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- Abstract

e e g

The method; proposed in an earlier report (LA-671),

for treatment of shocks in a stepwise, numerical integration

.~ of the equations of hydrodynamles, has been tested by a series

~of trial calculations. The results are presented and analysed

in this report. They lead to the conclusion that the mock dlssi-

 pative terms that have been introduced (loc. ¢it.) cen be chosen

in such a way that the integration is stable and at the same time

the integral properties of the shock aré in close egreement with

the Hugbniot theory, withoutraﬁpreeiably bl&rring the shock (that

is, the thickness given to it by the dissipative terms of the

same order of magnitude as the elementary distence appeariﬁg in
the mesh used for the numerical integration). An analytical |
treatment of tho;stabiiity question 1s given, which is believed
to be more quantitative than the one given previously. It indle
cates that when the coefficients of a partial diffebentiai equa=
ﬁion are vgriable, it 1is sometimes permigsible to violaste the

Courent condition locally in & small region, bécgusejarrora that

‘develop in this region tend to\diffu#e out into other regions

where they are quenched., However, thls effect is small, and in

practice one cannot do much better than to satisfy the Courant

condition everywhere, These results are alsc in accord with

the trial calculations, which were not, however, sufficiently

extensive to delineate in great detall the set of conditions
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under‘which the integration is stable. Further exploration

of the method is plenned.
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continuous part of ﬁhe metion but cause any ﬂheck
to be replaced by a rapid,uontipuous:variabign. Tnert i
w given to the shock in thisfﬁay'is n§§?1Y iﬁaapGnééi

strength of the shock, and is given approximately b
€= _z_'_zt_l \v2 /V65

according to a rbugh estimate giﬁéﬁ'iﬁ ﬁh&rrépdrt cib

In any case, we call w, a8 given by ﬁho abova equati@n

shook tnicknesa-

It seems clear on ganaral grounds that3t
shock-thickness w should be chesén,asqa,small mgI" 
1ntervéj,élx: used for the numerical eaiqulaﬁiéﬁ;V
the disslpative terms will have no effect andflﬁ“i
under these circumstances only weak shocks arefrﬁ
mately correctly'representad without shock-fitting.
other hand, ‘1f w > Ay the difforenca equationa*nawt
most certainly be unstable. The ‘erucial queatlbn
by the trial calculations was whether w can: be chose
enough to produce ‘the desired result wiﬁhout intredu

5

‘instabllity.




In writing the difference equations, we represent
the value of a functlon at a mesh point by indices; for exax;mple,
T(x/&,tn) = T&n. The mesh used had ten points in the x-dlreetion,
with spacing &, equal to unity, so that x1=1;'xgn2, veXy0= 104

Furthermore we set V, =1, y = l.4. The difference equations are:

pRep = The /V.,IL'; (1)

(at)2 T Pag TPt (8)

R = ISy Exll
(where e = E./(m;)2 )
il - mnl e .
e GrE s (20)
S(r Ty = § pf‘“% -% p3dy ) (-Ai‘ef,',z )
+a Al:‘é ° (11)

For the simple pla.ne-shock problem discussed here,
the difference equations could have been written in a simpler
form, but the above are a close analogy to equations that havé
been found useful in more complicated physical problems,

As initial condition, the gas was assumed to bs ini-

tially at rest with Ax =1, p=1, V=1, T =1, and a shock
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the left boundary while maintaining the original pressure
‘£i5g~¥-1 at the right boundary. The difference equations

‘were then solved numerically % in a number of cases. The

parametars of the problem in terms of which the soveral cases
are differentinted are as follows., ‘?::nominal compression
ratio (1.8, the compression ratio that w uld correspond to shock
pressure p% according to the Hugonlot squation pg nb - ? ,). _'

w or w/Ax 1s the nominal shock thicknesas, in units of &,

Ce 18 the nominal velue of the "Courant number" (sound spead

" times “t/ ©x) behind the shock i.e.,

& (12)

The constants required in the calculatiéﬁ (pg),At,'a) can be
computed from values of s W, and Cf. The cases that were

considered in the series of calculations are:

~ Cases I II III IV V
7 = 3 I 3 1.5
w = 2 4 2 4 4
¢, = k¥ ¥ 15 15 %

The numerical results are listed in the tables. Case I was
found to be stable and was carrled through twenty cycles. Caae -

I1 was found to ve definitely unatable and was discontinued at

,ﬁhb,tifth cyele, Caaa III was then skipped, because it should

*V -
This work was carried out by Irene Stegun of the New York
Office of the Computation Laberatory of the Ns ;

‘Standards.,
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be more stabla; by any Lheory, than case I, which had been

found to be stable. Case IV was found to be stable and was

carried through eleven cycles. Case V was found to be un=-

stable and was discontinued at the fifth cycles

1I, Comparison of results with steady~state theory.

The development and propagation of the shock are exw

hibited graphically 1n“F1g. 1, in which the specific volume V

is plotted as a function of (Lagrangean) position at varilous
instants of time, for case I, which is the only case in which
the numerical calculations were carried far enough to allow
the shock tobecome thoroughly detached from the piston and
approach of state of steady propagation through the gas,

It 1s of interest to compare the speed and structure
of the shock, in the late cycles of thls'calculation, with the
apeed and structurs as given by a simpler theory. For 1f the
assumption of a steady state is made at the outset (i.e. the gag_ii{
flow is assumed stationary in a frame of reference moving with |
the shock) the partial differential equations (3) to (5) reduce
to ordinary differential equations that can be solved explieitiyn
The solution thus obtained 1s of courss the correct solution of
the steady state problem, whereas the one obtained from the o E‘r
difference equations, even after a steady'state 1ls reaohdd; may,‘
be in error because the finite difference, A x, 18 comparsble

wlth the shock thickness, so that the dependent variables may

UHCLASSIFIED
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'f?chango by non-smell fractions of themselves in a single step
75 (9.3‘ the specific volume increases by about 50% in some of
"ths‘stgps éhown in Pig. 1), We éhall find that the two methods
agrés\(;n éage'l) with an accﬁracy that 1s adequate for most

'V:Eﬁobleﬁa,'énd we surmise that the difference equations (when

“ﬁkgy?gré{stable) give a good representation of the differential

‘ ;LFar the staady state problem it 1s assumed that the
iqupén,ant variablas depend on X and t only through the com=-
'fbination

: §=x - St
’jfwhere S is the speed of the shock relative to the gas ahead.
'Equ*tien (5), (4) ana (5) then bec ome :

ax~

. R 18)
w8 e’
-pS %.g o . gs d§ ! (14)

g.gia- d§+s“‘ﬁ %‘ [ %%I%%( I s

EShaak;geing %0 the righb. We assume that far shead of

'-tha 3hoek the 8p001ric volume has the value V aﬁd we call

'iﬁhgveorrsgponding pressure p,e Integrating (15) with respect




‘fixpression for p, obtainod by solving equatian (16) ia

"f4b;titubed into (14),ws can inbegrate again with respect to

g and obtain a relabien bat;wson E,p and Ve Uaing the r law“

quntion (3)), the relation can eiwritten as

(v..v) - p (v-v ) a7 ’

The—coeffieienﬁa of
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2 : , |
d_ Vv R/ v v i '
(?1'? VS) = ¥ (1 - V;) (vo ?> (20)

so that the structure of the shock can be found by integrating

the equation

§ = |

Wherein the units have been so cnosen as to make Vo equal to

T (21)

unity.

- BEquation (21) was integrated numeriecally for ’2%=3(whiah
appliea‘to cass 1), and the iéSulf is plotted in Fig, 2, where
it 1is referred to as the "exact steady-state solution®, end where
éomparison 1s made with the resﬂ;ts (cireles) of eycle 20 of the
trial calculation for case I with the difference equations (7)
to (11).

The agreement between the two methods is seen to be
good, except for the two or three points at the left of -the
graph. It 13 believed that this'discrepancy would have dis-
appeared # if the trial calculation haﬁibaen carrlied further
snd that it was csused by the faect that in the early cycles the
:shock 1is muen steeper then in the steady state (1t was in fact
'assumed to e infinitely sharp at the beginning of the aalcu«"
lation)s This causes the energy dissipation to be abnormal |

when the shock passes tha first few points so that thereafter

S

By this is meant that the mass-points whiech ocnupy correapond-

e ek s e ek ot ’-ﬁ*ﬂcﬁm‘vﬁ D
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the entropy of the gas ls abnormal near the pistan. To‘taét
this explanation, the temperature T was calculated from  f
equations (1) and (17), using (18) to eliminate S.‘ The raSult
1g plobbed in Fig. 3, where compariaon is again made with “the
results of the trial calculation. It is seen that 1ndeed the
rifirst three polnts have too high temperature. Finally, in- Fig.
4 1is plotted the quantity TV -1, which is a functian of ﬁha‘ 7
entropy, and it 1s seen that ‘the first three poinbs have acquired
considerably more entropy than they would have in g stag@yyg?gtg
shocke o |

The speed of the shock can be obtained from the horis .
'zontal separation of the curves'in Fige 1¢ In a sbegdyrstata"

these curves would be ‘parallel and equidistant. Tnis 1s sean -_‘ '

:to be approximately true for the laat thrae curves, ;dapt near 'ff
the bottom, end the ‘speed obtained from the uppar pwgtions of |
Vthese three curves is S8 2,68, plus or minus perhgpa‘o.oﬁ,«in
good agrécment with the cofrect value, from quations'(18) andx‘
‘(19),which, for %==3, is V7 or ~ 2.65, |

The evidenoe of this section supports the view that,'
- at least under the conditions of case I, equations (7) to (11)

give a good description of shocks.

III. Stability of the difference equations,
The report referred to above (LA-871) cﬂﬁﬁained'a'

discussion of the stability of the gystem of difference equatiuns

UNC[AS*SJHED
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7(7) to (11). It wes indicated that from the point of view o
étability, the differéntial equations of the problem are equle
valent to a single equation of the diffusion-equation type.
Spécifically, if one imaginss going to a sufficiently fine mesh
in thé x~-t plane, keeping the parsmeters of the problem fixed
{including € ), the dominant terms, from the point of view of

stability, are the left member and the last term of the right

" member of equation (5) (or the corresponding terms of equation

' ,;}fhg diffuaion‘coefficient o-1s constant, the condition for

(8))e Introducing the materiasl velocity u?é%{ and noting

that  é;% = VO, égﬁl,these dominant terms can be written asf

~1 Su  _ 2 3 ! -
7= Bt - 287, I‘J%l " - (E)
or
_g% = O(x,t) %x% - (23)
where

B e

- By examination of (8) it 1s seen that the difference equation

oty
Hic

or(x,t) 2 € Vo5 I

,1¢dfrpspondingrtd (24) 1s to be written as

' n"'% - u;ré.“% - Iﬁ"% 7 : u}‘;‘%.-a%g-% Eg:% | (r:t;)
- -VO;g E , Tax)2 T

S : 1In a terminology frequently used, the difference
- .equation (25) 1s of the explieit: type. In problems in which

STOL should not axceeg
(ax)? |

stability is that the quantity C =

UNCLASSIFIER




unity. In the present problem O is large in the shoek, but
small elsewhere. To investigate qualitatively the effect of
such & variation, we suppose that O 1ls a glven function of x,

which varies continuously and has a single maximum at X = O

Trren
whers | R o | | |
olx) = 2Zixlet | (27)

(ax)”
C(x) 1s supposed slowly varylng and positive.
It is now supposed that superposed on a desired

solutlon u there is a amall disturbance'having the fomm
u= g(x)e"Lt | | '  (28)

where o 1s a constant, If for every solutlion of this form,
v)ithout restriction on g(‘ic) except boundedness, the real part
of o 18 non-positive, the differende equation is stable; and
otherwise not. Subatituting (28) into (26) and dividing through
by u;%‘ﬁ , We get '

—g-l,___‘_%clz [&+£~-2+ %8--%] | , (29)
whers R |
,g: e *at (30)
and 7 7
ylx + A%y = R(’éa)“ x) (31)

UNCLASSIFIED




‘E",smca G(x) is & alewm varying functi@n' °‘1“~°~"1°“ ‘29)
r;iffi&eterminos y(x) as 8 alcwly varyins funoticn-, (Thi” Or
'i?ﬁﬁourso does not imply 3hﬂﬁ 8(3) 1” slowly varying¢3
'5?requiramant of stability ia that tha gbaolute value of § ,
gaﬁheuld not’ excead unity for. any selutien Y(X) 133d1n8 to & :,‘
1“,.baunded g(x). ; | ' : '; - . |

L f  ~"7 Te solve (29) approximately rop Y(x): we conaider
f‘fﬁﬁ}a aaquence of appraximabiona, as follows.r As the first |

"iZQappra21mation, WB set

| '~:Jf§;dj,‘%','[ y - 2'Pel ]- -nl"v o ﬁ‘-ﬂ  :"7§331_‘

G‘é—) ket Y“""‘".’

"ﬂFr@m;ﬁh ,gséumsd charactar ef C(X), (1' § )/c has a minimum

at x s,o-'we assume fnrhhar that, for ,‘rs6 pﬂsitive or. negativawf;

has an approximately conatant value, whion will be :

 i ?$enera11F srester than 2. Thererore, te ﬁh@ far 1eft and ”1€h”!“.
f ’y(x) has two branches, as in. tha ﬁhroe BVP1051 035”5 “k’bchad




o 7,,féType A, B or C occurs according to whether the minimum value

'?‘;) 13 1oss than, equal to or greater than 2, At the |

'J'far 1ef£ and right, the two branchea have values in the 1nter-

s Q_'{VB.IS (O, _1) and (,.,l, ‘- OO ), respectively-‘

Although this 1is only the first approximation, it is

i'f,5axpected that further approximations will have the same character.

.;Before obtaining the next approximation, 1etrus indicate how
,1559 question éfability is related to these curves. From (31)
‘itfiﬁgaeen\thét the boundedness of g(x} as x goes to plus or
minus;inrihity”raégirea that for 1argernagative x we use the
,Vlgwer»branch4ofﬁthé;funct;on y(x) andrﬁhat.fcr larée positiﬁe
x we use the upper branch. . Therefore dlsturbances of type (28)
 2¢an érisq;onlj-if‘it is possible to get continubusly'from the
,léwer to the upper branch at 1ntefmediate values of X. Tnay
:limiting case is that 1n which the bwo brancnas cross at X 0,
and the corresponding value of § determines the most rapid
‘rrate of growﬁh (or slowest decay) of errors of the difference
 {»§quation (2&). This valuc of g must have absolute magnitude
“ Q;not greatar than unity for stability. For example, the con-
u"dition for crassing, in the first approximation, is that |

31

7 3 ‘2,, where C is the maximum of C(x), and the condition
| %rar stability 1s that Co & 1. |

To obtain 8 second approximation, we write

; ' 'x£dn§ f‘X£'j: %%5 T cresseiveay L (34)

UNCLASSIELED
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,f - 17 _‘j; _;5”

,?wharq primes denote difrerentiation with rappect to x, and
: ,iapproximate‘ (29) aa e ‘

$$~; " 'fi‘~‘.(i“ o . s
S

A

,(55)

el

:and in this equation the. boéffiéient of Ax/2 1s to be>

evaluated from the first &ppraximation. Tnis again'determines

ra function y(x) whicn, to tha far left and far right, has two
brenches, To find, in,secqnd‘approximation, the valuemor g
~¢orresponding bo the~criﬁical'rdte 6f growﬁh or decay of errors,
~the two branches must bs made to cross, which meansg that we
'equate to zero the discriminant of (35), regarded as an equation
‘for ypg, forx = 0, To do this we raquira the value of y'(0),
from the first apprcximation, ror the rising curve to type B,
for use in the last twrm of the. braeket of (35), Differentiate

{a2) twice with respect tu x:

‘ ¢ _ o (yl):‘? . }7 '7 |
EEIEEE SR A

L e 1] - (36)

‘and in this equabion set x==0, noting that at X = O in first
approximation, y=:-1, "(0) = O : C(O)-—l-
[y'(D)] ’g»,—zc"—m) (37)

Therefore

1o = Veom(0) =

-20-"(0 T v
o(o) ~ l/'g(ln(") x=0 (38

wewssig
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{The last equality follows from the vanishing of o'(0))

"Then, at x=0, (35) becomes

o, w 1 -/ n (39
g-]_g__g_,[yo 2 5 + Aax /2(lno)o] )

To obtain the limiting condition for stability, we now put

€ =-1, and equate the discriminant of (39) to zero:

{ai_ -2 ax l/-2(1no')"0J2-4=0' (40)
or,
t?i...-z + ax / -2(ino)" = +2 ; (41)

Clearly we must take the plus sign on the right, because C,

1s positive. Tnhis gives the limiting condlition for stability,

and general conditlion for stabllity is

¢, < 1+ %5 Jo2(ino)" (42)

Therefore, in the region of maximum o°, we are permitted to

violate slightly the previous stabllity condition that C

should not exceed unity. However, the,gain 1s not very great,
because in normal problems the last term of (42) isrsmall cone
pared to unity,&': 7 7

- Fop apﬁlioation to the probiem'at hand 1t would
haﬁe;been'mcrei reallstlc to consider a problem in which the

diffusion coefficient, O, 18 a function of x - St (where S

_is the spead of the shock) rather than on x alone. Although

DNCLASSIFIRR



~we use equation (42) as 1t stands. Fram (24), (81), wevra

ummmaa i

wo have not worked this case out,rit saems cléér*onﬁi ﬁﬁi

grounds that the restriction on €, (for stability)‘wa

even more lenient, We roason in this way, the rasulb obt ned
above may be interpreted by saying that alﬁhough erra#
to multiply in the neighborhood of x = 0, they. ta”

outward into reglons where C(#) 1sll§sg thag~1;an

quenched. In the present case there is“an'é&déd Bfr

the errors tend to be swept out of the dangeroua ragin
flow of the material through it. But againrtheigg;
ably small, | e

To get a rough idea of the magnitude ofrﬁh”

write:

Inor=1n  § + comst —

Inor= % 1n (1-V) + § 1n(v..%) “} 1n V-riomme

5
2

=
mf"-
5

R

0
| §f4

- /‘1"”-“"% |
, , vrr A

14F‘“ ‘Tnis 1s to be taken as the poinb x.=:0, for
point it is found that . " e

D meyn V7

SCLASIFIED.
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'Therefore (42) becomes

| Lastly the peak value of C(x) can now be obtained from,gﬁl)
| (34), (27), and is: h R

_ We now tabulate the numerical values of the two members of .
riftho 1nequality {48) for various trial cases together wiﬁh the‘
“‘findinga ralative to their stability:

‘ It 13 to be noted that the findings ara 1n confermity with ﬁhe{

stbpped with tha rirat approximation.

: pased method or brsating shacks ahould give sat;ar&ctary rew f@}

| *ions of,cgaa :!,—B“t in complex problems of nhyaisaiti"f

0056, 1 o+ ~4§ 'J%%;:L

s E ‘- A -

L - R : Za o ”““Qﬁj«“;f
Case ;_ o ‘:22 o Sass ‘ e  ‘  '”§35Q£§E52fﬂh‘

1 " J | '1.10“‘ 1,233 - ' stabia'if

11 o  $1 | 2.20 ‘_, ’1.1lé¥ v _“unstable ‘
IIT . .44z 1.288 (not investigatedfi}
v - .sas 1416 stable

v 1}59j R 1'098,'f7::'j | '9?3?&5391*“'

theory, also that they. would not have been, 1n oaau 5”**” e

v Further tr;al calculations.:,  ;f;ffVL , , =
' ' The findings cf this report 1nd1aata that tne pré~

sults, so 1ong as one dOea not depart tao mugh’ fram the aendinyf




\\\\\

the speed and strength of the shock and the conditions of
the material ahead of 1t will in general be changing during

the course of the phenomenon under investigation, and 1t may

- happen that nb one fixed choice of the coefficlent of the
| fictitious dissipation term will provide conditions close to

‘those of case I at 8ll times or even for all shocks (if there

are two or more in the problém) at any one time. It ia there=

fore of interest to know more accurately than we do now the

range of condltions under which the method is usable, and to

lmow how well the method works under unusual cireumstances,
~ such as when a shock crosses an interface. So far as stability

1s concerned, we may pervhaps place considerable reliance in

formula (48), but the question of accuracy remains to be snawered.

A complately satisfactory exploration of the method

'ﬁouldfinvolve a rather extended series of trial calculaticns,

énd for each of them the calculation should probably be carried
csnsidarébly further than any of the examples described above,

It 1a plannod to Initiste such a program, with the aid of the .

- Los Alamoa IBM group, in the near future,

ONCLASSIFIED
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?ropoaed Hydrodynamical Calaulations

‘Pabls of vjé,%, |

?ws,;'w=2, Cf"'& ) o
,,Th% | 'V‘*% o ﬁ*%

¢Caae I,

L7800 0928 .B4l4sse
98747 . 0124 311.00537

= 1

1 1

1 e

1 1
1 1 ,,
1 X ’

r 1

ST
| ,.fmrrz 44&5«{  1.34466 9367
.6g9944 2157 1 % B5LE
O88Y8 . 5 . 2188
7270
Vo 4

- o B0TE4 1867*é»,ﬂ1 5?091,g0192,
+95306 0741 1.03680' 7933
;99609"ﬂ625§‘1,’f1&00157 - 22182
- ,00998 8918 - 1.,00000 4433
,99999 9996 . 1,00000 0002
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Table II

B e

Proposed Hvdrodynamical Caleulations

Table of v‘£+§, g£+_%

Case I

7

Vi+4

» 54713
72891
89274
« 98622
. 99986
« 20999
1
1
1

o
Viry
. 44406
. 609581
, 78745
«93064
,09612
« 99087
. 99999
1
1

1l

6593
6918
6374
5371
8193
0829

2457
7090
6851

2617

1302
8958
9960

vlLfg

L 37771
«49628
« 68957
«86443
« 97443
+ 99930
299999
« 99999

1l

0745
8313
0033
1453
3181
6110
7174
9994

7=3, w ‘—152’ Cf:

rz*%
1.67821
1.27415
1.06841
1.00572
1.00005
1.00000
1

1

9

Thrs
1.87716
1.44816
1.15781
1.03049
1.0015885
1.00000
1.00000
1

1

11
T/&+%

2.,01852
1.64008
1.28543
1.085811
1.01007
1.00027
1.00000
1.00000

1l

7363

5687
5416

4536
2724
0069

0284
2365
2581
7106

8559 -

8417

- 0015

2687
1619

0018 -

4660
€580
7651
1129
0002

3

URCLASS!HED

8

V .

9}
49122
. 66980
» 84638
« 96748
« 99007
« 99990
« 99999
‘ 1
1

lO

3704
0536
3000
7745
6684

7659

9997

,Zb%

«40513
.55221
74434

«90479

« 98859
90986
. 99999
1l
1

6435
43540
2263
2185
R784
16818
o6l1e

12
e

36052
.44608
. 63202
82023
.95246
.00741
99998
99999

6751
7991

8379

8479

9278
6824

3132
9940

>
Lk
1.76414
1.35586
1.10982
1.014B2.
1,00036
1.,00000
1

1

1

10

,Z+%

1.,95839

- 1.54104

1.,21754

1.05374

1.00466
1.00005
1.00000
1
1

¥y

2.05793
1.73473
1.36578
1.12388
1.02212
1.00103
1.00000
1.00000

3510
9995

9951

3736
9503
0837

4972
1718
4522
7540
8066
5365
0154

6680
5004
8162
2084
1655
5627
6746
0024
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«3B776

-« 96626

499999

36189

« 54794
75219
+91156

99999

Proposed Hydrodynamical,Calou;aﬁicna :

Table of ‘{21.*%’ T’rz“—% |

Case I 7:-- 3, w :Q,A‘Gf:’v |

13
Vs

255362
.40180
« 57485
77139
« 92335
. 99255
» 29891
. 99999,
1

8038
7014
0245
98856
4585
4047
43435
9638

Vﬁlé

5 6507
34451
46397 4331
.66348 9565
84742 6077
0151
3112
0609

« 20862
« 90909

Vﬂ*t
0669

.33308 6517
37466 9387

2984

. 98959
.09982 8808

- 8999

' 2.07425

11.00000

2,06455
0822 ‘
1.64648

1.00085

9962‘ 1100000

7991
1,18948
7999
1217

- 28 -
Table III

13

0501
1.82464
1,45247
1.17306
1.03933
1.00301
1.00003

9717
4159
7643

0145
1 .

15
Tﬁ+§\
5848
1.95133 = 5123
1.30434
1,09591
1.01478

2045
772
6652

1.,00000 3757

17
Thts

2.05513
1,987862
1.82803
1,47982

1.04647
1,00423

1.00008 -
1. 00000 :

8562

4858

1396
4263

1017

1285 -
0015

7857@?;=a;5
gB4e -
,1904,=i;ijl
8508 . .
0014 .
8324 -
4722

o4ec}#‘~»>

UNCLASSIHR

14

Jéfé

¢353777
‘0367?4”
3569
5146
- 5684
0103
3940,
.;5564 
" 9905

« 51769

» 71834

~88787

- «98298.
':o999g9
 7.99Q99

7845

0432

1

1,548865 -
1,23207
1,06384

1.00716

1.00015

1.00000

unmssmw

. -

%
2,07389
1.89819

4298
7685
5589

- 6968
- 9485

0078
0448
o775
0002

4316 -
3224
9227

4788,

6153
6914
1539
6662 -
0086

1002
- 3600
2519
6687
9204

/”4539

0164
5578

1744
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Proposed Hydrodyn amic al G‘alc. ulati ons

Table of VZ*%, T,?*

Table IV.

Case I | \Zus, w=2, Cexd

19
Vs
.35785
. 34387

L« 32969

«43849
« 64140
«B3212
« 95923

« 99791

«99998

2=

7201
3427

5405

8254
2002
8926
0473

9670

196l

19
Tjﬂr%
2.06435
1.956346
1,93074
1,67904
1.,33089
1,10864.
1.01825
100083
1.00000

5091,
2336 .

3012
3470

1223
5642

5833

1006

7216

‘




" , Table V
Proposed Hydrodynamical Calculations

Table of V)., T,??*-%

Cage 11 R=8y W =4, Cp = 3

1 1 2 2
v T v T
£ Lot = s e
1 .95008 0392 1.10872 8587 04863 1970 1.10890 6694
2 1 1 95215 4605 1.,00921 7161
3 1 1 1 1 '
4 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 1 L 1 1
9 1 1. 1 1

3 5 4 4

v : . T

2 Lk Toa e o
1 85694 2015 1,71336 7666 1.08675 2784 10,36510 1602
2 . 00039 B611 1.,12127 2141 ,76480 2748 0., 60678 1873
) 96604 7705 1,07965 9651 1.01568 691¢ 120627 0952
4 1 ¥ 1 .96155 1221 1.05693 6668
5 1 . 1 1 o 1
6 1 1 1 1
7 1 1l 1 1
8 1 1 1l 1
9 1 1 1 1

5

v

A o
1 -1,67891 2222
2
3
4
5
8
7
8
9

UNCLASSIFIED
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Table VI

UNCLASSIFIED

Proposed Hydrodynamical Caleculations

Table of Vé[+%s Tﬁﬂf%

Case IV  w=3, w=4, C,= 1/5

1
V .
l@%

«99218

P bl et e e

3
Eﬁ%

« 99419

,09906 9346

e

5
v
L+

« 93510
« 97618
« 99787
« 99999

e

6863

2012
5564

5776

8890
6776
4765

1
T0+s
1.00534 1945

N

3

T

ﬂ+%
1,04067 0536

1.00277 9499
1.0000)1 2262

fd e et et

o
L+

1,08333 5095
1.01606 7245
1.,00087 4389
1,00000 2094

IR N R o

2
2%

« 97887

+99879

P e

4
4

7427

6581

L+t

+ 95018
« 98641
» 99051
« 99999

P

6

2069
3097
7909
9910

v
A+3

« 91961
« 96620
99451
« 90983
« 99999

1

1
1

URCLA

8526
5132
4285
2885
o987

1.00000

SSIFIED

[

2
Ly

1.02146
1.00048

e et b

ot
A+3

1.06080
1.00808
1.00019

bt e B

L

[

1,10763
1.02598
1.00239
1.00002

1.C0000

e

o

kg A

!l!!!!!!!!!gé%%ég;g

e 1

0428
9332

5240
4087 -
7053
0036

5859
9602
ge84d
6858

0052
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Table VII

- Proposed Hydrodynamical Calculations

n
Table of V
y/

P
+3  A+d

Case 1V )(:az), w=4,Cp = 1/5

7

» 90391
« 95494
« 98934
» 00064
. 99999

4042

4647
1062
9743

et

¢
Viss

«87221
[ 9308 b
« 97491
«99711
« 99997
«90099
1
1
1

4006
8392
0047
9078
8386
9993

A
L+%

.84024 6427
.00517 8194
. 95732
.99037 4866
99965 4586
.99009 9498

1

1

1

0607

6919

o
L+3%

1,13302
1,03735
1.C0811
1.00014
1,00000

b b e

9 ‘
t{£+g;

1.18586
1.06404
1,01452
1,00117
1.00000

g~

5979
0327
93557
3717
0098

0272
6090
9685
9111
8641

T ﬂ"f‘%‘u

124139
1.09547
1.02820
1,00828
1.00013
1.00000
1
1
1

2930 -

1010
2875
0140
8250
0198

8
s

.88810
« 94314
- 982867
.99881
« 999209

b 2

10

V£+%

85624
. 91817
96641
+99432
. 99989
.99999

"UNCLASSIF

7550
0776
1917
4279

7019

u

9540
3218
3173
5787
7850
0028

8
Tﬂ+%

1.,15915
1.05004
1,009819
1.00047
1,00000

1
1
1
1

2227
2889
9358
7247
1188

10
T ly

1,21340

1.07924
1.02090
1.00240
1.00004
1.,00000
1
1
1

bdllo

D

2832
9143
6858
1914
0869
0026




Table VITI unCcL AS‘S‘HEb |

Proposed Hydrodynamical Calculations
‘ . »

Cas'e v ?=1.5, w= 4, Cf= %

| A B R 2
A L+ % Lk - L+ /.
1 - .94791 8667 1.03703 7037 « 96050 8243 1,03151 9072
B Tl 1 .94162 0879 1,04617 0334
3 -1 1 1 1
4 1 1 1 1
5 1 1 1l 1
6 1 1 1 1
- l 1 1 1l
- 8 1 1 1l 1
o 1 1 1 1
_ . 3 3 . 4 4
, /2 . v,ﬁ-ré T,erfg V,«é-r% Tj.,.%
.85195 8579 1.22440 3896 - 1.33924 4936 14,17887 4372
- 1.02707 7322 1.,07786 8276 «47069 0843 21.05824 1104
- L,92712 8926 1.07352 8041 1.21621 9707 3.70140 1314
' 1 1l «88747 0231 1.20843 175873
1 1l 1 ’ 1
1 1 1 1
1 1 1 1
1 1 1 1.
1 1 1 1
5 TS
Ues A+ 4

-14.93216 9800

~ UNCLASSIFIED
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