the boundary as

n-;p
.;..;~ .;.a-‘f{f(i

can be showﬁ by & more exact calculation.

(4) ' Lors.

¥ith not very involved modifications, the theory here discussed can give

informution about supercritical as well as eQuilibriun system’s. We had written

“’(P')"’" N(p) o P) E +EE)) T;
| | 41‘\' EP' )
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1O5

This equation says that all the neutrons in pt at a time t comes from points
where they suffered their last collision at some eariier time, t’ « In a system

at equilibrium the times are of no moment in the final results. But for a super-

. : X

critical system we should know t"‘tl = ,5:. o If the intensity goes as &
~ oy

all over the system, the intensity at p at the tinme tl was e"a‘\!‘ times

what it is at + « lhus we can substitute inte the equation for "(\(P')

; _:gi N % 1 o-0) [14-&pY) @ ~Sho-dvgp
n(p') TR,

The equation is now modified to say: #*The neutrons at Pl at the time T are

the neutrons suffering their last collisions at a distance T away {(and coming off
in the proper dj.rection) at a time ,-5. earlier {;han € .- %e have simply substituted
T\(P)Q-.q% (\:0'(‘ 'Y\_(P) to take account of the variation of Y\  with time.

Ve can solve for A ., the fécipmcal of the € -~folding tirne. foz: a supercritical
asgsembly as follows. Say that we have a core of material with Q= 20 cm, but that a
solution of the equilibriwe type indicates that QU®Ll0 cm is the critical radius. Ve
soive the problem by Tinding an @R  which when substituted into the time dependent
equation for *{\K?) will meke thut ‘equation hold at the center for Q =20, just as it
holds there for 2 Q and O.= 10 cm. In this way one can calculate the Q;—foldi’ng
time of a fast reactor. Thie e-f‘olding time will be valid until mechanical effects
set in and will be neecfed in estimates of the efficiency and other properties of such

an explosive nuclear reactor.
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Neutron Physics Final Examination ! 10

Inthe reaction Ny'-l—- He4 = F 174 nt

‘the masses of the atomic species involved are:

¥4 = 14.00750
He* = 4.00390
17 = 17.00760
nl = 1.00896

a) Is the resction endothermic or exothermic?

b) What is the reaction energy in MeV? Q= ....
8) What is the reaction threshold for the o(-particle?

2.

Aasuming that the oross-section of cadmium for thermal neutrons is

2500 x 10'2"’, find the thickness of cadmium needed to reduce the intenslity

of a thermsl neubron beasm by a factor of 106. (density of €d = 8.65, At wt.=112,4)

A neutron of 1.5 MeV collides against a proton at res‘b.’ Assuming that the
neutron is scattered by 30° in the lsboratory system, find:

a) The angle formed by the proton trajectory with the original
direction of motion of the neutron.

Ab) The energy acquired by the proton in the collision.

be

A neutron with iniﬁial energy E, hag two collisions with hydrogen atoms.
What is the probability that af%er the two colligions the energy of th
noutron has a velue between E and E 4 dE? -

A square graphite column of density 1.6 has sides 150 cmn. The intensity of thermal

5
neutrons diffusing up the column decreases by a factor g every 28cm. Find the 21,
absorption cross-section for carbon assuming scattering cross~section=4.8 x 107
(Atomic wt. of carbon 212.)

6. An atom hag 2 = 50, What is the minimum value of the atomic welght A for which

the atom emits neutrons sponteneously? (For the atonmic nass use the formulat
2 ° :
M(A,Z) = 4993894 ~ .000812 + .0L4A%/3 4 .083.(;%.9:..;...?)_ + .0006272°%/01/ 3 ft+ 036703/ i) )

Masa of the neutron = 1,00893
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