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Neutron-Deuleron Scattering At High Energies

J. Introductlion

The value of the n-n cross section at various energies

is of fundamental interest to nuclear physics because of the

direct bearing on the question of nuclear forces. Unfortunately
it is difficult to obtaln direct experimental evidence about this
cross sectidn, The method of using two beams of neutrons can not
yileld results because as yet we do not possess beams that are in-
tense enough for thils purpose. Thus all our information about
the n-n cross section is limited to that obtained by indirect
means. The recent development of 100 Mev neutron beams by use of
trre Berkeley 184-inch cyclotron permits such an indirect way of
determining the n-n cross section at high energles, |

The fundamental idea of the Rerkeley work may be described
as follows: At high energles the n-d cross section sheould, in
first approximatlion, consist only of the sum of the n~-p and n-n
cross sections. This Is based on the assumption that at high
energles the wave length of the incident neutron 1is short compared
to the inter-nuclear distance between the nucleons in the deuteron
and that the energy of the Incoming neutron is very high compared
to € , the binding energy of the deuteron in the ground state, 1In
this aposroximation the difference between the n-é and n-p should
then yleld the n-n cross section. TIndeed such experiments were

carrled out at Perkeleay by Cook, NMcMillan, Peterson and Sewell1

1
L. P, Cook, E. M., NcMillan, J. M., Peterson and D. C. Sewell.

Phys. Rev., 72, 1264 (1947)
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wlth‘QO Mev neutrons, Their results may be summarized as

follows:
Substance: Total Cross Section {n barns:
D 0.117 ¥ 0.006
H 0.083 * 0.004
Difference (n-n) 0.034

This shows a large discrepancy between the inferred n-n and

the measured n-p cross sectlon. In consequence 1t was thought
desirabls tn examine just how accurate it is to consider the
n-d cross section as the sum of the n-n and n-p cross sectlion
for 90 Mev neutrons. The present thesis in an attempt to esti-
mate these correction terams.

The correction terms will be due to two causes: finite
binding of the deteron in the ground state and interferencs of
the waves scattered from the two particles in the deuteron. In
order to see whether these correction terms are negligidble 1lat
us examine some relevant quantities occurring‘in the problem,
The relative wave length of the incoming neutron, or what may
by regarded as more significsent, this quantity divided by 2n
turns out to be A = 0.5 x 10" 2. 0On the other hand the
average "radius" of the deuteron® 1in the ground state is

approximately 4 x 1013 cm. Thus we see that whils A is

2 . '
Estimated by followling Bethe and Bacher, Rev. of Mod. Phys., 8, 4
112 (1936) in setting thls radius equal to 1/a where o = H/(ve) %



small compared to the average separation in the deuteron,

it is by no means negligibly small. The corrections due to

the binding energy of the deuteron can thus be expected to be

of the order of magnitude of the ratlo of € to the neutron energy,
i.8., the order of a few per cent. It is difficult to form an
off;hand estimate of the correction due to interfersnce. How-
aver these rough consideratioﬁs tend to Indicate that it 1is worth-
while to calculate the correction in more detail.

Ve shall attempt to set up the n-d scattering problem
in such a way that the total n-d cross section divides itself
naturally into three separate parts:

1. The scattering of the incoming neutron from the

proton bound in the field of the other neutron,

2. The scattering of the incoming neutron from the

neutron bound in the field of the proton,

3. The interference term.

Since the energies we wish to consider are reasonably high we
shall calculate our cross sectlons by the Rorn approximation.
While it 13 realized that at 90 Mev this 1s far from ideal it
should serve to glve some idea of the correction.

In order to effect the separation into the scattering
from the proton and the neutron it will be well to retain the
laboratory system of coordinates as far as the description of
the three-particle system is concerned. Thils does not of course
preclude the frequent use of relative coordinates between two
particles of the three-particle system.

In the next section we shall consider the simplest




cas?, namely the case of Wigner forces, ignoring the effect of
the Paull principle operating betwken the two neutrons, In ths
usual calculatlion with the Born aprroximation we should expoct
to represent the final wave functlons of the three-particle
system as that of three free partlcles, In our case it will te
necessary to consider tne final wave function as made up of ths
product of the final free~particle functlon of the scattered
neutron and the wave functlon of a very highly-sxclted deuteron.
(Actually it 1s seen that we really use a modified Hamlltonian
in order to work with a free-particls wave function, but this
b8 only a calculational sinplification.) The modified plcture
will Insure that we Indeed describe the scattering of the in-
coming neutron from a bound particle, even though the binding
alfter the collision i1s essentially negligible,

In sections III, IV and V we consider the modifications

Introduced by more gsgsral nuclear forces gng also the inclusion

of tlie Paull principle,




II. Wigner Forces Without Paull,Principls

We shall choose to designate the three particles as

indicated in Fig. 1.

Fig. 1
-~ \\
{ e \
; 2 neutron
|
[
| ] [ |
3 v © i
incoming I roton
neutron Y-
TR e ' Deuteron o AT

Thus the coordinates of the particles in the laboratory system

are designated as ry, r,, and T respectivelys. We shall further

introduce relative coordinates between particles 1 and 2, that is

let:

r=r_-r (1)

R

%(r1+-r2) (2)
Further introduce the following momenta in the laboratory

system:

— before collision: p,

Incoming neutron —_—
after collision : p

Deuteron: " Dbefore collision: zZ8ro

- particle 1l: p!
T~ particle 2: p"

after collision

3We shall omit to make a distinction betwsen éhe,writing of
vectorlal and scalar quahtities since the particular symbol
in question should be clear from the context.
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Tt will be useful to introduce the followling combinatloqs of

momenta:
Py = Bip'-p") (3)
— ] "
These momenta will be recognized as those assocliated with T
coordinates r and R respectively.
We define ’0i(r,t) and 9bf(r,t) reapectively as the

initial and final wave function of the three particls system,

Further Ey and E; are total final and initial energles of the
,&&gstem. We shall have no occaslon to use Ef in explicit form,

» ’\r"

but, ws shall make use of Efo; the final ensrgy neglecting the

energy of binding between particles 1 and 2. Thus we have

o ] "
Ec®S sk (224 p'2 4 p 2 ) (5)
2
§ E, =z Po” . ¢ : . (6)
<M £\ o

Now let us develop our cross section, using the usual fims
dapendent peturbation theory. In this sesction we shall neglect
the Paull principles; 1.e., we shall not antisymmetrlze our wave
functions. Furthermore we shall neglect treatment of the splin,
The nuclear potentials shall be assumed of a straight Wigner type.

4

Now we have the time dependent Schroedinger equation” which states

that:
theg (r,0) 2 (B vpg) (r,0) (7)

4Of course r is here used to denote a general spacial coordinate
and 1s not the r of equation (1).




Here H 1s the Hamlltonlan corresponding to the kinetlc energy N
of all three particles plus the potential energy hetwsen particles

1 and 2. That Is
(e 2 2 2
- - ampa— v A1
i = oM ( 1 +V2‘+v3 ) + \/np(x‘l- r,) (&)

o The quantlty V4 which is made up of the two potential energles

Vnp(rl- s) and Vnn(rz-rs) is regarded as the perturbation in
equation (7). Now let

$ir,t)z e ”/’F’H“gs(p,c) (9)
Then

. . -1/
/B gy o ER S () (10

/\A““~ - 1
¢(P’t‘) - - T
h
Thus in first approximation this iIintegral equation (10) has
the solution
t i
P81z, (r,t) -% / o1/ B (-t )Vnd;éi(r,t')dt' (11)
&

o]
where

g irn)= " VRER o (o (12)

Now let us ask for the probablility of finding the system at the

time t in the state "f"., This probability is then given by lbf’2

where

be = (5&1'.}0) (13)
Thus we have from equation (11) and (12) that

- 1/h (Ep-Eq)t t
b.T s 1% -1 -1/RE_t
£ $1,P¢) hu/; (P e i

.e-i/ihﬁ(t-t')vnd -1/ REsLY By) aer (14)

since 962 and géf.are orthogonal functions and H is a Hermitisan

operator we may write:
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bp = - %(?Sf:vndfbi) /t of A(Ep-E et 4, (15)
(o]
bp o= - @ vnaBy) L0 HIAEE T gy
b Y f2'nd 77 f e £°% dt (18)
' © (BEqs16 1s identical with Eq.15 and
and finally | was included inadvertantly)
2
Jop|? = 2 | (Pelnal 21 |
= : 5 (l-cos(Bp-Eq)t/h ) (17)

Form this ws then develop our cross section in the usual manner®

and wo find that

v 2 2 |
" nd (pJM) ian /l (Pelvma] P o) e, ® (Bp-Ey)dE, (18)

whers in equation (19) the symbol V denotes a large volume to

w#hich we normalize and pE as usual denotes the denaity of states
f

with energy Ep, i.e., in our case

B T P "p' "pn (19)
Now let us write the & function in terms of its integral
repregsentation and we find that

_ VM
9na < % Po T (20)

where

. 3“ N .
v 2 1* (Ep-E,) .
T = ;5./] (Be|Voal & 1.)[ ® 71%aA agag i (1)

‘Thus we may write in symbolic form that

T :/% (¢1 lvnd’ ¢f)(¢flvndl }51)01 - (Ef‘Ei)dk (22)

Sees for ingtance Weitler, "The quantum theory of radiation”
2nd edition, psge A9,

14
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Thus o ' "
/E (¢1‘Vnd {¢f)(¢f1 d|¢i)°

" Now sinqe the 751. are a comnlete set of functions we may replace

them by any other oomplete set, say ¢f . Here the ¢f are eigen
functions of the Hamilton operator Ho, Wher'e Ho is _

: a2 2 2 2
- v v
H oz = B (V) 4 Vg V5 ) (24)
~ Thus H becor‘ne"s
(25)

H=H + Vy,(r-rp)

and equation (23) may be written as
= [T (B1 |Vaa| PP [T P Pe® | Vna| P
Bk -1 A\E

° 1as (26)

Now the following theorem is proved in Appendix A:

G s (N () (25) e

Where B is small comparsd to A. Now
1)\H o I AHp + 1N V5o
« $,.°| | 2.9 = (o )kf‘ (28)

where we have abbreviated V,,(ry-rg) by V12_
We know that Vyp 1s small compared to H, since we assume a high

momentura for the incoming neutron. Then by (27) we have

(Bo |31XH)¢f°):(¢k° | 1M Ho| B0 )+ (2,0 |1 Wy, | P

(29)

1x( °~E0)
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_ However the céntribution of the last term to (29)

comes only from those portions where E o~ Ef° and thus

k

(¢kol ei’\ H l¢f°): ( ¢k0 'ei,‘ Ho(l 15 Vlg)l ¢f‘0) (30)
Now then

\/PE (7511 Vnd‘ §5f ) ( ?&-l‘l*'i ‘sz)Vndl Pyret? Br2=1) oy

By assumption, which we made at the beginning of this section,

we may permute V12 and Vnd since neither of them involve space or

epin operatops. Further 2

2 v
- . 12 .
V12 ¢1-( -€ E——ﬁ—w—)ysi ‘ (32)
So that : ' '
2
T fE(FS v o) ( 2
d s V.
1\ nl¢r Ppo ‘Vndl{li[ 12 ]}5251)
M
o1t (Ep° “Ey) 4a - (33)
2
However, ths operator V&Q does not commute with Vnd and we

must examine T when Vnd s split up into Its separate terms,

.Recall then'that

2’ ' ’
v ——)-V
nd ap¥np* YunVon + Vnnvnp-+ Vannn : (34)
and split up T and o4 correspondingly inte
T=T, + T_+T 4+ 7 ° 5
A B c,a” Tc,B . ' (35)
and ,

Snd= 9 A+v Bt I pt oR (36)

_ Now let us concentruate on aA. From equation (33) we see that

this involves the matrix element




Z .
L =(gdo |y l . 2 v ,
5B [T lor [e+mh‘v 12 P S
For the avalustion of (37) we now note that LA can be'written ir

terms of the coordinates ry,;rs and (rl-rz): r as

- 2
+ LR,
‘hep
vrlp.(x‘l'-rz')e A

- 1 -1/ B (pyerl +per )+ 1/ Rp" e
LA— 7372 ‘/e 21 5
2 .
[1'1 »( €+ foz _Z]:IB )] X {r')dry* dry'dr(34;
—— 2

Performing partlial integration with respect to the coordirates p

we get
= 4 e +1/ . 1 1. ' 0o
Ly~ vo/2 [1'1*( 6+ET.._)] /e SR P+ prleryt4 p arot)
/_‘ aft

Vnp(ryter,: )e-i’/k pO"'S'AX(xw ,'-rg')‘
drl'drg'drsi (&Q?E
Since only smsll values of % contritute to (31) because tlis
expression {s oscillatory for large values of % we may make the

Following replacement A% (39) P

i:’"2

p"e
) —

Then TA becomes in virtue of (31), (39), and (40)

3 . E N .
m - V71 =1/ (P’ +p.r2)+ 1R p". p
fA.' hg‘\('5f‘fe ' ¥ e Tmp 71775

+1/% (p Ta=p".ry) 2 1% v .
& 6o 1) x (r-)drdrldrs e ‘2]1“‘({)2+ p “~p .2*902) :
dA dp dp* dp" (43) -

Denote by {p (p") tha momentum transform of X(r) 1.e., 1at



tndg

213 -
ez d S YERT e (42)
0/2 . . . }
thern (41) and (20) may be written as follows:

- ¥ -1 '}i ( Izt tr.r 1 Pa-p. i,
AT R R,V ‘/'f oM/B (p e © l)ynp("l-r:s)e+ /% (po-r3-p 'M.)
2 . 2 v
dr, drsl ‘(P (p™) l o %%(Pzi'?)’g-{?"e-pg ). .
dA dp dp' dp" . (43)

»

Now let us c¢all - pgjgpd;Athen~w§<get - N :
‘ ‘ xﬁwn o P
¢ = M

Py S ‘i//h (p.l" +p‘.r‘ + . |
A hgpo f’-/'3 3 1)Vnp(r‘l"'g)a 1/k (p, Tz Pa-ry)

2 CER R .
dry drs, l@(Pd)l o sy (p%+p'2-p42-p 2)

dA dp dap' dp" (44)

On the other hand consider now the collislon of a neutron of
momentum p_ with a proton of momentum p". The crose section for

this process may he written as

(P - g 5‘: . _1/-1:1 (b'r'+p'nr ) .
> np’PoPa khelpo"pdl‘ff]f ° ° HVgplrrors)

+1/% (Poerz +Pg.r 2
e 0-T3*Pg l)drl dr
3
i". 12 <
e L 2 - ‘- 2
2 (p<+p ' =Po =Py )dh dp dp' dp" . - (45

Hence we may express GA as

- _ ]P -pdl L o -
T A -f Opo__— np(po'pd):' l <P (pg) ‘ d py (46)' |

Note that equation (46) is just what we would expeot from

physical reasoning. It is the average cross section for a
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mean of neutrons with relative momsntun Po-pg relative to tre -
proton with an average relati?e momentum of Py The distribution
of pg Is just that of the momentum of the proton 1n the deuteron
as we expect.

The techniques In evaluating s are exactly the same
as those wsed in obtaia&ng equatig&“(46) for o4. This 1is so

. ~ . ¥ < :

since we are neglecting snin prcpértlies and so there is no in-
herent difference between particle 1 and 2. Hénce we shall not
give the detials here of obtaining “ pr but merely state thgh
result which is

&
- /1 Po=pgl 2
R y/““*sg*—“ Gnn(po“Pd) '@’(Pd)l d‘gé (47)

squation (47) 1is agaln the result we would sxpect from phyatesl
reasoning,

Before simplifying (46) and {47) for very high P, we
shall first turn our attention to the cross terms. First note

that there is a relstion betwesn S a and o For this
?

»

G,F °*
purpose look at T 1iIn the form of equstion (22). Splitting up

Vha = Vnn*'vnp in (22) shows that the two cross terms are just

complex conjugates of each other. Or that

< + ¢ - g
c,a” “o,p T OERE T, (¢8)
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« We find theat

Thus we shall examine only Yaa
3

-~ ) " (6]
TC,A - / Lf\: (751 l Vm\’¢f0)LA ei ) (Ef'Ei) ds (49)

whare LA 1s given by (37). Ry performing the steps analogous

to (38)-(40) we find that

Toa =) r KMo S-(o%4p12-p"2.p 2) aA (50)
where

K2 APy |Von| Py (51)

M= (¢r°{vnp{ ¢i‘) (52)

The Iimportant step in solving the cross«term is that of treating
K and M separstely at this étage. In other words in K the

coordinate r,' is "extransous” and we must eliminate 1t. 1In M

the coordinate ro is "éxtraneous" and must be eliminated., In

particular then we may write K and M as follows by making use

-of squation (42}

3/2 |
K= :—57-2- /e“i/hpo‘rs'vnn(rz,_ra,);—i/k (p.rzt+ [p'-l- p'ﬂ‘-ré )
D (-p') dryt ar,r (53)

3/2
-— h L » '
= oszm fer/Blersapren 1Py (g ergyet /B Pours
@ (+0") driar, (54)

Now let us Introduce the following coordinates
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~ .
s = -1 =8
1 b | = 8
52 = ré-r' ' t rs T 8,-3;
S; T re-rk Py = S4-83-9y
Thus we get

- ¥Y'n - +1/h pols,~s,-s,)
T - 95 ,ﬁo hp°‘<s4 3 sl)v (80) /R P 473378,

(55)

& i/% (p'+ p")(s "sg"sl‘* 52) -1/% p. (54-81) -1/k (p'+ p"). 4

v _(s1)d /aﬁpo'(s‘i gl)

r)

@ (“pn) @ +p")o

‘._ | ,. ~ dsy ds, ds;3 ds, dA dp dp' gp"

Integrating over Iss and 54 wo 8°t
- Vva© I/Tx(p’ﬂ-p")(sz-sl)
Te,a”™ ;T J § (po-p-pt; p")

h
3% ‘ - -
D (-p') P (+p")o TA(PQ P'e p"*-Py2)

Integrating over ap wé get

vené 4 i/h(p +p")(s -8 )
Te,a " poya ,°_ g 2 n(sg) ¥

* 1 :
D (-p) D <+,p"),e = 2(9'“-Po'(p +p'))dsl

Now the P 's mean that only very small -values of p' and p”

ds, ds, dA d, 4y 4 "

7)'2 "2

o
(p+ -p"“ep,”)

(58)

Y {
nn(SQ’Vnp'sl)

p
(87} -

(8]

ds, dA d_ gt 4"
2 P

P p
(sR)

will give a contri(bution, i.e., to ?lrst ordov we have

i

i |

| .
|

|




!."3

Ty

A ol
3

,.
[oa 7

. =17 -
ng Mn© u
;1.9.__4.. / v (8)V () cp («p') D (+p")
- (52)
¢ (p'2.|p,| lp +p"| )

-» ->-
where/u 1s cosine of the angle betwaen p, and p'+ p" . Since
-p

p'+ p has no preferod direction welmnyaverage over 2 . This yields
. 3
P fv (s2)0 (81) &' (-31) & (+p")
c,A BV
o Dl e (60)
(eefpg| o'+ " P Paw :
Performing the integration_over,d/u we gaot
* ' : > - - ~-
_ 3 un® Van(82)V5(81) ©7(-p') & (+p") a3 dap dgt "
C A n~ Yy ' T
[Po| [P'+P"] (61)

Now one can easily show that

i/h (p'+p") .. o | ‘
) dr - Th
f . : = TR (62)
but :
- _ 1 1/% p.r ‘ .
x (r)= T37E \/ e ' _ ,:(I)(p)d‘r';‘ (634)
hence ' o
3 6 Lot
t ¥n 1 3 . g —
r T Sy (FR) P Ul (a)ad 6y
Coa hFoY | (64)

/‘ X {r) x* (r)ad”
2

r

Now let us assume that V__ _ and Vop are related b] a simple

numerical constant.i In partlcular let

Vian =k ¥ | . (65)
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\
we
Co thei,notice thatJ/Vannp can be expressed as proportional to

b .

a op

A1l |8=0. This ts su since if we write « ,(0) as
an “(0) - $9n
shorthand for ¢ (0} - a_._ﬁ_E'_ 9=0 tren
2
_ RWYN >
nplQ) = R Vep(s1) Vnp(sg) dgy dsj - (686)

Wotlce furthor what the significance of the last part of (64) 1s;

namely that

AN g

f x(r) X (AAF (:1—,:) (67)
2 r<

r

where the bar as usual denotes an average, Then we may combine

gll the foregolng to wv!te'

g - [ 1
- — —_— o 68

which is of the form of a deuleron momentum squared over the

Incident momentum squared multiplisd by a cross section. Lsater
we shall notice that this is typical of the form of the correction

terms we are lookling for.

Now let us return to the sguations for Gk and ag

{equation (46) and (47)) and simnlify them for the case of high

Py, with which we are concerried. Thus expanding equation (46)

arcund P, we have

g =

1 >
A Ipo{\/P{:|pol th(po) - Pg - Vpo (po ° np(po))

1
+ 35 (pg. Vp,)? |po] © (po) + ...} lzp (pd)l2 43 (69)



& . Differentiating out we find
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Since pd has no preferred diyeotion, tre second term of (69)

integcrates to zero when the angular 1ntegration fs pepformnd

The other terms yleld

.

S : 2
o} : .

i . ('70)

where We'may simplify

;;é denotes as usual ar average of py2..

this expression by the use of the standard relation concernad

with the Laolacian. Thus 5
v ) - L 4 a3§2 B
L N Apo® 2 (po)) B (11)

and hence

(72)

e 4
1 Pa® ) 47 |
BAZ np(po),+ 3 (——‘-) -5—2 (po‘z: g np(po)

p02

Now we may re-express the second tefms of (72)‘wh{ch we may call

v
Ve

np . = 5 O
- L “(73)
Thus we need to consider whether we:canvre-exp?gés.’ %ﬁi a§ an
angular'derivative at the energy coffespondinélgg Po s .Indeed thils
. can be dona.: Conslder %3§%?1~ which 1is givey by |
. R ﬁn‘ .
Q__a_j%l__ l /‘ v(r_)-é-%/’h( oA "p)?..rdr'.’ . (74} .
. ©=Py
Thus 1f for the sake of brevity we ecall . i~€-
S F = (o) b (75)

d |

4 S
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-\
jf«r‘t ! . g g
- and let x denote tre cosine of the angle between p and p,
v\?'
t -~ a(x) = £lp,2(1-x)) . (76)
o sad o -
o k!
w7 o= z“f . ¢(x)dx (77)
- |
-1
hernce _ ‘
1
dce . do_{x) 4 78
ol B (78]
-1
but
de(x) - : . .
-'d—gé-l = 27, (1-x) £ bl SR (79):
whereas
Tt T -Dpte (80)
and thus
e ’ . ’
o dg (X) = Z(X‘ll d s (X) (81)
ap,, P, dx
so that
+1
das - x-~1 d a(x) o
- dp,, - 4"‘/ Py ax d.x »(8:)
-1
or
dO - -20 2“
= o = t = 47 B3
& = 4etr) (83)

If we substitute (83) into (73) and do out the indicated operations

find that

-2 (25%) [z . dogo( %)

- - Rl S . amn - n

e T3 (902){ P npl TI¥ poBT TP (84)
: d p,

E
[\



- 21 -

Now wo still have to re-express d °np(“ ) ; which 1is easy
d p,
to do. From equation (76) we have

o ((m) = £(2p,2) (85)
tﬁus
Qe ln) = 4p £ (86)
Py o
but from (80)
e gr ol wof (87)

or

(88)

(89)
X1

We may then collect our two alternate expressions for the

dpo Po dx

x= -1
Thus finally

§np-

catro

o dx

(;gé) .{? n 1 n d%n
2 d '<an(- ) - 20, 4 ___ 0P

case of the nd cross section with the assumption of Wigner
potentials and neglect the modifications introduced by the

Paull principle. From equation (68) and (72) we get

2
o 4 = o + o + % ES_) da (p 20
neoomeomn P2/  Fbo2 Po  ’np)

nn) (90)
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Alternately from (68) and (89) we get

nn

+
o

(

P
(o]
pa?

P 2

A

k™
n

_2 d ‘3
p 2n g (n)-27 .4 np
( D ﬁ) np ax

d 7
2 (1)-2n .4 2 “nn
nn ax

xz -1

Cx= -1

(91)
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III. Wigner Forces with Pauli Principle

Tn this sectlon we shall conslder how 9,3 18 modifled
if we take the Paull principle, pperaping between the two neutrons,
into account. For this purpose it will be useful to redevelop
the cross sedtion formula in a manner different from the time
dependent perturbation theory presented in section Ii. If we
followed the method'of section II we would find difficulty in
exhibiting which correction terms are of order higher than those
we are interested in., This arises from the fact that it is not
until a late stage of the previous method that we made use of the

fact that Vyo is small compared to H. 1In the *treatment here we

‘shall make use of this fact as early as possible.

Let us therefore develop our formula from a stationary
state perturbation theory. Any wave functlons willl be understood
to include a spin dependent part, but we continue to take the

potentials as spin independent.
Let

%,:e-i/h(Ei-l-ig )t o ' (1)
1.e.,§é describes the wave function with the time supressed.
Here € denotes a small imaginary contribution to the energy Ei
and eventually we shall let g'go to zero. In essence then E'will

serve a8 a convergence factor in our integrations. Thus

(Ei+ig )= (H+V )P (2)
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Thus symbolically

@ = : P (3)

. If then we add the sslution 951 of the homogeneous eguation

corresponding to esquation (1) we get

¢ - 5514_?_‘&.4 ];__.. ’\‘5’. \;nd ¢ ; (4)

Ei"H'*' te

If we set 96 = ?51 in the integral eguatlion (4) in accordance

#ith the Porn approximation and spllilt up H into Ho and V12 we get

¢: ¢i+¢sc (5)

with

1
- —, V 96
¢ - B u 1 nd 1 (6)
sc Tk J12-+ 1€

If now we expand for V12 small, then

' - 1 1 1 }
= - + - =
P sc {51-H0+ 1€  Ey-H_+ 1€ Vig Eq-H_+ 1€ Vid ¢1 (7)

Thus we see that 9630 gets broken up into a maln term and a
correction to it.

Now examnine the comnutablllity of H, and V1o‘ We know that

(4 V.-V _H)Y = (E-E' (V

o 12 12 O'RE! 12) ER? (8)

where E and E' are eligen values of Hd' Now if we choose any

model for Vl?, (say a Yukawa potentlal for instance) we see at



2

- 25 -
- '3
once that (V_ ) 1s only significant when (E - B') ! .

Thus [HO, Vle:] is almost but not qulte zsro, Consider now
however that V12~occurs only in the correction term of (7). Thus
the non-commutability of Vig with H, 1is only a correction to the

correction term. Hence we shall ignore it in the anproximation

A§:§kwhich wé‘%?é working, A

Thus

1 1 N
= — - 7 (9
¢sc Ei‘Ho + 1€ { Vnd + Ei."Ho"' 1€ Vl?,\ nd} ¢1

For the purposes of thig sectlon we have assumed only Wigner
’ ' %y
potentials so that V,, and V ., commute. Further Hy and Vpg

comnute as far as the second term of (9) 1is concerned hy .an

analagous argument to that presented for Vlz and H, above. Thus’

96qn becomes

- 1 1 A |
¢sc- E{-H, + 1e Vnd { 1 + E-mi"‘o"' iz V12}¢1 {17

Now we may set

V12¢1 = (-€ -1, Py (11)

where Tlé 1s the kinetlic energy operator corresponding to the

potential operator V12. Now re-sxpress 961 as a superposition

of plane waves. We have

- 1
¢i— -2 X(rl-ra) ' (12)
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thus 1/5
/hH pyer
¢1 = '%’3 - hs;e - ./'31’/h pa-{r1-rz) ® (pglaz; (13)
hence .
T Py = To(Pa) By (14)
~vhere
T12Pa) = Bﬁf (15)

Symbolically we may write

1 r.-r
i m;":«&'.-. m im
then
1 Tio{pdm) + €
¢ = X E -n 4 1g-'Vnd { L - 12 Pdm = (17)
s¢ m  PgTh Ej-Hy + L €

or permuting the order of Vnd in analogy to the previous

_argument we find

- 1 . Tiolpgm) + €
= 12 ' Pdm
9680 g; .{ bos ]' Vnd ?61m (1€)

Ey-H, + 1€ Ej-Hy + 1 &

Now let us remember that Tl? 1s small and furthermore call6

- o
E; = Ei - € (19)

then we see that
m B+ T, (pdm)-H, + 1€ n m ~

The notation has been chosen In conslstehcy with equation (I1.8),
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and so
;ésc: e-i/h(Ei + 1 € )¢ ¢sc (21)

Before proceeding to develop the Pauli cross section it seems
desirable at this point to develop the non-Pauli cross section

to exhlbit agreeﬁent with section II. Consider then what the
steps are from here on. The probability of finding the system.
in a certain final state "f'" where the deuteron is disrupted and

all three particles have certain definite momenta 1s glven by

E |« £ v, (22)

or
2 € t

‘bf'z = ¢ % | @, 9‘)80),2 (23)

Thus the total transition probablility is given by

2 2¢€ ¢
Y t f | ¢ ¢f ’ ¢sc), Py © B aBp (24)
f ,

and thus

1 Vo 9 2 2€¢
ond -5 ZI: (PO;M) dd—._ﬁ ¢f0’ ¢sc)l ',‘OEI' e h dE

The insertion of the extra factor -61- %‘l merely expresses the
fact that we must average over the six equally likely initilal
spin states, which are discussed more fully in Appendix B.

Now at this stégeywq break up V.. as in equation (34). Thus we

get

¢ (25)
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4“?1521:(;,)26/]( P, 5 , 1

m o) <

2
ap(F1°Ts) ¢1m) l P, dE, (26)

Examining the matrix elemeht we note that the momentum of

coordinate ro does not change, i,e.

Pgm = p" (27)
then .
1 2 |
l(§5 o ), Vip (r,-r )55 )'
£ np 13 im 28
rn E 0+-T12(pdm)~H + 1€ (28)
2
g Bl [
' o | EP+ T, _(p")-E° +1€
S - A
now -we know that
1im € -
then
- 2n o 2 1
4"8 ? po/M> ® f|‘¢ Vap Bl s (5 511 00m)
. r
or lastly
-1 A 2 n o 2 (p2+ '2‘ n2-p 2)
= S S o , | S ¢ Q
& 21: (PO/M h/l(¢f *Vng ¢1)l § 2N |
dE 31
P g 9E, (31)

t
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in complete agreement with the result of section II, except

‘that the wave functions here 1nc1u@c a spin part. We must now

examine 1it.

In sectlion II we proceeded from the analogue of (:51)'7
by reducing out the extraneous coordinaQe To. Thus we must here
reduce out the sxtraneous spin coordinsate So as well, This

operation procesds as follows. Let

bz DR (32)

where 7 denotes the spin function of a three-particle system
which is described more fully in Appendix BR. Then call I" the

wave function of a two-particle system and say that
1
r'=Te& (33)

wheredﬁ is the spin wave functlon of a two-particle system,

Then by the usual steps for the space part we gete

= 6 Z Z (p o/ zhnf‘(]}'??f,vnp .F; ??1) lz

2_,n2 2
‘(P (p") l (p +P'2Mp' il 7= )pF dEp (34)
°r

now however we have proved in Appendix B that

7
namely equations (II-41) and (II-43),

8 .
In equation (34) the symbol %: denotes summation over the final

spin states.
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1

8o that indeed

A" 42 (P /M) %f‘ (F(p’p')l"nplr(p"’-p")) ‘ 2 (36)

' 2 p p'Q_ n2 2
‘(I) e") l ( * P TP ) ¢, Edp
M f

’sz

(w
WJ

?{ZJ

~ *l!
3 . - . .
9~ where the z 2: expresses the fact that we must average over

the four equally likely initial spin states of a neutroneproton

system and again by the steps outlined in sectlion IT we flnd

| Po-pgl

o - 0" ¥d ) 2

A ";/p $ Dg "np(po'pd) I(P (Pd)l dgg (37)
27"\

similarly we could without difficulty carry through the same

- procedure to evaluate o pe Now coordinate ry 1s extraneous and

in analogy to equation (27) we get
Pgm = p°' - (38)

and the entire procedure carries through like that for Ok.

When we come to the interference term ws tan write 1t
1 'V') 2 €
= 2Re =
°c,a% “;,B 6 2} (PO/M R

J/R 96{ s 1 ' Van(ry=rsz)
m EO+ T 2(pdm,-Ho+1€ nptt1Tts ¢1m)

(39)
. | (P90, v 1 v .
LA-
: by 4Br

o
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thus the first matrix element ylelds

4 [
o
- Pam = p" (49)
whereas the second one ylelds
pdn = p! (41)

~. whilch at fégg&\sight ;%5*2 to preag&éﬁcomplications. Recg}}

however that the inter efénce term is of the order of a correction
term; thus we may make approximations in it without changing 1t
to the approximation in which we are interested. ITn particular

set
Pam = Pdn , (42)

then

21(

1 V
-2 Re g ( AT )
o, A + a-C,B 6 ? Po/N +

/( PO, P BN B v ﬁ(pz:r p'?pn"‘..po?)

2M

5 B (43)
£

which 1s in complete analogy to the formuyla obtained In section

II. The only difference from here on in the treatment of OC,A'+'}C,B
compared to that in section II is that of the spin which needs to

be considered here. Since the potential is spin-independent the

spin sum 1In operation is
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zlz%: 7, | 1] /IR IR/RER >i:<77i11} 720 (44)

But the sum (44) 1s just unity. Equally well ‘the spin sum

which appears in connection with cnp(o), namely

1
TR 1] Enié 1 &= (45)
thus we find again that ‘;%k iéﬁ% |
. + = Iy h? A
C,A GC,B -[)-;2 (-',E') (:g") C‘np(o) (46)

Now we are ready to exhibit the effect of antiswnmetrizing the
wave function 55 which we shall denote by 96 When we perform

this antisymmetrlzation in particles 2 and 3 we get

~J

- 1 1o 13
@ = ﬁ[gSi(s,le) -¢i(2,‘if5)+ ¢sc(3,T2) -¢sc(2,13)] (47)

where the bar denotes the particles in the deuteron. The fact
that the normalization is indeed I/W[E to an approximation cone
sistent with the solution of our problem is proved in Appendix D.
That equation (47) fulfills the condition we require of
it is well illustrated when we consider the asymptotic condition.

Consider the case when neutron number 3 1s at Infinity. Then

D ~ _7_ ¢sc(3,'1"z')- ¢Sc(2,ﬁ)] (48}

or 95 ~ [st (3,12)- Ioy D (3, T‘)]
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But indeed (48) is alsc fulfilled for the limiting case of (47)

with neutron 2 at infinity.

"y 1 1
Pt —= T v . P
V2 W B 4T (pgy)-n 416 2 T

1 1

— I

Y =% =
Ve 2% E + Ty, (pgy)-Ho + 1€

Voa Pric (49

Then we must examine this for the potential split up as befors,

Take first the Vnn part, i.e., the one belongirg to o pe We

have found before that in this case
Pgm= p' - (50)
now examine pdk;.here we have the second term of (49) gives

1

- v -
}p:\ Ei°+ Ty5(pgy) -Ho+ 1 € on(Foory) (Tpy By ) (51)

now

t/Rpy.rg 1
Ly Py~ o 2. 7B Pak(e-ry) (52)

o)
Then on examinling the matrix element formed with 9éf we see
that the momentum of coordinate ry remains unchanged, just as
in the non-Paull principle cacse. Hernce

Thus for the n -n portion we effectively have
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AN = - v . {
Ty Pacs © L 5T, 1E (7 230 P (54)
f\* or In the same manner as before we [ind that
{.
- 1
z g F L (p ) 2 f“¢f Al 125"’““¢1"
i s)
4:3: _
Cara? 2 "2 2 2
*+ P -p!-p
5 ( P © ) fg  QEp (55)
2 M f

l 961) further. For this

Now let us reduce ¢%§ | (1- ~Tox)V,
This clearly

purpose take the first termwith the "1" in it.

yields

3/2 -1/% (p. ", 1/ (py+rs-p'.rg)
N /e /R (perg+p rz)Wf(B)Vnn(rg-r‘a): 0

771(3) @ (p') drzdr-3 (58)

where <P denotes a momentum wave functicn as usual,

The term with the 123 written out yields
S | d/h’mr2+p'rr+#'r)
\ . . 2
- ""'V57‘2 fe ”f(Izss)Vnn(rz-rs)

e A (ry-ry ) (s) drydrodrs (57)

hS/P‘ ~-1/h (pery+ p".ry)
= - 572 /e 2 PN T958 )V (rg-ry)
58
/BP0 trely (1) b (p1) arpar w
_ h3/2 ~1/R (pero+ p".r,)
- 4 Waf, 3 2MNe(s) = LV, (ro-ry)
(59

+1/% (pyerz=pterg)
e 0TS T E M (e) D (pr) drgdrg

)
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thus

3/2
- h . - n
( ¢5f01(1-123)v 1951):: =7 er 1/5 (p.rg+p".ry) -

??f(s)(l'Iea)vnn e+1/h (p0¢P3-<p or2)9?i s\ @ (p ) dr‘gdps

If we agalin use I' for the wave function of the twc-particle

f
system and denote the spatial part oflr‘by ' then we may write

' 1y = & +1/% (pgers-pt,
Tiog,p) = 7 °r¥amplire) (61)

then
- 1 2nV 1 ' .
s 6 E (thsp )/E 5| (T te.omng ] (1-Tp3)Vpy, | T (g, -p )| ?
o
2 1A . (62)
’éb(p') I e PR(PE+p z-p'gpoz)dh dpdp 'dpn

Now in Appendix C we have proved that

i ?% ] (e | (1-1,,)] 7?1)l2 = %%%,(éf | (1“123)141)', “(63)

wheretg is the spin wave function of the two-particle system.

Hence

2
- i D) 2 nvz)/l(r (p,0") | (1-Tpz)V | T (po,-p')) ]
1 f 2
{64)
ne__,2 2)

I(P(P')'z e %ﬁ;ﬂ(p'z."p =P TP, dA d.d @ "
Pp p
Note that our derivation of equation (55) did not really make’
any very special assumptions concerning the 'three- particle system.
Hence we may in analogy to (55) writs down the easlly proved

formula for the scatiering of a free neutron (2) from another free

ey
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This then ylelds the usual scattering formula

neutron (3).

with V replaced by 1 (l-Igs)Vnn; namely

nri
Ve
2n VO

Pauli 1
. i f _h hﬁlpo-pdl

% nn

3)vnn‘ I‘(po‘Pd))' -

f [(T(esp™) | (11,
2

A o N
. .%.p:_(p2+ pn2_pd2_p0°) A - LSO 5) ‘,_.‘.'{
6
d dpdp dp (
Thus comparing (64) and (65) we find, as expected that
- lpo"pdl & Pauli
~<’B—/ s~ on (Po-Pa) | & (o) o (66)
Now tugn to (49) and examine for the n-p part, i.e., the one
belonging to T In this case we find
Pam = P" = Pak (67)
and hence In analogy to equation (55) we find
2
P+ P'2~p"2-p &
5 Q L. 4dE
2% Eg T (68)

0
Now note that (1-123) may be applied to 9éf in virtue of the

commutability of (1-123) with H;. Further we have thrat the

operator
) (€9)

2
(1-I25) - 2(1-12:5
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so that in (68) we may replace

.(. : 2
|( ¢r)-(1'123)"np ¢1)I
2

(70)
(¢f°"’np¢i)( ¢1,vnp(1-123) B ")

-

In analogy with (70) break up

0A= \JAl + UA2 (71)

then ‘kl 1s clearly relasted to the usual n-p cross section and
{s as was to be expected.

o /]p pdlﬁ, P , fov

Al 5 ap{Po-va) |<I> (og) | (72)
The term GA,Z which is
: =:'623(9)¢| B 1l
A2 i f \(hh np ?3 r 'Vnp' 1)
i3 2 .2
(p +p' - " -
P P "Po )dv‘-. d.d 'da " (73)
Pp D

1s a correction term arising in the Pauli principle treatment
only in virtue of the binding between particles 1 and 2, We
can easily verify that OA,2 vanisnes for the case of no binding
tetween particles 1 and 2. This 1s a result we must require
physically, since the mere presence of the extra neutron number

2 should not influence the n-p scattering in the cese where we

have three free particles. For the time being we shall leave

° 40 in the form of equation (73) and turn to the evaluation
» .

of the intarference term.



¥e may tredt the interference term In the manner

described sarlier in this section. For the matrix oclement

contalning V,, we find
Pam= P" T Pgk (£7)

whereas for the matrix element containlng V. we find

Pam = P' = Pgk

we are not bothered by the Inconsistency between these two

matrix elements since the interference ters itself is just of

the order of a correction term., Thus we may write
1 on

. - vV )
s+ 3 = 2Re %
C,A C,B ° 6 le (Po7M +

(D", (1-TpnV Py B, (1-Tpadv,, Py )

' ‘/:\ﬁsf 08 ?is'ﬁ

2 2 .2 )
p + '-p" -D-
a( p Po )/OE dEf (74)

2M f

Again 1f we say that V = klvnp then we may replace

(P2, (1-Ip5)V, Py )P0, (1-Tpg )V By )
5 - (75)

k](9550,(1-153)vnp(rl-r3)551)(§5f0,vnp(r2-r3)953)*

thus iIf Iin accordance withk the subdivision of (75) we call
(76)

c,a t %.p T %t e
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- then OCI is the usual interference term namely

) kK 'h? B
. OCJ.‘- p—02 (.._) (;i'-e-) an(O) (77)

The term ®°co 1s an additional term to the usual interference

‘term arising from the introduction of the Pauli principle.

Explicitly 1t is
21:Z (’fx hop )/(¢ | Vap(T1-73) Iag| P )
o}
(78)

o S (p2 12,2, 2
(¢f l Vnp(r2‘r5)l ¢I)e (p +p'“-p" =Py )d‘,\ dpdp'd 1
p

r~2 6

We could develop o co nto a form similar to (77); nemely into
a form with (Izsvnn)z; which would yield a part of °nn(o)'

Then if we Wished to complete onn(c) we could get part of the
term from *5é1 by changing it into the n-n form. However we
still would have a correction term left over which would be no
simpler than,(78). Hence there is little advantage in carrying
(78) furthef. It can of course be evaluated for specific models
for the potential. |

‘Now let us summarize the resuits of this section, which

'arevthat:

o 1 p 2 2 ’ 2
- . d d 2 a__
?nd = enptonnt S (?‘5) {dpoz(po “np) ¥ dvoz(%zo M)}
) (o]

k 2 -
l.(h)(l)
L — — — o_ (0)
poz d sz np (79)
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The above result is seen to divide itself intq the first

.five familiar terms plus an extra term due to the Pauli

principle. This last term has to be evaluated for the
specific model under discussion. It is difficult to make
any predicﬁidns regarding its value, except to say that it

is undoubtedly no largeb than the correétion terms to o 4.

¢
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TV, Spin and Space Exchange Forces Nithout Psulil Principle

In this section we shall attempt to deal with a

general potential of the f‘orm9

v - .
np(r], rs) (a;+ by 7 9x)(c1+ dy Pls)Anp(rl_ps) (1)

Vnn(PQ-rS) = (a2+b2 950 G )(co+ dy P23)Bnn(r2-r3) (2)

where P stands for space exchange.,

Now let us develop our expressions by the method of section IIT,

We arain get equation (III-9) for 5ésc‘ Now however V12 and

Vnd do not commute. Thus
¢Sc = ¢sc,o + ¢sc,i (3)
with .
‘ . 1l o 1
= + —
¢sc,o Ef~Hgy + ie Vnd { 1 Ei'Hb+ iF V12 } sti (4)
and .

2 .
- 1
¢sc, L U (Ei-Ho-o- 1?) [V12,Vnd:l ¢i (5)
0
Now we need to evaluate l(Séf ’9ésc) 12 , Now we note that,

by use of equation (3) we get

9While potentials (1) and (2) are not of the most general form
they are of a useful form to exhliblt our arguments that follow,
As a matter of fact our arguments do carry through with a very
general, non-tensor force potential.
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,(¢f(”¢sc)|2: |(¢ ¢sco 2+|(¢f‘ﬁ’¢sc,/\)l2
+ 2Re( 95 ¢sc o) sésc,l ’gﬁfj)

Now let us introduce an equivalent notatlon for the cross
.

seci&gﬁ, namely' , . R¥* Agfﬁh Asfrye

= » t oy + I (o4) ' {7)

' 2
Let us now concentrate on the term arising from l(?f’f ,9580 ()l

1.80: aO .

We must first examine V12 961. It is still true that

Tie Py = T12(pd)~¢i ' (8

Since the interchange operator P IinV - does nnt change matters,
v r

for le concerns itself only with relastive quantities between 1

and 2, Thus we et in analogy to equation (I11-31) that

st T () (5 [11B e, B0

2 2 42 2
P+ p'ep"Tip
& ( e 2 PEdef (9)

2N

2
Now we must evalnate l(sbe,Vnp 961) [ further. There {3 nn
difficulty concerning the spin, since In Appendix ¥ we havs oroved

taat

1 2
s TX | @ layt oy on a7y (10)

]

2
Ty l (&¢ |oy+b, o .53|c§1)|
1 £
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‘Lot us now examine the necessary spatial matrix element; namely

Y A
N ey .
SO J - ¢ o
Lia® = (7 l (e + dlplC’))Anp(r’l'f‘s)l ¢1') (11)
ﬁ;: Let us break up J in accordance with (11) into
e bk WA o
o J = J + J (12)
e c : d

Then by the familiar arguments
cy -1/H (p.rg+opt.ey) +1/R (0, rz-p".r;)
o 1 A ( 0T3P 1
np r‘l-rs)e

J ~—
- 572

Cc .V. /

P (p")drydry (13)

The new eolement to conslder is J.d'
R )
- l..l p . 2+p~?3
Jd - \f572 € Anp(rl'PS)
(14)

ot i/ p,.ry
x (rz-rs dr‘ldl"zdl‘s

or
dy -1/} (o.r +p'.e

- De’z .l) +1/'}3(p P - ".p.

Jd _v_5;2 /e v Anp(r‘l-rs)e (9] 1 P 6)

D (p") dr dr, (15)

of finally

-1/Ti(p.r3+ prevy)
(cl+d1P15)Anp(r1-r3) (15)

+ i/% (po.rz-0".r ‘

e /8 (po-r3 1)@(p")dr1dr3

J :_;%372 Jre

and all steps carry through as usual till we agaln obtaln

|P5=Py| 2
o =] ———— ~
0,4 f oo np(Popa) |@(ea) | T azy (17)



- 44 -

In an analogous manner we derive.the formula for Co.B as
. . s
_ [IPa-rg| 2
°0,?‘f o, ‘?nn(Po’-m)A lcp (pd)* 43 (18)
Now we must discuss the Iintecrflerence term of o . Thls ternm
1s
1 Y 21
o 2 2Re T X ( -) _
0,3 o ¢ T \pyx &
' &‘«;“ ¥ 2 A o o)
o oy 6 a“." pe+ P”’ﬁtp""-p, <
f(¢f 'Vnp¢i)(¢t‘ »Vin 13*5 ( 5 2 )
p g 9Er (19)
T

Wnile this term is stralghtforward, we can no longer as in

section II expre3s it simply In teerms ofc p(0). However w#a

n

see by looklng at it that given a_, bl’
verform the spin sums indicated. We would then proceed by sepa-

a_ and b_ w2 could easatly
2 2

rating the non-space exchenge and space exchange terms and

evaluating these. Thus given the constants a;—> 4, and ap —> d,

thace 1is no inherent difficulty for ¢ 0,0 Tn the abtsencs of
deftlulte values 1t seems of 1ittle walus to carry the valuation
(19) beyond this stage and we shall leave it In this form.

o) 2
We turn now to the 9y tera arising from }(Féf ’yésc,k)'

Jpon examining fésc,* as glven by (5) we note that on the squaring

this term 1t is of order V4. Now the chief terms of ond are of

2
order V ; the correction terms in which we are intecested are of

one order higher, namely Vz; thus we may drop terms of order

V4. Hance we shiall set gy equal to zero.
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We must now turn to the evaluatlon of the o(o.x)term.

This

term does have a'contribution of order V3 and so we must retain

iﬁ. In particﬁlaf the term wilth the V3 contribution reads:
- 2B 5 ( v ) c€
(ox) & 7 Po/M R

Ca o 1 \ 1\ 2
Jige, EfT, ¥ T& Vud ¢_1’((E1-.‘io+1€)
[vl..?’v.ud] ¢1,¢f°) Fepdfe

By arguments similar to those previously presented it can be

4

(20)

-shown that equation (20) reduces to

- _ Re V 2
-—tt—‘ (

6 L P M
%(0s) 1 ,) h . (23)%

(&) (¢ .
¢ ' ¢ ) ¢ 3 ! | o
S MR [Vlzvnd] ¢1)“"Ef 5 (Ep”-B1)dEp

Performing an intsgration by parts we find that

=-Re ¥ s 2L
Tox ) ¢ 7 po/i h
9 ’é o . 95
f d E.°. (P2 7na P1)(Pro, [V12,Vnd]¢1)*
~ (24)

. (s}
hif

The evalualion of this term depends on the barticular mode]

chosen, since it has few general properties. We shall therefore

leave it in the form (24).

#There‘are nn céqations'numbered (21) and (22) in this sectlinon,
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Now we may summarize the results of this section:

&

':i\" . | g = ° ﬁp t oo nn

) |

e + 2 g S

l?qg . { "‘""‘2 (po np) + . dp02 (p02 Onn)}
R v [V )
5 _;Z ) R <¢f ,vnpfé WP W on P

(25)

’

(o/"‘ fah ‘{ £ Vna Pp)
(¢r , [’12"’“(1] @ )*pE } s(gf"-mi)dzro

EY

(p 4 ey "nr, ) : ErdEf
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V., Sgin and Space Exchanuge Forces with Paull Principle

‘In'this'section we.shall attempt to deal with' the

general potential of section 1V; - but‘this time we shall in-

clude the mdbdificstlons due to the Paull prineciple.

1 mhcm ir 1n analogy to equation (IV-3) we set

- . .

P = S,ésc,é t Pae,s (1)

and we find by'antisyhmetrizihg equations (IV-45 and{ Iv-5) that

SN U 1
~¢sc,o"- = Z R ~ Vng ¢1m

2

1
= 1. r =V
1r§‘ 23 k Eioi-Tla(pdk)-Ho+ i€ nd ’6ik

and

e | ' | )
S— e e fond e P 3
9630,) - Vo Eic'Ho+'i€ ) [V12,an] g51 (3)
Now as in sectlon IV (equation IV-6 and IV-7) we break up

o_ao-{-o&-)-c(o)‘) (4)
Now concentrate on tae term arising from l (96 96 l & i.e.,

SCO

aAof This is now carvied through in strict analogy to previous

work. First ws consider the n-n portion. Here equation (III-53)

-

appliss to equation (2) and eventually as usual

]

IPo-pg| Paull,6 - 2 '
oaf == onn o (Po-pa) ]fb(pd)l aoy  (8).

For the n~-p portion we find



RIV TN

- lp-)“l)dl 2
“o,A-ff*“a:""np‘Po-fjw | )| oy (6)

| ;;; hivd | .
o,a2 © Lo (m{_.s)f%lvnpmi?ﬁg B v |B

L% I 2 5
5 oW (5% o ~pvv2_po~)

dA dpdptdp" (7)

e intarference term for o o is

N - -].‘. - _:Y; f‘_&. iyt -
G(),C- 2Re B ? (po/iz g"h s . '~
/ (P, (=T v, BB (115007, Biw

2

2. 2
%+ prZopn?_, 2 o dE
A g L (8)
o¥ £ s

FPor reasons already explained in the analogous case of sectllon

IV {equation IV-19) it ig not worthwhlile to express this term

in more ekplicit farm.

Wo turn now to the o, term. For reasons analogons to thoss given
for this term in sectlon IV the ay vanishes to ths order we are

interested 1in.

Now as tn the o4y term. Ws may wrlte the portions which con-

tribute as

| - Rs ([ V ) 2.§.f o 1
° (07\)- ° <.p°/M B (‘ ¢f » (iotea) E(-H,+ fe'nd Py

2
1 LB
¢ (1-T,,) (31_304, 1g) [Vlz, Vnd] ¢i, ¢f )

A 4B
 Bp by (9)

Thus by the.arguments presented 1in sectlon IV
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| = - %% - oo/\ ) ji

“ (o)

> a o
' . , .0
*E‘f’. } (E.2-E,)a8, . (10)

Acain the value of vi{,pymust be obtained for the specific model

nnder consideration and so we leave it In the form (10)

Now we may summarize the resalts of this general sectlor:

¢
nd nn np

é;? a® o d2
o . ——— < —— 2
p.2 dp,° (pq onp)‘?p‘dpog (P, 0 p)

+
Y

Re v 2 1 o
A %: (537&) 'TET L//\ (géf)"l“les)vnp 555)

o ' -2 2 no 2 -
( y(1-Ip5)V. P, yu ¥*p!T-pt.p P, B¢
AR RS DA 2.
f 87 an 7y : oM Er

_ Re V) 2 ,
%I (mm) & SE{{ P -1y oy B o)
Q P

(11}

<P

J4E

-,

r

b
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VI, Sonclusion

Let us first say a word about the general nature of

our results. It 1s worth noting that in all cases conslidered,

in¢cluding the most cOmpiicated one (section V) a ce2rtain structure

is preserved in our results. In all cases we gat the terms
P 2 o
o + YL ot F- l 2 5 l<pd ) a__ (p.co,
np ‘hﬂ&\ 6 % apr_) Q np) + ‘ 932 dO 2 ) n

and interference terms due to stralght interference or the Paull

principle.
To get an idea of the order of magnitude of our rasults

we shall first szatimate wnat the correption term to ( o n-+"n0)
[

.

s from the results of section II; i.e., we choose a model with -

Wlgner forces and neglect the modifications due to the Panli

principle.
We shall compute our correction term from formula (11-91),

l.e., from the angular form. For this purpose let us express it

ag thithroughout by recalling that from equatlon (1-65)

then
° = k,2 o (3)
- nn 1 np
hence —
e 2 4n | pdg d o
=Q+K%),  +(1+ =37 555 ) 1%t M-t 2
%nd 17 np (1 .kl ) 3 D2 np A% P x=



075

4
4

LA

laboratory system.

-3 .
Now pd2 is estimated in appendix E to be
———é - . -
P
(_2_) = 7.46 Mev (5}
M . c. ) .A ' -
Thus we may write
— |
Pa ) - 7.46 : T
) T 2 E ‘ L ) - (8)

where E 18 the ensrgy of the incident neutron in Mev ih the

In appendix E w2 also find an estimate for

1 - 26 .2
e - . .
(sz) 282 x }Q cm . (7)
Thus wa may re-cxpress O
: . : . C1n2
- 2 ' 2 15.63 N,72 x 10”
¢ g = (1+ig™) °np+(1+k1 ) E, L+ B, k]..anp(o)
where
L n 4 9_.222 |
- -
p( ) dax ‘X = el (9)
Kow we shall break up o, , into '
o = M+C {10)
nd o

where ¥ is the maln term, namely 11-k1 ) C?p and C is our
d : .

correction term. Tn our numerical work we have erhibited the

two parts of C, namely Cy and Cgy correspond{nv to equation (8).
Next we must decids what valuea to choose for k If' ‘

we look at the experimental Adata g)ven On oage 2 we find that .



AT

:‘m ~ 1 : - (11)
np 4

While we know that tﬁé n-p crdss éecilon canhot be fittead b}
Wigner forces alnne we couldiéﬁill cho&se the value kj_: 0.5 as
a rough indlcation what to compute for the correctlon tern if we
use only Wigner forces. We. have tabulatedlthe_feau;ts for k1‘:‘0.5
and a value of E, ; 90.25 Mev;o in table 1. In table 1 we have
chosen 1072° cm2 as the unit of afea. “

Table 1

Spp = 18.02 ' ' o

np(o) = 12,58

o]

¥ = 22.53
¢, = 0.18
'\)2 hand 4.55

c/Mm = 21%
From table 1 we note that the indications are that éince C is

positive the trye n-n cross section is smaller thah computed.
Hence it mirht be Instructive to examine the case k) = 0.25, which
is summarlized in table 2, |
Table 2
M = 19.15
¢, = o0.11

Cp, = 2.53
c/Mm = 14%

10 . ,
The cross sectlions used in this calculation were obtained from
declassified report LA-654 by L. Goldsteln, entitled "Studles
on the Scattering of Neutrons by.Protons”. We are uglng the
rigorous cross sectlons obtalned from r_ = 2.8 x 10-135 cm.
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We shall now have to estimate whap»thé correption term
would be for other potentials and the idcluslén of the Paulil
principle. If is our belief that phe.correﬁtion térm_in such
cases does ndt exceed the 10% Jusﬁ found. As a matter of fact
the indicgtions‘are that it should be smaller. This argument
18  substantiated by the fact that o (o) is so pfonouhced only
in the Wigner.case, and we saw that 1t.was due to Cp term that
C was so. large. |

Now we must ask ourselves whether 1t 1s.prof1table at
this stage of the development to compute the additional correction
terms by special models., First we must look at the'éize of the
correction term compared to the experimental errors. The experi-~
mental errora are at present of the order of 10%; l.e., of the
same order bf‘magnitude as our correction term. This means that
in order to get a significant answer we would certaihly have to
know the "correct™ potential for our model. We might. try to |
infer this "correct" potentlal from the n- -p scattering experi- '
ments at 90 Mev carried out by Segra et al11 Unfortunately, as
is well known, 1t has not yeb been possible to fit this data un~..

‘ot

amblguously. ) .

For the time being, therefore, we must leave it .at
the conclusion that the correction terms are of’the order of
10%Z or less, but may well change'the_trhe value of the n-n cross

section at 90 Mev, )

11 ” | L .
E. Segre, Washington Physical Soclety meeting, April 29, 1948,
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Note addsd in vrool.

7%, | Since the‘ccmplgggbn of this work, Wu and Ashkin havs
published some numerical calculations on thse subject of n-d Scatier-
ing (Thysical Review, 73, 986 (1948)}. Thesé calculations seem
tc show agreement for the simplest case, but tend to show that

the corrections ares probably considerably larger than the 10%

estimate made above,.



Appendix A:

Theorem:

If B< A then in first approximation

A+ B) A o? _ o8’
) 2 () () ()
‘ aa' aa! aa' a-a
Proof: »
Awe know that *
e o0 S L e Az
. - n }

Z Mg

now when expanding (A + keep only first powers of B, then

(e A+B) - :Z‘:; %' [(An)aa'+11il 2 (An-l-m)aa" (B)a"a"'

as o] mzo a“a
n (3)
(A )av"av
but
n-l-m .
T ) (B) L ¢ T
T &gt aa! al’g"? a'! a! aal
‘thus
A+ B A s  n-) n-l-m_g.m
(e ) = le) R 0) B & ,a' (5)
aa . aa a8’ 7y mio n!
. e8_ga’
now consider L = R s suppose fiprst a' <« a; then we have
oo n n
_ a -~ gt
L = X a-a')n! (6)
n:zo

or

(7)



o *m:'n—i n-1 W\ M
- a a. (8
L = Z 1 (a) :
n=o ms=o Ne
thus
CT . . ] . a alt
A+B A ' e - o )
(e ) = (e)  + (B) ("“"‘"‘f‘“a-a (2)
aa'l aa' as
The conditions c¢learly holds also for a' > & by reversing the
grouping; i.s., considering (%7) as a unit. When a' = a the
L $ _ﬂ, N o
condftdon is se;§fQVident, since then L T 1. K §?ﬁ§-

QeE.Ds



Appendix B:

In this appendix we shall concern ourselves with the

spin functions appearing in the text and some of thelr properties.

First of all let us for ready reference write down the

spin wave funbtions of a tﬂo-particle system each of spin 3. Let

a denote spin+3 and @ denote spin - 4. Thus a; means the wave

function of particle 1 which has spin+ 3. .Letcg denote the spin

wave function of the two-particle

spin and a given spin projection.

system with a certain total

Then we can easily verify

that the following four functions exist:
Function.# Total Spin Spin Projection Wave Function
1 1 -1 a9 ag
2 1 0 -1;/-_2;(/3 a + a /)
3 1 -1 Ry Ay
4 0 0 l-w7-§(ﬂ1a'2--a R

If now we combine these wave functions with those of

a particle number 3 which has spin % we can form spin wave function-

77 describing the three-particle system. In particular we can

form one quartet and two doublets; depending on whether the two-

particle system is in the triplet or singlet state.

These wave

functions are summarized in the following table:
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Total Spin Spin of 2 Total
Function | of 3-parti- | particle Spin pro- Wave Function
# cle system system jection
1 3/2 1 + 3/2 ey aya,
, N .
? 3/2 . t s 1/5 (#1%%* %2% + %1 %%%)
| - Q
® 3/2 1 % (ﬁl 2%s* Iﬁzﬁs 71 %2%%)
4 3/2 1 - 3/2 £ Ay Py
5 5 1 + 3 ,‘/-(ﬂl 2%5-2%1% o7+ & 1 3)
6 % 1 - % QI'(ﬁ O Pa=RA A+ 0 f )
| Yo 123 2°3" " 172"
7 k- 0 + % i ( 3 .a 2. .Q o.A)
vz T1%% 57 P %
1= - s
<3 1l 123
Let us now inquire what relation the wave functions
571 ~+-978 .have to our problem at hand. If we consider our

incoming neutron (particle 3) meeting a deuteron (particles 1

and 2) bound in the ground state then only function 1 — 6 can

be spin-wave func@ions describing the initial state of thes system,

This is so0, since for the initial state we require the deuteron

to be bound in the ground state, 1.e., it must be in the triplet

state.

Thus if we denote the initial spin-~wave function of

the three-particle system by 7& » "1" may range from 1 to 6.

Further if we denote the final spin-wave function of the threo-

particle system by ?Zf,"f" may range from 1 to 8. This is so,

since in the final state there is not a priori requirement that

particles 1 and 2 be In either the triplet or singlet state.




Now our spin operators which appéar in the problem
are all of the form (v 1+ Y59, %,) where ;3 andv 3 are con-
stants and m and n denote two of the particles of our particles
1, 2 and 3.

We shall now proceed to prove some theorems which hold

between the 7's and & 's.

Theorem 1:

5
i=] f=] ;1)
(‘glel“ Yo °1‘°5|‘$1)I.

here the ﬁ;'s are spin functions compounded of particles 1 and 3.

6 8 2 1 i
2 T ,(771'1\'1+Y201° o3| 771)' =3 Z
j= f=1 .

i=1

Let us first reduce the left side; ¢all it L, Then since the

functions 37f are a complete set we may write:

. 1 6 ‘ )
L=F I [Cnrygegeag) | 7))
call

+ Y 0002)2 (3)

z= (v 5 9

1

Thus the spin operator does not involve particle 2; let us

therefore perform the spin integrations over particle 2. Let
L = -é-'- b Ly (4)
. i -

The contribution from the separate terms are as follows:

From 1 = 1:

L, = (&, ]z [ &) . (5)



g

From 1 = 2:

we have

-1
@y |2 | ) = 3 (Pl agr ey |2 ]y ag+ iy

+ogleg ogfz ey o) (6)

or

L2: %(églzlég)'*%(éllzlél) (7)
From 1 = 3: :
we have
5] 2 |725) = &L 26 f e [€y (8)
. t";’-ilh
or ’

Lsz-%(éjelz,ég)*%(cﬁslz [éf,s) (9)
From 1 = 4:

L= (& 4| 2|&Q (10)
From 1 = 5:

(%52 | 75) = 3By 25=2 <185 |2 | Ay 5=2a 1 85)
+ %( 0.10.3,2,01 (13) (11)

now

1
Ay 1gRa 1Bz = = 5 (A 3gt 4185) + 2 A, v a0 8,)(22)

thus .
Lg = %5.(6’2“ "52) t ,%( 6241 z 154) + ']6;(§1l z léil)(ls)
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FProm 1 = 6:

LA

(7 | 2| Mg) = Fa B2 a4 |5 ]| 28,2/ u5)

+ H B A, 2] BBy (14)

hence

Le = ’}‘é(‘gzlz,§2)+g’(‘$4[zlé4)
+ %‘(cg,sfz ’ égzﬁ

Thus adding all six contributions
L=-x-[(€1l [ &+ &, 12152)+(§ 2] &3
+(<‘;4lzlt‘;4)] (16)

(15)

4
L = «% j; ( dzil, z’ 621) (17)
or : o
L:% ? % '((‘__‘,flyl-f-Ygol.os'(gl), (18)
Q.E.D

In the same manner we can prove

Theorem 2:

2
1
—zzlm + T 000, o 97),
6if lel 2°2 sli (19)

= % % % ’(é;f | Y1”*’:3"2‘“1'{!&1),2

where cg is understood to be the two-particle spin function

corresponding to particles 2 and 3. There 1s no need to give

. a detalled proof of theorem 2 since the equivalence of particles )

1 and 2 as far as spin is concerned is evident from thelr

treétment.
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Appendix C:

Theoren

1

2 ' )
.]6.-. Z % l(??r I(I-Igs)i 771)’ pas -i- Z% ’(("::f l(l-Igs)]éi)l (1)
1
Proof':

The operator (1-123) may be written as

(1-123) p (1-52:5 P23) : (2)

where we have separated 125 into spin and space part. Now
we wish to show the relation between 825 and 02,! oz e

Consider 2 (1-325) operating on a function symmetric in the spin

of partlcles 2 and 3,

2(1-5,)%5 = 0 . (3)
and when it operates on an antisymmetric function

2(1-325)7?A = 4??A (4)

Now consider what the action of ( 0g° oz + 3) is

( Soe© g + B)%g = O ' (5)
(o o0+ 3y = 49 (6)

thus
2 Fl-s2 ) = ( 02.~>3 + 3) (7)
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or

.823 :-%’(l'f' 02003) (8)

thus (1-123) may be written as

- 1
(1-Ip5) = (1+ & [1 + 02.05] P) (9)

but as far as the spin is concerned this 1s of the form

(1-123) =  v1 + 1, O pe Ty (10)

and hence theorem 2 of Appendix B may be applied.
QEDs
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. Appendix D:

In this appendix we shall prove the normalization

constant of Qg e We know that
B =P + B, (1)

Now by assumption most of the wave function is still ;51 ; 8O

that 1t will be sufficient to determine the normalization of ®

Now

~

B, = Cl1-Igy) By | (2)

where C 1s the normalization constant we wish to determine,

Then

c2((1-1,,) By, (1-Ip5) Py) = 1 (3)

or

2c2( P, Py) - 2% ¢i,123751) =1 (4)

We shall now prove that ( 95i,123 Q51) is zero to the approximation

we are interested in. In particular this means that we must
prove that terms arising from ( ?5i’123 951) are not of order
1/p,° or lower.

Consider now that

( ¢1,123 ¢i) = %‘2 Zs:/ 6-1/-13 po.rs X(I'l-r2)

(5
e+ /% po-ro x (rl—rs)ni(s)ni(:[gsﬁ”) )
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Let

- 1 1/k pglri-re) N
X (r;-ry) = 372 fe (I)(pd)dpd (e)

then

- 1 -1/ (paer;=pdery) ~1/% Poe(rz-ry)
(P11 Py = T/ e SR

( '., . ' .
e+ i/% pg To I‘3) (pw(pd) (P (pd)9?i(S)7?1(1253)

or carrying out the integrations

(Bi.Ips By) = @ () D (po) 5 2 (S)%(Igs8) (8)
S

Now examine the properties of l@l 2, We are interested with

what inverse power of po it vanishes. Now we know that

f’@(po)l 2d{)* must be filnite, since in a deuteron there must
: o

be a finite total chance of finding the given momentum state.
Thus lCI) (p,) I 2 must go at least as 1/p°4 to have the

1ntegra'.!. converge. Hence to our approximation

(Pyrlyy Py) = O , (9)

and hence
(10)

C:I/“\/—E
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Appendix E:

For the sake of completeness we shall describe here

how pg° and (;lé)'were estimated.
a .

le Calculation of pd2°

Assume a square well potential for the deuteron.

The

symbols are the conventlonal ones, and the relationa from the

Bethe - Bacher article* have been freely used.

'Thus
“w . -€= (253_)?@: v
= M
where

‘/‘;V(I’);éz r? dr
[ 552 rz ar
then oA

-Vs £ u2dr

/o’rouzdr +[°°u2dr
(<]

<l
"

<1

now let

u = sinkr for r < ré"

- Q (r-ro)

u = sinkro t? for r > r,

Then we find that
-V

Sr -~ O

1+ (1/R)

D
Bethe and Bacher, Rev. of Mod. Phys., 8, 112,

(1236)

(1)

(2)

(3)

(4)

(5)

(8)
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where
- sin 2 kr sin®krg
R = - o 7
7o % ’/ ( ——) (7)
or
il + ES (1 + € _ )+ ge= (8
= - ar P,
sinzkro k 0 Vo - € o~ €
hence
ar V =€
— o ) (L ) \
T: e () () - >
hence

sz)_ al V.=-€
-} = -V o 10
(2 o () (=) o

(o]
If we substitute the following values into (10):

€

= 2,18 Mev
VT 21.3 Mev (11)
P, I 2,80 x 10"%¢em
then a,ré = 0.64 and
pa”
A\ = = 7.46 Mov (12)
o I
2, Calculation of =]
lts|

Usingﬁ the same assumptions as above we may write

_I_)
<rd2 B, + B (13)

2



>
whereo r,
2 Kk
B, - pe f %—3 dr (14)
Q
and © <2 (r-rg)
82 v, r2
and o0 )
2(V.-€ ).
c T (16)
o u.ro)
v 1/2
b= ( 2 c (17)
Vo - €
¢
we may re-express B1 and B2 as ﬁﬁ
B = b2y T (2xp.) - sin®kr
1 " | i o) N (18)
o
= ¢2 A L2060 B (241 B
32 = ¢ vy = 2¢ e 1(2ar, 19)

Numerical computation of Bl and B2 was carried through for two

values of r ¢

(o]
To = 1.7 x 10'15cm , ro, = 2.8 x 10~13cm
Vo 48,4 Mev 21.3 Mev
By 0.450 x 1026 cm=2 0.250 x 10°6cm=2
B, . 0.084 x 1026 cm=? 0.032 x 1026cm=2
(;§§) 0.534 x 1026 op=2 0.282 x 1026oy~2

For the purposes of section VI we have used the value derived

from the conventlonal values of the range, namely from ro= 2.8 x 1
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