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CRITERIA OF STABILITY FOR THE NUMERICAL SOLUTION OF
PARTIAL DIFFERENTTAL EQUATIONS

by
Herbert A. Forrester

1. INTRODUCTION.,

As an introduction to the problem of stability in the numerical
solution of partial differential equations, we can do no better than
gquote the opening paragraphs of [OHK l]*:

"One of the most common and useful methods employed in the numer-
ical integration of partial differential equations involves the replace-
ment of the differential equation by an equivalent difference equation.
Thie technique has become particularly important in recent years because
of the development of modern high-speed computing machines.

"In the present paper we shall show that the accuracy of a finite
difference solution to a partial differential problem is conveniently
discussed in terms of the ‘convergence' and 'stability' of the difference
scheme. Courant, Friedrichs and Lewy [(CFL 1)] discussed the convergence
of difference solutions for the basic types of linear partial differential
equations; for equations of parabolic or hyperbolic character, they found
the important result that the 'mesh ratio' must satisfy certain inequali-
ties. J. von Neumann obtained the same inequalities from a study of
error growth (stability of the difference scheme). The partly heuristic
technique of stability analysis developed by von Neumann was applied by
him to a wide variety of difference and differential equation problems

during World War IT.

*
Numbers in brackets refer to the bibliographs at the end of Section 3).
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"We begin with terminology and definitions. ILet D represent the

exact solution of the partial differential equation, A represent the

exact solution of the partial difference equation, and N represent the

numerical solution of the partial difference equation. We call (D- A )
the truncation error, it arises because of the finite distance between
points of the difference mesh. To find the conditions under which

A > D is the problem of convergence. We call (A -N) the numeriecal
error. If a faultless computer working to an infinite number of deci-
mal places were employed, the numerical error would be zero. Although
(A -N) may consist of several kinds of error, we usually consider it
limited to round-off errors. To find the conditions under which (A -N)
is small throughout the entire region of integration is the problem of
stability.

"Whether a given finite-difference scheme satisfies the criteria.
for convergence and stability (we say, for short, that the difference-
scheme is convergent/divergent and stable/unstable) depends on the form
of the A -equation and upon the initial and boundary conditions. If
the A -equation is linear, stability (and usually convergence also)
will not depend on the initial and boundary conditions. Now for most
problems, D and A are either unavailable or can only be obtained with
much greater labor than ié involved in finding N. The principal pro-
blem in the numerical solution of partial differential equations 1s to
determine N such that (D-N) is smaller than some preassigned allowable
error throughout the whole region considered. We can assert that

(D-N) = (D-A) + (A -XN)

-6 -




is small for a numerical calculation over & fine mesh using a stable,
convergent difference scheme. Sometimes, for convenience or from
necessity, a convergent but unstable difference scheme is used; then
provision must be made for controlling the error-growth (See Ref.[H l],
vhere the numerical solution of elliptic problems is discussed; here the
governing difference equations are inherently unstable).

"In this paper we shall be interested, for the most part, in
partial differential equations of parabolic or hyperbolic type, for
vhich the data is naturally given on an open curve (or surface) from
vhich the solution is stepped-off. Many remarks will apply, however,
to elliptic problems., We shall mostl& discuss equations of the second
order in two independent variables, but extensions to more than two
variables will be obvious, though aigebraically more complex. In the
first part of this paper, we shall give a method for determining the
stability of partial differential equations and shall discuss implicit
difference schemes. In the second part, we shall work with a simple
parabolic problem and investigate directly the magnitudes of the trunca-
tion error and the numerical error for various methods of numerical

solution; in particular, when (D-N) is large, we shall ask whether lack

of convergence or lack of stability is chiefly responsible for the
discrepancy. We shall find that very often in such cases, the truncation
error overshadows the numerical error, contrary to what is generally
thought.

"In studying the effect of round-off errors fed into the calculation




(the problem of stability), we may ask:
a) Does the over-all error due to all round-offs
Grow . Instabllity
?7 This we term strong 7
Now grow Stability
b) Does a single, general, round-off error

Grow Instability
? This we term weak < ) ?
Not grow Stability

We mean "growth" during the uninterrupted stepping-shead of the

solution, where no use is made of special devices applied from time to
time to limit the error growth (See end of second paragraph above).

What we need to know in our numericel work is whether a given difference
equation is strongly stable or strongly unstable. It is much easier,
however, to demonstrate weak stability or instability. The gap between
the two types of stability is closed by the following

Stability

Assumption: Weak
Instabilit

) implies strong <Stability ).
Y Y,

Instabilit

In the following text, then,.whenever we refer to the stability of
instability of a difference scheme we shall mean the weak form. We
intend to examine rather closely in another paper the validity of the
Assumption; for the present we note that it is true for all those calcu-
lations we have seen where care was taken that the round-off errors
should be random. (As pointed out by Huskey and Hartreé, in the Journal
of Research of the National Bureau of Standards, vol. 42, pp. 57-62,

round-off errors may be non-random in certain regions of integration.

-8 -




They observe that randomness may be regained by carrying extra figures
in calculating these regions. For general purposes, the assumption of
random round-off errors is probably a good one).

"It is important to note that the overall error may be considered
as the sum of the individual errors fed in (modified from step to step
by the numerical process) because the variational equation which governs
error propagation is always linear and solutions may be superposed. For
studying weak stability, we may adopt either of two procedures:

1) Consider a unit error introduced at an arbitrary mesh point

and follow its progress.

2) Make a Fourier expansion of a line of errors and follow the

progress of the general term of the expansion.

The first procedure occurs occasionally in the literature but, to
our knowledge, has not been developed in any systematic way; such a
development has now been completed by R, P, Eddy (Ref. [E 1]). The
second procedure was developed and used by J. von Neumann during World
War II, but has never been published by himf. With his permission we
present below some of Professor von Neumann's results."™

The paragraphs quoted from [OHK l] provide an outline of the funda-
mentals of the problems we will consider. In outline: We will first
consider existence, uniqueness and stability equations for the solutions
of linear partial differential equations particular in-so-far as they
are relevant to the stability of numerical solutions; secondly, we will

develop the stability criteria of von Neumenn and R, P.Eddy; and thirdly,

¥*
But see reference [NR 1] .




we will consider applications of the general theories to the special
cases of certain parabolic and hyperbolic equations.
Bibliography is given at the end of Sections 2, 3, and L4; numbered

references are to the bibliography at the end of Article L.

2. EXISTENCE QUESTIONS.

We consider the equation

t ] Z a:ll+...+1n .
Liuj= a =B
41

...in il 12 in

axl 6x2. . .axn

where 811’12”"1n and B are analytic functions; the relevant results
will carry over to systems of such equations.

Generally, L[u] = B has an infinity of solutions; the essential
problem is to find additional conditions which will specify a unique
solution u. Sinece the equation often represents a physical problem,

it is essential that small (observationally unavoidable) "errors" in

the a s B, and the determining data should appear in the
11,12,...,in

solution u as small errors. These criteria (existence, uniqueness, and

stability) cause a subdivision of problems concerning differential

equations into hyperbolic, parabolic and elliptic differential equations

and problems; while this classification is not complete in case of

equations of order higher than two it will serve for our purposes.
The form in which the additional data is given is usually the

specification of u and some of its derivatives or normal derivatives

along a surface S, together with the requirement (especially in the

- 10—




elliptic case) that the solution exist throughout some specified region.
The relevant classification ties certain types of operators L with
certain forms in which data is specified, and classifies surfaces S with
respect to the operator L; this classification is based on the considera-
tion of certain characteristic surfaces (or hypersurfaces) connected with
L.

Iet L be of order m, i.e., a =0 for 1.+1 +...+in:>m,

1112. L .in 1 2

vhile for some i,+iy+...+1 =m, ST #0. Let Q(§,,..., £) ve

a form defined in an (n-1)-dimensional projective space for a point

X* = (xl*, Xp*, wus, xn*) by

i i i
1 2
Q( El’ preees En) = 2 ay 4 1n(xl*’x2*"“’xn*) 51 52... €nn.

i 4...41=m T2
1 n

A normal to a surface S at x* is of & singular nature with respect to L

if its components (yl,...,yh) satisfy the equation

Q(yl:yéyo-O:Yh) = 0.
If this equation does not hold at x*, we say that S is free at x* with
respect to L. If S is free at every point, it is called non-characteristic
for L. Generally, data for L can be specified only on non-characteristic

surfaces.

The normal derivatives of a function u(xl,...,xn) at a point
x* = (x.%,...,x *) of a surface S, whose normal at x* is
1 n ’

* * *
= ( § se+ey & ) are defined as the functions
1l n

—ll_




g 0 \"
1 Eixi u
i=1
form=0,1, 2, ... .
Two problems, and corresponding types of equations, can now be

described.

I) The Elliptic Case. If Q( El""’ §n) = 0 has no real points

in projective space, we say that L[u] = B is an elliptic equation. 1In
this case, any real surface S is non-characteristic. The problem

agssociated with this equation is the boundary value problem: The

surface S is to be a closed surface, the values of the solution
u(xl,...,xn) are specified on S, and the solution is required to exist
throughout the interior of S.

II) The Hyperbolic (And Parabolic) Case. The equation Q = O has

real solutions in projective space. The problem associated with this

case is the initial value or Cauchy problem: The surface S is required

to be open and the values of u and its first (m-l) normal derivatives
are specified on S, where m 1s the order of L.

In either case S is assumed to be given by an equation

f(xl,xa,...,xn) =0

vhere f is an analytic function; and the functions specifying u or its
normal derivatives on S are to be analytic on S.

The solution in either case is unique, and is stable in the sense
that small variations in the functions specifying u and/or its normal

derivatives on S, in the function f specifying S, in the coefficients

_12 -




8y 4 1 of L, and in the function B in L[u] = B are reflected in
1ipeeety

small variations in the solution u throughout some neighborhood of S,
which neighborhood will grow to the full domain of existence as the
magnitude of the variations becomes small.

In the elliptic case the function u exists throughout the region
bounded by S, except possibly at isolated points.

In either case, u is also an analytic function of XyyeeerXp.

The single difficulty, in the hyperbolic case, lies in the region
of existence of u., Here u exists in regions cut out by "characteristic

surfaces" through the points of S; here a characteristic surface, in

ordinary space, through the point x* = (xl*,...,xn*) is given by
Q(xl-xl*, Xy=Xp*s ooty xn-xn*) = 0.

Thus the influence of the initial conditions spread like a wave front

throughout space, under conditions of propagation controlled by the

operator L.

Further, u, is determined at a point x%* only by the portion of S,
and data thereon, which is cut out by the characteristic surface through
x¥*s the importance of ﬁhis fact for numerical computation lies in this:
Any method of computing u numerically which makes u at x*¥ depend on
substantially more of S and the initial data than is cut out by the
characteristic surface through x¥* will be highly unstable, while a

processing depending on substantially less of S will generally be highly

in error.

-13 -




This highly incomplete presentation will not be needed explicitly
in what follows. For reference purposes a short bibliography on exist-

ence theorems is appended. For further reference, see D. Bernsteins book.

REFERENCES

D. L. Bernstein "Existence Theorems in Partial Differen-
tial Equations"., Princeton, 1950

F. Johns "General Properties of Solutions of
Linear, Elliptic Partial Differential
Equations". The Proceedings of the
Symposium on Spectral Theory and
Differential Problems. (klshoma, 1951,

"On Linear Partial Differential Equa-
tions with Analytic Data'". Communica-
tions on Pure & Applied Mathematics,
vol. 2 (1949), pp. 209-25k.

"The Fundamental Solution of Linear
Elliptic Differential Equations with
Analytic Coefficients". 1bid, vol.

3 (1950), pp. 273-30k.

(An unpublished paper on Parabolic
Equations).

R. Courant & D. Hilbert "Methoden der Mathematischen Physic"
vol. 2 . New York.

E. Kamke "Differentialgleichungen Reeller Funk-
tionen". New York, 1947
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3. ON CONVERGENCE PROBLEMS.

The basic approximation procedure which is considered in this

paper is the replacement of derivatives by partial difference quotients,

For example, we could replace EQXE by

1

U(xl+hl,x2,...,xn) - u(xl,xe,...,xn)

h

1
or by
u(xl+hl,x2,...,xn) - u(xl-hl,x2,...,xn .
>
éﬁi
1. +...41
let Ai i....i_ be the operator which replaces o1 n
12 n il Ta i

n
axl 6x2. .o axn

and let L A be the difference operator corresponding to L, i.e.,

Ly [u] = 2"1 1,...4 44 ceel (u)

172 n 1
This is defined on a mesh whose steps are hl’h2’°'°’hn’ We must replace
S by an approximetion which passes through mesh points. ILet then SA
be the approximation to S, together with the appropriate data for u and
the difference expressions of the normal derivatives of u. This is the
difference problem corresponding to the original differential problem.
Iet uA be the solution of the difference equation, u, the solution of

the differential equation. The convergence problem is the problem of

when

hl* o’hz* O’OOQ
- 15 -




For elliptic problems the answer 1s that this always happens. For
hyperbolic problems the condition is that certain ratios of the hl,h2,...,hn
mugt satlsfy inequalities determined by L; without making these precise,
let us only say that these inequalities coincide, in form and substance,
with the conditions of stability which will be derived later.

As for a precise estimate of the truncation error (=u°-qA ), no
such exists; nor is there any rigorous test for convergence. In practice,
one may solve the difference equations for several progressively smaller
meshes; if the solutions coincide to many decimal places, one can assume
that the truncation error occurs beyond those places. Obviously, this
procedure has its dangers; in slowly converging cases it is bound to fail.

The fundamental paper, in which was first published the discovery of
the need for inequalities on the mesh ratios, is:

R. Courant, X. Friederichs, and H. Lewy - "Uber die Partielle

Differenzengleichungen der Mathematischen Physik".

Mathematishce Annalen, vol. 100 (1928), pp. 32-Tk.

L., STABILITY: GENERALITIES.

Given the equetions L[uo] =B, L, [UAJ = B, their analytic solution
in explicit form may be entirely beyond our means; we are foreced to turn
to the numerical solution of the difference problem, generally, with
the ald of machines.

In numerical work, numbers must be rounded off; this means that we
derive a numerical approximation Uy to 2A . Ejen if u is a good

A
approximation of ug, Uy may be a bad one; for the errors introduced, by

-16 .




rounding off, into u, may grow large, or may not grow small and thereby
accumulate. We need, therefore, criteria that insure that the round off
error will grow small, i.e., tend to zero (See sections quoted in
Section 1).

In the case of elliptic problems, no criterion is needed; uA “Uy
remains small, just as u, - QA becomes small. Thus no further discuss-
ion of the_elliptic case is necessary. With reference to this case; see:

J. D, Tamarkin & W. Feller - "Partial Differential Equations".

Brown University lecture Notes, 1941, Chap. V, pp. 160-196.

The rest of this paper is devoted to a discussion of the stability
ceriteria for the hyperbolic and parabolic cases. The basic references
upon which this discussion rests are given on the followiné page. The
papers in this l1ist will be referred to by the bracketed numbers

preceding them.
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5. STABILITY: von NEUMANNS®' CRITERIA.

The references for this and the next section are [OHK l], [NR l] and
[L1] .

The criteria developed here are sufficient for the stability of the
difference-scheme solutions of partial differential equations with con-
stant coefficients; the criteria can be applied to equations with
variable coefficients by dividing the region of integration into
sufficiently small subregions in which the coefficients vary slowly,
and applying the criteria to each subregion. This procedure must be
used with care, and will not apply if, in particular, the coefficients
are discontinuous,

The paper of W. Leutert [L l] shows, by example, that von Reumann's
criteria are not necessary.

We will make some simplifications in our differential and difference
problems; we assume first that the independent variables are t and
Xy s%pyeee Xy (this amounts merely to renaming the variables). The
reason for this assumption 1s the next one, namely that that surface S
on vhich the initial data are give is defined by

S: t =0,

The particular difference operator L ‘A which replaces the differen-

tial operator L is assumed to be a polynomial in the operators A4, Al’

-1 -1 -1
42,..., A and A7, Al yeees An , where
Au = u(t+k,xl,-o.,xn) - u(t,xl,ooo,xn)

A;l u = u(t,xl,...,xn) - u(t-k,xl,...,xn)

-19-




and

Aiu Su(t,xl,...,xa + hi,oo-’xn) - u(t,xl,...,xn)

Ai_l u = u(t,xl,...,xi,...,xn) - u(t,xl,...,xi - hyeenx),
and where k, hl’ h2""’hn are positive quantities which determine the
mesh structure.

Now (See paragraphs quoted on page 5) we will assume that at t = 0
an error occurs, say e(xl,xa,...,xn). This error affects the solution of
Iﬁ [u] = B
and is therefore propagated in the form of an error f(t,xl,...,xn) whose

law of propagation is given by

LA [f(t;xl,...,xn)] =0

f(O;xl,...,xn) = e(xl,...,xn).
Since %A is a linear homogeneous operator, it is appropriate to
make a Fourier anslysis of f(t;xl,...,xn); the consequence of this analysis
will be an inequality to be satisfied for all ﬂl,..., ﬂn by a certain
function of the new variables Bl""’ Bn and of the k,hy,...,h . In
practise this will result in certain inequalities to be satisfied by cer-
tain ratios of the k,hl,...,hn.

let us expand e(xl,...,xn) (the initial error at t = 0) in a Fourier

e(xl, ces ,xn) =B 2

A
...&"1"' Pn

series
e( ﬂlxl+...+ ﬁnxn)in ,

or else in a Fourlier integral

B ces ir
e(xl,---:xn) = f...fAM,...,&) e( teeet ﬂnxn) dﬁ}_“'d &:

-20 -




according as the initial date is given over a finite or infinite portion
of the surface S: t = 0.

The principal fact to notice is that e(xl,.. . ,xn) is given by linear
superposition of functions of the form e ( ‘1x1+"‘+ ann)'iw ; an analysis
of the propagation of error which is initially given by such a function
will lead to an analysis of the propagation of e(xl,...,xn) s, s8imply again
by superposition. Therefore our problem becomes this: To find

f(t;xl, ces ,xn) vhere

LA [f(t;xl,...,xn)] =0
f(o;xl,...,xn) = el ( plxl+'°'+ pnxn)
The solution of this problem will be built up linearly from a finite
number of functions of the form
Fee®t e( Bixyte. .t ﬁnxn)iw
where ot = a(ﬂl,..., ﬁn) is a (generally) complex number, depending on

ﬂl,..., Bn’ and the wholé expression F is itself a solution of
ir (2 )
L, [F] =0 F(05X),0005% ) = & (2 Byxy .

Now the requirement that the error remain small can be expressed by
the inequality
|e aAtl =|eak| £1;
the requirement that the error die out (See the discussion in Section UL,
first paragraph) is that
|e ok |< 1.

A
Now let us consider the result of substituting F = e atei“ ( Faxy+... Bn¥Xn)




into LA [F] O. Since L A is a linear homogeneous function, we have

k
L, [F] = e ®tel™ (Bixy+...+ Bx,) L(e® ;.k,hl,...,hn‘j Biseees By

vhere L, is a function of eak, of hy,...,h , and of ﬂl,..., ﬂn. Solving
L, =0 for e ok glves

ak
e = G(k’hl,.oo,hn; l’..., Bn)

and the inequality |e c'k|< 1 results in the inequality

IG(k,hl,...,hn; seees pn)l <1
vhich must hold for all B.,..., B (See [cHK 1] , footnote on page 22T,
for special circumstances under which the inequality |GI< 1 need not
hold for all B8 ; the inequality must nevertheless hold if the difference
scheme is to be true for arbitrarily small k,h.,...,h n)'
We have thus found a sufficient condition for stability. In the
next section we will develop similar criteria of stability according to

a method developed by R. P. Eddy [E l] .

6. STABILITY: R. P, EDDY'S CRITERIA.

The reference for this section is [E l] . As in Section 5, we

assume that the variables are t,x.,... »Xp» and that the mesh steps are

1
k’hl’...,hn.
Here we use, instead of the difference operators A, Al,..., An’

the translation operators E, El’ cee ’En whose powers are defined by
(et Ve £t VKX, .00 )

(Eit v)f = f(t,xl, . ..,Xi_lﬂ: Vhi,xi_’.l,;..,xn).
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-1 -1
Thus 4=E1, A" =1 - E and A, =E-1, 4,77 =1-E,.

If now we replace the partial derivatives in the linear differential

operator L by partial difference quotients, we obtain an operator LE

vhich 1s a polynomiasl in E, E'l, ...,En,En‘l. We write

Ly = LE(E; EpseeesB 3 k,hl,...,hn).
If now the solution u of

LEu =B
is disturbed by an error e(ml,...,mn) at t =0, x; =x; +m h, X, =
X, + m, h2"”’xn = X, tm hn’ where ml,...,mn are integers, then the
error is propagated according to the equation

I.Eu=0.

Iet the error at t = s k, By =Xty hl"" X =X +mnhn be

denoted by '

f(s;ml, . .,mn)
so that

LE £f=0
f(O;ml,mz,...,mn) = e(ml,...,mn).

The operators E, El"”’En operate on f according to

(XY - f(n % vk; My yeee,m )

(2, V)t = £(n; mseeemyE Vb cum ).
Now let us replace the operators El""’En in LE = I.E(E,El,...,En;
k, hl,...,hn) by exponentials

- - -1 6
e iOl, e 192,...,e 1 n’ so that E Tv is replaced

J
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+1v6) 103

by e , and EJ-:L by e

O(s; Ol,..., On;k,hl,...,hn) = ¢(8) of the equation

, and let us consider the solution

LE(E;e-iel,...,e-ion; k,hl,...,hn) @(s) = 0.

Then the error f(s;ml,...,mn) is given by

-1 -1 -1
f(S;ml,...,mn) = ¢(8;E1 ’E2 ,o'o,En ;k’hl,ooo,hn) e(ml’ooo,mn)a

Thus the nature of the error is entirely contained in the function
o(s; 91, 92,..., On;k,hl,...,hn); in order to have stability w#we mmst
satisfy the condition

lim (p(s) = 0.
B 9 o0

Let us write LE(p= 0 in the form
p(s) = Bl<p(s-l) + 32 P(s-2) + ... +Bp ols-p),
where p is an integer determined by LE and ﬂi (1 = 1,...,p) are functions

Of the ol,ooo’ en’k’hl’ooo’hno

Now @(s) can be given explicitly. Let pl’ cees Pq be the roots of
P p-1 - =
A - ﬁl A -~ sesse - ﬂp-l A ﬂp = 0

and let SRR be the multiplicities of these roots. Then (p(s) can
be given as a combination

(s) = % af:-l A, Y p
8 = S
\ 1=1 \ j=o 9 1

8
where A,ji are functions of 91,..., On,k,hl,...,hn. In order that

lim ¢@(8) = 0, a neceasary and sufficient condition is that
800
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lim Bj pis = 0 1 = l,o..,q, 0§J§31-1.
8 9 o©

But this is satisfied if Iﬂa|<:l. Thus the condition for stability is
that every root P of

NP B NPT - AB, - B =0
satisfy

| p|<1.
Further, this must hold for every value of the variable 61,..., On; the
end result is therefore a set of conditibns on k, hl,...,hn.

According to Eddy [E 1; p. 3] s, in all cases which have so far been
tested the methods of this section and of the last section yield identical
resultsf

For the cases p = 1 or 2, we can develop immediate criteria for the
roots to satisfy |P|<1.

When p = 1, the only root of A- ﬂl =0 is Pl = ﬂl' Therefore the
condition of stability is

- 1<B8.<1.

When p = 2, the usual expression for the roots of a quadratic can
be applied to get the desired conditions on Bl and ﬂa; when 31 and 32
are real, these conditions are particularly simple. There are two cases
to be considered: Real roots, and complex conjugate roots.

First case: Complex conjugate roots, i.e.,

2
(_32_]) + 32< 0.




B B\ 2 Br V//B1\2
Then the roots are P =—2—:£+V<—]-' + 32 and P2=-2—I- -—g:L +§2;

1 5
the conditions of stability are ,Pl| = |92|< 1. But
Bl 2 B, \2
1
lpl‘ =(T) - (T) + By or |p1| =|p2| =- B,. Thus we
must have
- 1<pB, <o.

, B.\2
which combined with (—éi) + 32<0 gives

,31,<2 V- &
Second case: Real roots, 1i.e.,
£ 2
(T + By>o.

-\ 2
Now the roots P, = ﬂa+ ‘/(—B-]-‘-)2+ ﬂza.nd 92= Bl 2 - (-é) + B

1 2

must satisfy -1 < P1<l - 1L 92<l. These conditions lead to
52 + ﬂl <1

B, - ﬂl<1

1>% + V(—zl-l) @ + 32 yields

B 2
(- 2P-(2)

or 1>ﬂl+ﬂa,

B V B\ 2
and likewlise —2-]-'- - —él‘- + 32 > -1

for
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B.\2
yields (1 + -l;-l-)z >(_2—1) + B,

or 1> 132 - Bl .
Thus for p = 1,2 the criteria can be written
I. p=1 - 1< 81

II. p=2, B, 32 real;

Bll 2‘/'—32’

for real roots B2 + Bl< 1, 32 - Bl < 1.

for complex roots -1< 32< 0,

T. THE HEAT EQUATION AS AN EXAMPLE,

We will, in this section, discuss the heat equation

du 8°u

=8

ot 6x2

as an example and illustration of the methods of the preceding sections.

The basic references are [E 1] , [0HK 1] ,[T 1] and [NR 1] . In parti-
cular, the numerical examples, tables and graphs are copied directly
from [OHK l] ; they form the most enlightening feature of all these
discussions of numerical methods.

We will consider several possible choices for the difference scheme
to be used in the numerical solution of the heat equation, and we will
repeat the derivaetion of the stability conditions for these specisl cases
in order to illustrate the general proceedures of the preceding section.

We will consider first Richardson's difference scheme (See [R 1] ).
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u(x,t+4t) - u(x,t-4t) __ u(x+ax t) - 2 u(x,t) + u(x -ax t)
=8 2
2 At Ax

(in this simple case, we will use At, Ax rather than k, hl)'

This was used by L. F, Richardson to integrate the heat equation
over a short range; as we shall see, this scheme is ordinarily unstable,
both by the stability conditions and experimentally. Nevertheless, W.
Leutert has shown [L 1] , that under appropriate conditions, Richardson's
scheme can be stable without satisfying either the von Neumann or Eddy
eriteria.

The von Neumann criteria proceeds by a Fourier analysis of error;

by linearity we need only consider solutions of Richardson's scheme of

the form ecteiﬂ x' The requirement that |e @4t < 1 gives conditions
vhich At, Ax, must satisfy for all B. Introducing e at eiﬁx in
place of u(x,t) in Richardson;s scheme, we get
at 18x, aAt -a At
e e (e - e )___aeateiﬁx(eiBAx_2+e-1ﬂAx)
24t Ax®
or setting E-e adt
E - L =(2__a._1_32£) 2(cos BAx - 1),
§ Ax
- . 8(8. At) gin2 ( gAx)
A x2 2
or setting r = aat
A 2
X




aldt

ateiﬂx 18

Now the condition that |e < 1 for every for which e

a solution of Richardson's scheme gives us that we must have

| 6]« %|<1.

But if B 40, £&- %(0 by the equation for § - % ; and this is
possible only if either 3 <-lor - % & <1, Thus Richardson's scheme
is, by von Neumann's test, always unstable.
Now in order to apply Eddy's method, we use the operators E. Ex
vhere
Bu(x,t) = u(x,t+At), E, u(x,t) = u(x+ A x,t)

Richardson's scheme is then

-1
E - E-l Ex -2 + Ex
—_—— u=a ) u
2At AX
or replacing u(x,t+s At) by ¢@(s) and E, by e"19 , we have

@(s+1) - (s-1) (2—*‘—“;) €2 2. ) p(a)

AX
or translating to the left by 1, i.e., replacing s by (s-l) and setting
_8 At
Ax!

@(8) - 4 r(cos 0-1) ¢p(s-1) - ¢(s-2) =0
The "characteristic equation"

Aa-hr(cose-l)k-l=0.

The conditions at the end of Section 6 for the case p = 2 apply here;

since -1<0, the roots are real. Thus 32 = 1 and ﬂl = br (cos 6 -1)

must satisfy




B, + B B, - B <1

or
1+ U4t (cos 6 -1)<1 1 - bkr(cos 6 -1) < 1.
In particular, for cos @ = -1, these give
1-8rll 1+8rll
or
8r>0 and 8r<o

wvhich 1s obviously lmpossible,

Thus by Eddy's criteria the scheme of Richardson is unstable., We
will later compare Richardson's scheme with a stable scheme numerically,
and see that 1t is in fact unstable; the results of W, Leutert, which
show that Richardson's scheme can be made stable do not apply to the
particular numerical methods used.

Now let us turn our attention to the difference scheme

u(x,t+At) - u(x,t) —a u(x+Ax,t) - 2u(x,t) + ulx -Ax,t)
At Ax®
This scheme has a larger truncation error than Richardson‘'s scheme,
but on the other hand, it is a stable scheme.
atei Bx

Using von Neumann's method of analysis, we substitute e

for u(x,t), obtaining

at i18x, adt
e e (e -l)=aeateiﬂx(eiﬂdx_2+e-iﬂAx)
At Ax°
or setting €=e°At,r=a'—A—Z-
Ax




S
]
(=
]

2r (cos BAx - 1)

- 4r sin2 —EQA—E

or

E=1-4r 8in® -E—;-f
The condition |€ | <1 gives

-1<1 - br sin® BAX g,
The right inequality is satisfied trivially. The left inequality gives
-1<£1 - br sin® —E-ai‘}-

or
r sin2 _ﬂ_éé_’ﬁ < %’- .

since this inequality must hold for all 8 , we find
r(-;'-

as the condition for stability.

Turning to Eddy's criterion, and using E, Ex as the tramslation

operators, we have as the difference scheme

(E-l)u _ (Ex-2 + Ex-l)u
At Ax®
and the Eddy equation becomes

P(s+1) - () = Eﬁg (e2? 24+ e2%) fs)

or replacing s by s-1, and aj% by r
x

@o(s) - (1 + 2r cos §-1) ¢@(s-1) = 0.

By the conditions at the end of Section 6, the stability comdition for




p=1is

-1<1 + 2r (cos 8-1) <1
or

-2<2r (cos 6-1) <0
or

0<r (l-cos 0) < 1.

The left inequality always holds, while the right inequality requires
~that we have

r < ;_‘-
vhich is thus the condition for stability; this conclusion agrees with
that drawn from von Neumann's method.

Before we turn to a numerical consideration of the above two schemes,
let us consider a strong objection to them; in order to have stability,
we must have

r<d
i.e.,

At <% Ax.
Thus if Ax is very small, At must be very, very small; in consequence,
a certain degree of accuracy in x calls for much more accuracy in t.
Methods have been developed by von Neumann (the "implicit methods") which
are stable for all values of r, i.e., all mesh ratios; see [NR 1] ,[E 1],
[OHK 1] . For numerical work, such schemes are obviously preferable; we
concentrate here on an unstable scheme and one which is stable for r<%-

because they show the various phenomena which may be expected in a much
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clearer menner than an absolutely stable scheme can.
We will now consider the result of numerical integration applied to
a special case of the heat equation. The differential problem we will

now consider will be

du(x,t) _ gulx,t)

ot Ox
u(x,0) = 1 0<x<1
u(o,t) = u(1,t) =0 t £0.

The exact solution of this differential problem is given by
)

ey =

T n-1,3,5,...

2 2
e T T gin (m mx).

B

We will calculate both the exact and numerical solutions of the differ-

ence scheme (A) and (B)

(a) u(x,t+ At) - u(x,t) u(x+Ax,t) - 2 u(x,t) + u(x- Ax,t)
LI ) = 2
At Ax

(B). u(x,t+ At) -~ u(x,t- 4t) _u(x+ax,t) - 2u(x,t) + u(x-4x,t)
2At Ax®

the latter scheme being, of course, Richardson's.

We will refer t'o the exact solution as D, the exact and numerical
solutions of (A) as A and N, and the exact and numerical solutions of
(B) as AR and NR’ both in this discussion and in the tables and graphs.

The tables and graphs are taken directly from [OHK 1; pp. 240-251];
they are given at the end of this section.

Plate I compares D and Np, using t = 0.001 (or 1 millisecond) and
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Ax = 0.1. The data from which Plate I was drawn is given in Table II,
columns two and three. It shows that for t2>0.005, NR begins to diverge
from D and shortly goes into strong oscillations.

The remaining plates compare D, A and N (the.solutidns of scheme (A))
for various values of A x and various values of the mesh ratio

r oAy

Ax
Scheme (A) being stable for r<:%. The data from which the remaining
Plates are drawn 1s given in Table II, columns other than number three,
and in Tables III, IV, and V.

We can make the following observations on the graphs. For r < %,
all of the solutions are quite close tb the true solution D, r = 0.L45
being very nearly as good as r = 0.1, in spite of the fact that this
causes At to be 4.5 times larger in the first case as in the second.

The fact that the curve for r = 0.45 is better over a portion of the
graph than r = 0.1, and better over the entire graph than r = 0.3 is
without significance since the total time interval is only one tenth of
& second. We get decidedly poorer results using r = 0.5.

In consequence, in numerical work it behooves us to use a mesh ratio
r close to but less than 1/2.

In Plate 3, we compare the exact solution D with N for r = 0.45,

r =05, r=0.55, and r = 0.7. The rate at which the situation degener-
ates 1s tremendous; for while N for r = 0.45 1s a fairly good approxima-
tion to D, N for r = 0.5 is a poor approximation, and N for r = 0.55 is

no approximation at all., The further increases to r = 0.7 causes

_3)_"-




unreasonably large oscillations.

In Plates 4 and 5 we compare D and N for stable mesh ratios and
various values of A x; as Ax becomes smaller the solutions N become
better approximations to D in a regular manner, i.e., the solutions N
converge to D (thus bearing out experimentally a statement made on the
equivalence of convergence and stability eriteria made in Section 3).

If we compare the numerical solution N for r = 0.1 Ax = 0.1
(Table II, column 4) and the exact difference solution A for r = 0.1,

Ax = 0.1, (Table V, colunn 2) we see a remarkable agreement; which
indicates that round-off errors are damped out too rapidly to accumulate;
this substantiates experimentally the assumption made in Seetion 1 (in
the quoted paragraphs) that weak stability implies strong stability.

Finally, if we compare the numerical and exact solutions N and A
of the difference scheme (A), we f£ind that they are nearly equal, even
in the unstable case, as the following brief tabulation (taken from

Tables II, III, V) shows at a glance:

r = 0.5 r = 0.55
t(ms) A N t(ms) A N
20 0.9375 0.9375 22 0.9083 0.9085
30 0.8594 0.8594 38.5 0.8824 0.8824
45 0.78126 0.78125 55 0.5756 0.5753
60 0.6409 0.6409 1.5 0.7609 0.7609
85 0.5245 0.5245 88 0.2287 0.2287
100 0.k292 0.4292 10k.5 0.8218 0.8218

We can therefore conclude that the error in a numerical integration
is due, not to the round-off error, but in fact, is due principally to
the truncation error; which conclusion is contrary to the opinion generally
held at the present time.
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Plate 2. Stable Numerical Solutions. (ax=0.1)
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Plate 3. Unstable Numerical Solutions. (ax=0.1)
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Plate 4. Converging Numerical Solutions. (r=0.1)
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Plate 5. Converging Numerical Solutions. (r=0.3)
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t(ms) D Ap N A= X D-Lk AR-NR D-A
— S 4
5 1.0000 .9990 .9990 | .9996 .001 .0000 | .000k
10 .9953 .9872 .9870 | .9919 .0081 .0002 | .0034
15 .9785 .99k1 «9957 | .9729 -.0156 | -.0016 | .0056
20 .9518 .T491 .T390 | .9k452 .2027 .0101 | .0066
25 .9192 2.3771 2.5504 | .9123 | -1.4579 | ~.1733 | .0069
30 .8832 | -9.7547 | -10.8768 | .8766 | 10.6379 | 1.1221 | .0066
TABLE I

Here we use

At

= 0.1.
A2

r =

At = 0.001, Ax = 0.1, which have the stable mesh ratio

In this and succeding tables (as in the graphs) we use the notation:
2

D =

A=

Throughout

Ou_9u
ot 0%

exact solution of

exact solution of
u(x,t+4t) - u(x,t) _ u(x+ax,t) - 2u(x,t) + u(x-ax,t)

2
At Ax
numerical solution of the preceding difference system.

exact solution of Richardson's scheme

u(x,t+ At) - u(x,t- at) _u(x+4x,t) - 2u(x,t) + u(x ax,t)
2At Ax®

Numerical solution of Richardson's scheme.

all tables and graphs, x = 0.h4.
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TABLE IT ( A x=0.1, r = A
t(ms) D N, N(r=0.1)| N(r=0.3)| N(xr=0.5)| N(r=0.T)
0 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000
1 1.0000 1.0000
2 1.0000 1.0000
3 0.9999 1.0000 1.0000
L 0.9994 0.999
5 1.0000 0.9990 0.9996 1.0000
6 0.9975 0.9989 1.0000
7 0.9970 0.9979 1.0000
8 0.9936 0.996k4
9 0.9940 0.994k4 1.0000
10 0.9953 0.9870 0.9919 1.0000
11 0.9909 0.9890
12 0.9763 0.9856 0.9919
13 0.9898 0.9818
14 0.9585 0.9775 1.0000
15 0.9785 0.9957 0.9729 0.9789 1.0000
16 0.9267 0.9679
17 1.0193 0.9627
18 0.8652 0.95T1 0.9623
19 1.0845 0.9513
20 0.9518 0.7390 0.9452 0.9375
21 1.2439 0.9389 0.9432 1.0000
25 0.9192 2.5504 0.9123 0.9375
27 4 ,5251 0.8982 0.9005
28 -4 . 4hé6g 0.8911 0.7599
30 0.8832 | -10.8768 0.8766 0.8779 0.8594
35 0.8461 0.8398 0.8594 1.1h41
36 0.8324 | 0.8322
40 0.8088 0.8029 0.7812
42 0.7883 0.7869 0.1717
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TABLE II (Cont'd.)

t(ms) D N(r=0.1)| N(r=0.3)| N(r=0.5){ N(r=0.7)
45 0.7721 0.7666 0.764T 0.7812
48 0.7453 | 0.7430
k9 0.7382 1.8908
50 0.7363 0.7312 0.7080
54 0.7038 | 0.7009
55 0.7018 0.6971 0.7080
56 0.6904 -1.4538
60 0.6686 0.6642 0.6608 0.6409 .
63 0.6452 0.6416 3.4096
65 0.6368 0.6328 0.6409
66 0.6266 0.6229
70 0.6063 0.6027 0.5798
T2 0.5910 0.5870
75 || 0.5773 0.5739 | 0.5698 | 0.5798
78 0.5573 0.5531
80 0.5496 0.5465 0.5245
8k 0.5254 0.5212
85 0.5232 0.5203 0.5245
90 0.4981 0.kos5h 0.4911 0.4ThsS
95 0. h7h1 0.4716 0.4745
96 0.4670 0.4627
100 0.4513 0.4490 0.4292
102 0.4359
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TABLE III

(Ax=0.1, r

z!t)

AR
t(ms ) N(r=0.45 N(r=0.55)
0 1.0000 1.0000
4.5 1.0000
5.5 1.0000
9.0 1.0000
11.0 1.0000
13.5 1.0000
16.5 1.0000
18.0 0.9590
22.0 0.9085
22.5 0.9426
27.0 0.904T
27.5 0.9451
31.5 0.8743
33.0 0.7976
36.0 0.8373
38.5 0.8824
ko.5 0.8043
4.0 0.6856
45.0 0.7692
k9.5 0.7371 0.8273
5k.0 0.7046
55.0 0.5753
58.5 0.6k
60.5 0.7857
63.0 0.6446
66.0 0.4649
67.5 0.6166
71.5 0.7609
72.0 0.5893
76.5 0.5636
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TABLE IIT (Cont'd)

t(ms) N(r=0.45) N(r=0.55)
77.0 0.3509
81.0 0.5386

82.5 0.7560
85.5 0.5151

88.0 0.2287
90.0 0.4923

93.5 0.7T46
9k.5 0.4707

99.0 0.44k99 0.0928
103.5 0.4301
104.5 0.8218
110.0 -0.0639
115.0 0.9042
121.0 -0.2502
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TABLE IV (r=—A-Z-)

r = 0.1 ¥ ra=0.3
t(ms) N(A x=0.05) N(A x=0.2) N(Ax=0.05)| N(Ax=0.2)
0 1.000000 1.000000 1.000000 1.000000

1.5 1.000000

3.0 0.999997

k.o 0.999970 1.000000

k.5 0.999928

6.0 0.999540 0.999934

7.5 || 0.998469 0.999299

8.0 0.997905 0.990000

9.0 0.996420 0.997613

10.5 0.993243 0.994666

12.0 0.988919 0.973000 0.990450 1.000000
13.5 0.983508 0.985059

15.0 0.977110 0.978621

16.0 0.972354 0.951200

16.5 0.969842 0.971275

18.0 0.961820 0.963153

19.5 0.953154 0.95%4373
20.0 0.950140 0.926210
21.0 0.9439uk 0.9450k41
22.5 0.934278 0.935251
2k.0 0.924235 0.899205 0.925084 0.910000
28.0 0.896113 0.871039

32.0 0.866812 0.842331

36.0 0.837052 0.813525 0.811000
ho.o 0.807323 0.784938
k4.0 || 0.TT7957 0.756792
48.0 0.74917h 0.7292%0 0.719200
50.0 0.735048

52.0 0.702386




TABLE V (Cont'd)

t(ms) A(r=0.1) A (r=0.5) A(r=0.55)
T1.5 0.7609
75.0 0.5798

T7.0 0.3509
80.0 0.5u64 0.5245

82.5 0.7560
85.0 0.5245

88.0 0.2287
90.0 0.5954 0.47h5

93.5 0.7746
95.0 0.4745

99.0 0.0928
100.0 0..4h90 0.4292

10k.5 0.8218
105.0 0.4292

110.0 -0.0640
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TABLE V

(Ax = 0.1,

zlt)

r =

Ax®
t(ms) A (r=0.1) A(r=0.5) A(r=0.55)
10.0 0.9919 1,0000
11,0 1.0000
15.0 1.0000
16.5 1.0000
20.0 0.9452 0.9375
22,0 0.9083
25.0 0.9375
27.5 0.9451
30.0 0.8766 0.8594
33.0 0.7975
35.0 0.8594
38.5 0.8824
%0.0 0.8029 0.7812
4.0 0.6856
45.0 0.7812
k9.5 0.8273
50.0 0.7312 0.7080
55.0 0.7080 0.5756
60.0 0.6642 0.6409
60.5 0.7857
65.0 0.6409
66.0 0.4650
_70.0 0.6026 0.5798
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8. THE WAVE EQUATION.

We will consider briefly the application of von Neumann's and
Eddy's methods to the wave equation
2 2
O u 2 u
~—= =8 —Lé-
ot 0x
as an example of the hyperbolic case.

We will consider only the difference scheme

u(x,t+4t) - 2u(x,t) + u(x,t-at) _ a2 u(x+ax,t)- 2u(x,t) +u(x- ax,t)
2 2
At Ax

The results will be expressed in terms of the mesh ratio
adt
Ax

To apply von Neumann's method, we substitute e

r =

atlsx for u(x,t)

and obtain, upon cancelling common factors and writing §=e adt

ﬂdx_

$+%’-=2+2r2(cos 1)

=2~k r® a1n® (£LX

or setting
A=1- 22 8in® (-1;2-4—’5)
we have
£2_2a¢ +1=o0.
The roots of this quadratic are
g =a+¥a® -1 am  §,a-a- VA2o1
From the equation

h'li =24
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ve see that &) =1/¢ . Ir AD1, |€|>1; 1f A<-1, then |6o] > 15
1f |A| S1, then | €l| =|€2, = 1. Thus we can not choose r so that

, 3 l <1, i.e., we can never insure that the error tends to zero, but

only that if it is initially small, it will remain small (See Sectionm 4);
this is kmown as semi-stability. The condition for semistability is

then
-1S1 -2 12 sin® (45 =1

The right side is trivial; the left is satisfied 1if and only if

r=s1.
Now we turn to Eddy's criteria. The difference scheme becomes
-1
E-2+E7 2 By -2+E
.5 u=8 ] v
At Ax

Replacing u by @(s), E, by e_io we have
@(s+l) - 2¢(s) + p(s-1) = 2 2 (cos0-1) ¢(s)

or replacing s by s-1 and (cos @ -1) by -2 sin> g ’

@(s) - 2(1-2r° 810%0) @(s-1) + @(s-2) = 0.

The characteristic equation is then

2

A -2AA+1=0

where

2

A=1l-2r sinao.

This then leads to the same results as in von Neumann's method, i.e.,

the roots Pl, P2 of the equation satisfy
'P1|=|02|=1 if rsi1
I Pl|>1 or 194 1 ifr>1.
Thus we can never ensure that the error will die out, but only that
the error will not grow.
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9. ESTIMATES FOR THE ERROR: ORDINARY DIFFERENTIAL EQUATIONS.

Methods developed by H. Rademacher permit the evaluation
of both the truncation and round-off errors in the step-by-step numerical
integration of systems of first order differential equations; these
methods depend on the evaluation of two constants by an initial rough
numerical integration, and therefore are of quantitative importance only
in the more complicated cases which occur. The qualitative information
supplied by these methods is of general utility. These methods have been
extended to partial differential equations by L. H. Thomas,

In what follows we will consider a single ordinary equation,

y' = E - 2(xy)

X
with the initial condition

y(x,) =y,

All our considerations will apply to systems of equations; a direct trans-

lation can be made if y and f are replaced by vectors, by the

oy
Jacobian matrix, and products by matricial products (the Y,j’}" R, ® and

u which occur later must also be vectors).
We assume that we have a procedure of numericel integration, i.e.,
a function y(x,h) of x,y(x),y'(x),h, etc., such that

y(x+h) - ¥(x,h) = hp+10(x) +nB*2 ¥ (x,h)

~n P ¢ (x)

vhere @£ 0 is an expression in x,y(x) and its derivatives, and f£(x,y)

and its derivatives which determines the coefficient of the approximate
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error; W(x,h) is some bounded coefficient, so that nf*2 @ can ve

B+l

ignored in comparison with h ® when h is small enough.

We will use this process of integration to compute y(xj) at
xJ =X, + J h, and we will endeavor.to evaluate the approximate error
involved in this numerical computation. Initially, we will assume that
all numerical computation is carried to an infinite nuﬁber of decimal
Places; the error resulting from rounding-off will be considered later.

We assume that the result of the numerical integration is a set of
values y'j - an approximation to y(xj). The "truncation error" is de-
noted by

uy = y(xj) - ¥y

We introduce functions Yd(x) such that

ay £(x,Y,) -
d x

Then the extent by which Y 3 (x ,j) and y 3 differ is a measure of the growth

Yylxya) =¥y

to x, = x + h.

J-1 J

of the truncation error in the interval from x 3-1
We set
R = Y - 3
3= Yy0x5) -y,

Then, approximately, R,~ h A+l ¢ (xj).

J

Now let us consider the rate of change of (Yj-y) s L.e.,
d
ax (YJ"Y) = f(x:YJ) - f(x:y)

~ fy(x,y) (YJ'Y)

neglecting higher powers of (Y-y). We form the "adjoint equation"
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e A= -ty

we will not yet specify initial values for A .

Now % (YJ—y)

A 2, (x3) (1,75)

(:1"% A) (Yy-y)

or

_SE{)‘ (Yj—y)} = 0.

3-1 to xJ we obtain

X

If we integrate from x

A(Yj-y) =0

xJ_l
= A (xd)(YJ(xJ) = y(xj)) - A(xj-l)(Yj(xJ-l) - y(xj-l)).
Then YJ(xJ) =¥y + RJ, and y(xJ) - ¥y =uy

Setting A(x J) = A, we have

3
ARy = Ayuy- A e

Since y(xo) =¥, 8, = 0. Summing we have then

E }‘J RJ = )‘n u .

If we replace RJ by h B+l Q(xd) we have

B
Anun~h €(A3¢(xj)h
X

n
~h f A(x) P(x) ax
x

o
or replacing x by X, u by u(X) and )‘n by A(X)
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X
A(X) u(x) ~ h”f A(x) &(x) ax.
x
o}
If we choose A to satisfy the initial condition A(X) = 1, we have
an expression for the truncation error.

Now let us assume that in our computation we round-off in the
(k+)-st place,i.e., that we carry k places. We denote the rounded-off
quantities by a dash over the symbols for exact quantities; thus » the
y 3 are the results of the numerical integration under rounding-off, We
make two further simplifying assumptions: That we compute f(":t:'J ,Sr'J) 80

accurately that all doubtful figures in hf(x ) are shifted beyond

J’iJ
the round-off point, i.e.,

and also we assume that g = X,

Because of the magnitude of the round-off error (this is a "forward pre-

diction") we will assume that h is so small that
— - - -k
Yy = Fy3 + h f(xj-l’y,j-l) + GJ 10
WHERE O§€J§.+ 1 (this is the crudest representation of ij in terms of .
53-1’*’ that we can use).
ﬂhe round-off error is given by
IS TS I
Then
-k

[+
]

37 0 F By gy ) - B(xy 00T, 4) - € 20
or 5 uﬂ'l =h -g; uJ-l - eJ 10

_su -

e
'




upon ignoring higher powers of u We introduce the solution of the

J-1'
difference equation
= or
AJ X:j"l =-h 5; XJ
Then approximately
)‘J ~ )\(xd).
Now we obtain
@ -3 )=0n X, 2L 5 . e 10% 3
At B S 33y 41 3 3
- — -k -
=-(AJ-AJl)uj_l- eJlO AJ
- - ' -k
or ( X,j uJ - }‘J-luj-l) = - eJ XJ 10 .

Thus setting X, = X and summing from jJ = 1 to n, and using the fact that
uj-l = 0, we have
— -k
A(XJ(x) = - (2 €5 Ay) 10

X

-k
or |A(x)u(x)| < (x |AJ|) 1o‘k~}§-— j | A] ax
X

o
Thus the round-off error is, in general s of the order of the number of

steps (‘r]f) of integration. This estimate can be much improved if we can
assume that the rounded-off numbers were distributed at random, i.e.,
that € 3 is a random number. For then the dispersion of A(x)u(x)
will be given by

2

oz(A(x)E(x)) = (2 A, e de) 1073k

N
® o -

!
8'
R

A2 ax
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or -
o ()\(X)G(x))~‘/;%1‘k— ) jx A2 ax.

X
[o]

The probable round-off error is then 0.67h4 times this.

Numerical examples indicate that the estimate of the truncation
error will be accurate to about 1/2%; and if enough places are carried
so that the truncation error lies in the last four places, the estimate
for the dispersion of the round-off error will be greater than the
round-off error and generally within 20% of the round-off error. If
the number of places carried is such that the round-off and truncation
errors are approximately equal (as suggested by Rademacher) the error
estimates may be off by a factor of 200. Therefore we should have h

and k so chosen that, setting

X X
p = Q:6T4 J A? ax E = j D A dx
V3 x x
o} e}
1=ns3

we should have

nB+2 _qokm D
E.

Among many assumptions, some somewhat justified, the assumption
that ej is randomly distributed stands out as unjustified; indeed
Huskey and Hartree have shown that in a simple case it is quite strongly
unsatisfied. A criterion suggested by Rademacher is shown in the paper
of Huskey and Hartree to be inadequate; the following is the criterion

developed by Hartree (for references see the end of this section).
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If eJ is not randomly distributed we have systematic errors, i.e.,
the first integer digits dropped are the same, i.e.,
the last integer digit of A(105™y) = o

or

0h+1

the last integer digit of 1 y'h=0

or

k+1

10n-0.5 < 10 y'h = 10n + 0.5

where n is an integer. This will occur over a range of values of Ay',

and we have
1
Ay':
lok+iﬁ

The number N of intervals necessary to cover this range satisfies
Nhy"~ Ayy

1
152 |y ¥

or N

The number of errors will be serious in practice only if N is greater

than 3 or 4; thus let us require N<k, or

k+1 h2

L 10 Iy"l >1 .

This gives us the condition
1l

h >
iﬁ:- 105+ ||

We will now state explicitly the results obtained for the case of

a system of equations. Iet

dyi
—a—x—- = y'i = fi(x,yl’ooo’yn) (i=l,2,...,n)
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and yi(xo) = Y0 (1=1,2,...,n).

Let us have a process of integration expressed as yi(x,h) such that
y; () -y, (6,h) =0 P d (x) + 0 P2 @ (x,n)
1
~nf* ¢ (x) (1=1,...,n)

where B 1is now assumed to be independent of i. Introduce the solutions

of the "adjoint equations".

aaA, éf.
3 xJ = - é"a_y'f (xxyl(x))“-)yn(x) ‘ A'i .

If the exact numerical solution is yZJ at x, =x + Jh, and

J
Uy = yi(xj) - Yyy then setting ui(xj) =y, ve find that the truncation

error is given by
X
B
Ay (Xu (%) + cov +A_(X)u_(X)~D f A, B, 4. +A_ D) ax
x
(o]
If we round off after k places then the round-off error Ei » glven by

the difference between the exact and approximate numerical solution, is

bounded as

A (X)T 3 < 107 A
LT + s AT T | (A

X
[¢)

cee * |A71‘) ax

If, however, the rounded-off term is distributed at random, then the

standard deviation is \\

-k
o( Alﬁl+...+ )‘nu—n )~V§1Lh§_ ‘[JX (Ala + b.. +)‘n2) dx
X
o
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The probable error is then 0.674 times this & . The condition that the

rounded-off terms be random is

1

h & max
J h°10k+1 y:j'

The optimum choice of h is then such that

-k+n
f (€A, ®)ax[~20 o Q5T (€ A%)ax
b V3

where lén§3 .
Set

X
p = 2:67% Vf (e A%)ax &
V3 X,

X
I (€ A, ®)ax| .
X

Then we should have

B+§ okt D
g -

The lower inequality on h then gives

1
T';_: 1
- +
(10 kin l-)-) max
E = 2 k+1 "
'/{o-lo Yy 3

2
(10'k+n %) A b4t 10 >pax 1

or

vhich gives the condition

!%—]}I— + k+ 2"': 40 Dll-/2 B+l

> 1
-——WzT*_—-Zmax]-?rl—.

Among the conclusions we can draw from this formula is that a

—59 -




method for which ﬁ<:2 cannot be the most efficient, i.e., if we choose
k large, h must not satisfy the condition which makes it an optimum -
4 k
- + k
since 10 2P+ grows small as k grows large.

The references for this section are as follows:

D. Brouwer Astronomical Journal, vol. 46 (1937)
pp. 146-
H. Rademacher "On the Accumulation of Errors in

Processes of Integration on High-Speed
Calculating Machines".

Proceedings of a Symposium on lLarge-
Scale Digital Computing Machines.
Cambridge, 1948. pp. 176-187.

Huskey & Hartree "On the Precision of a Certain Pro-
cedure of Numerical Integration".

Journal of Research, N.B.S., vol. 42
(1949) pp. 57-62.

(In particular, this last reference gives a numerical example, using
an incorrect condition of Rademacher for the round-off errors to be
randomly distributed. The agreement between predicted and actual values

of the errors is still good).




10. ESTIMATES FOR THE ERROR: PARTIAL DIFFERENTIAL EQUATIONS.

We consider in this section L. H, Thomas extension of the methods
of the preceding section to partial differential equations; the refer-
ence is to [T 2] .

Any partial differential equation or system of such equations can

be put in the form of a system of parabolic equations

Ouy ( du, dw Oy
=f t,x ’-oo,x; o.ou; vseey 7] ec e
ot i 1 S Ry | Hxl’ ax2l dx, ax;

(i = l, LR ] ’m).
For example, the equation

2 2
6121+a;_=0
ot Ox

can be reduced to this form by setting u, = -g% ; the system is then
Ou _
ot " %
aua - 62\1
ot 9 x°

We will consider the round-off and truncation error in a single (para-

bolic) equation of the form

2
Ou Ou o
ot = T(tx; w55, FY]
or using the abbreviations
2
Ou o
b= 3"“ » Q=
ou

'3_1‘;= £(t,x; u, p, q)
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(We will use p and q to give us a convenient notation for the partial
derivatives of f(t,x;u,p,q), i.e., as in fq, fp). The methods used on
this equation can be extended to other equations and systems of equations.

In the given differential equation we replace the differentiation

2
operators o s 0 3 3 % by difference operators L, I, , L such that
ot 9x 98X Pt
v u
Lv=%€+¢(At,Ax; u; %’E;”')
S 47 o
_ ov . ... Ou,
va = —ﬁ-'- ¢p(At,Ax, u; 3T o..)
ov
=%3xt ¢p
2
Lv = a;-» ("]
éx Q

vhere 9, P , P are terms of higher order in the mesh steps At, Ax.
P q
Then we have a difference equation

v = f(t,x;v,va,qu)

The truncation error

then satisfies a linear partial differential equation which is found

by subtracting the equations for u and v from one another

au _ afu-v) de

Pt WS ~P=3% - 9@
oy 6211
= £(x,t;u,2L, —-2-)- f(x,t;v,va,qu)

ox ox




2
ou o u
- fu(v_u) - fp (L Vv . — ) - fq (qu - ___75)

p ox ox
—-fe-f(a—(u——v)-¢)—f(-——-é—az(u'v)-¢)
oe aze o (/]
=«fe-f —.T°F + 7 + £
w TP e T a2 Tp P aq
or
L ,r ear 2%,y EEE =P+t P +¢ P
ot U Pox %ax proa 4

(The £, @'s are here functions of v).

A numerical integration of this equation then gives an approximate
value for the truncation error.

We will now consider the rounding-off error. As in the preceding
section, it is necessary that the mesh intervals be small in order that
the rounding-off errors of each step shall be random. Let us round off
after k places, so that the rounding-off error is e(x,t)lo-k, where

0=e(x,t) =1.

We will denote by E(x,t) the accumulated rounding-off error.

By an analysis directly analogous to that of the preceeding sectiom
we could integrate the error € (x,t) of a single step in t to obtain
the error E(x,t). In the stable case, we already know that the
greater part of the error is truncation error (See the end of Section T);
the analysis of the round-off error will therefore be carried no further
here.

As an example, consider the equation
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The equation, for the truncation error then becomes

de 62e 1 62v 1 Ax2
=a 5+ = At 5 - ==
ot dx 2 ot 6 adt
3
1 2 0 v

— At
+15 9+3

(where v 1s the approximate solution).

At
Ax?

®

If r = # % , the equation is

2 2
0e 0 e 1 2 v 1

c.’.
[v}}
"

whose approximate solution is

1 ) 2v 1
e~= t At (1_ )
) 6t2 5 r

vwhile if r = % » the error becomes of the next higher order in

At, i.e.,
3
e~ Ll tA2 Oy
15 0t
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