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AESTRACT
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.

A one-dimensional dynamical system of #+ particles with forces be-

tween neighbors containing nonlinear terms has been studied on the Los

Alamos computer MANIAC I. The nonlinear terms considered are quadratic,

cubic, and broken linear types. The results are analyzed into Fourier

components and plotted as a function of time.

The results show very little, if any, tendency toward equipartition

of energy among the degrees of freedcm.

The last few examples were calculated in 1955. After the untimely

death of Professor E. Fermi in Nwember, 1954, the calculations were

continued in Los Alamos.

.
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This report is intended

with the behavior of certain

linearity is introduced as a

to be the first one of a series dealing

nonlinear physical systems where the non-

perturbation to a primarily linear problem.

The behavior of the systems is to be studied for times which are long

ccmpared to the characteristic periods of the corresponding linear

problems.

The problems in question do not seem to admit of analytic solutions

in closed form, and heuristic work was performed numerically on a fast

electronic computing machine (MANIAC I at

behavior of such systems was studied with

ing, experimentally, the rate of approach

Los Alamos).* The ergodic

the primary aim of establish-

to the equipartition of energy

among the various degrees of freedom of the system. Several problems

will be considered in order of increasing ccxnplexity. This ~per is

devoted to the first one only.

We imagine a one-dimensional continuum with the ends kept fixed and

with forces acting on the elements of this string. In addition to the

usual linear term expressing the dependence of the force on the dis-

placement of the element, this force contains higher order terms. For

‘We thank Miss Mary Tsingou for efficient coding of the problems and
for running the computations on the Los Alamos MANIAC machine.

.

.
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the purposes of numerical work this continuum is replace@ by a finite

number of points (at most 64 in our actual computation) so that the par-

tial differential equation defining the motion of this string is replaced

by a finite number of total differential equations. We have, therefore,

a dynamical system of @l particles with forces acting between neighbors

with fixed end points. If Xi denotes the displacement of the i-th

point from its original position, and ~ denotes the coefficient of the

quadratic term in the force between the neighboring mass points and P

that of the cubic term, the equations were either

‘i= ‘Xi+l+‘i-l - 2Xi) + q [(xi+l- Xi)2 - (Xi 1-xi.lj2 (1)
i = 1, 2, . . . 64,

or

‘i= (X,+l+ ‘,-l - x )3 - (xi -XJa~) + F[(xi+l- i
1

(2)

i =1, 2, ..* 64.

~ and # were chosen so that at the maximum displacement the

term was small, e. g., of the order of one-tenth of the linear

nonlinear

term. The

corresponding partial differential equation obtained by letting the

number of particles become infinite is the usual wave equation plus non-

linear terms of a complicated nature.

Another case studied recently was

—

‘ii=i qxi+l -xi) -62(xi -XJ+C

where the parameters

ent values depending on whether or not the

(3)

constant but assumed differ-

quantities in parentheses

-4-
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w~eless than or greater than a certain value fixed in advance. This

prescription amounts to assuming the force aa a broken linear function

of the displacement. This broken linear function imitates to some ex-

tent a cubic dependence. We show the graphs

a function of displacement in three cases.

/
/

Quadratic

representing the force as

/ /
/ /

/ /

Cubic Broken Linear

The solution to the corresponding linear problem is a periodic

vibration of the string. If the initial position of the string is,

say, a single sine wave, the string will oscillate in this mode in-

definitely. Starting with the string in a simple configuration, for

example in the first mcde (or in other problems, starting with a com-

bination of a few low modes), the purpose of our computation was to

see how, due to nonlinear forces perturbing the periodic linear solu-

tion, the string would assume more and more complicated shapes, and, for

t tending to infinity, would get into states where all the Fourier

modes acquire increasing importance. In order to see this, the shape of

-5-
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the string, that is to say, x as a function of i and the kinetic

energy aa a function i were analyzed periodically In Fourier series.

Since the problem can be considered one of dynamics, this analysia

amounts to a Lagrangian change of variables: instead of

.
‘i and xi, i = 1, 2, ... 64, we may introduce

ak and

2, . . . 64, where

The sum of kinetic

ratic force is

if

or

few

and

~=xxisini+’.
and potential energies in the problem

~kin + ~pot 1 .2 (x
i+l -

Xi)2 + (xi - ‘i-lJ

X4 X4 ‘Zxi+ 2 (5a)

the original

& , k= 1,
k

(4)

with a quad-

~2

.!. .1.

*kin +Epot 1 ●2
‘~ak

+ 2a~ sin2 ~ (5b)
ak ak

we neglect the contrlbutiona to potential energy from the quadratic

higher terms in the force. This amounts in our case to at most a

per cent.

The calculation of the motion was performed in the x variables,

every few hundred cycles the quantities referring to the a vari-

ables were computed by the above formulas. It should be noted here that

the calculation of the motion could be performed directly in ak and

hk. The formulas, however, become unwieldy and the computation, even on

an electronic computer, would take a long time. The computation in the

ak variables could have been more instructive for the purpose of ob-

serving directly the interaction between the
ak

‘s. It is proposed to

do a few such calculations in the near future to observe more directly

the properties of the equations for &k.

-6-
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. Let us say here that the results of our computations show features

which were, from the beginning, surprising to us. Instead of a gradual,

continuous flow of energy from the first mode to the higher modes, all

of the problems show an entirely different behavior. Starting in one

problem with a quadratic force and a pure sine wave as the initial

position of the string, we indeed observe initially a gradual increase

of energy in the higher modes as predicted (e. g., by Rayleigh in an

infinitesimal analysia). Mode 2 starts increasing first, followed by

mode 3, and so on. Later on, however, this gradual sharing of energy

among successive modes ceases. Instead, it is one or the other mode

that predominates. For example, male 2 decides, as it were, to increase

rather

At one

mde 3

change

rapidly at the cost of all other modes and becomes predominant.

time, it has more energy than all the others put together! Then

undertakes this role. It is only the first few modes which ex-

energy among themselves and they do this in a rather regular

fashion. Finally, at a later time mode 1 comes back to within one per

cent of its initial value so that the system seems to be almost periodic.

All our problems

gradual increase

sentially, among

observe

was the

If

the rate

have at least this one feature in common. Instead of

of all the higher modes, the energy is exchanged, es-

only a certain few. It is, therefore, very hard to

of “thermalization”or mixing in our

initial purpose of the calculation.

one should look at the problem from the point

problem, and this

of view of sta-

tistical mechanics, the situation could be described as follows: the

r

-7-



phase space of a point representing our entire system has a great num-

ber of dimensions. Only a very small part of its volume is represented

by the regions where only one or a few out of all possible Fourier

modes have divided among themselves almost all the available energy.

If our system with nonlinear forces acting between the neighboring

points should serve as a good example of a transformation of the phase

space which is ergodic or metrically transitive, then the trajectory of

almost every point should be everywhere dense in the whole phase space.

With overwhelming probability this should also be true of the point

which at time t = O represents our initial configuration, and this

point should spend most of its time in regions corresponding to the

equipartition of energy among various degrees of freedom. As will be

seen from the results this seems hardly the case. We have plotted

(Figs. lto 7) the ergodic sojourn times in certain subsets of our

phsse space. These may show s tendency to approach limits as guar-

anteed by the ergodic theorem. These limits, however, do not seem to

correspond to equipartition even in the time average. Certainly, there

seems to be very little, if any, tendency towards equipartition of

energy among all degrees of freedom at a given time. In other words,

the systems certainly do not show mixing.*

The general features of our computation are these: in each

problem, the system was started from rest at time t = O. The

*One should distinguish between metric transitivity or ergodic behavior
and the stronger property of mixing.

.

-8-
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derivatives in time, of course, were replaced for the purpose of

numerical.work by difference expressions. The length of time cycle

used varied somewhat from problem to problem. What corresponded in

the linear problem to a full period of the motion was divided into

large number of time cycles (up to 500) in the computation. Each

problem ran through many “would-be periods” of the line- problem~

a

so

the number of time cycles in each computation ran to many thousands.

That is to say, the number of swings of the string was of the order of

several hundred, if by a swing we understand the period of the initial

configuration in the corresponding linear problem. The distribution of

energy in the Fourier modes was noted after every few hundred of the

computation cycles. The accuracy of the numerical work was checked by

the constancy of the quantity representing the total energy. In some

cases, for checking purposes, the corresponding linear problems were run

and these behaved correctly within one per cent or so, even after 10,000

or more cycles.

It is not easy to summarize the results of

cases. One feature which they have in common is

the various special

familiar from certain

problems in mechanics of systems with a few degrees of freedom. In the

compound pendulum problem one has a transformation of energy from one

degree of freedom to another and back again, and not a continually

increasing sharing of energy between the

prising in our problem is that this kind

systems with, say, 16 or more degrees of

-9-

two. What is perhaps sur-

of behavior still appears in

freedom.
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What is suggested by these special results is that in certain

problems which are approximately linear, the existence of quasi-states

may be conjectured.

In a linear problem the tendency of the system to approach a

fixed “state” amounts, mathematically, to convergence of iterates of a

transformation in accordance with an algebraic theorem due to Frobenius

and Perron. This theorem may be stated roughly in the following way.

Let A be a matrix with positive elements. Consider the linear trans-

formation of the n-dimensional space defined by this matrix. One can

assert that if ~ is any vector with all of its components positive,

and if A is applied repeatedly to this vector, the directions of the

vectors ~, A(i), .... Ai(~), .... will approach that of a fixed vector

~oin such a way that A(~o) = A(zo). This eigenvector is unique among

all vectors with all their components non-negative. If we consider a

linear problem and apply this theorem, we shall expect the system to

approach a steady state described by the invariant vector. Such behavior

is in a sense diametrically opposite to an ergodic motion and is due to

a very special character, linearity of the transformations of the phase

space. The results of our calculation on the nonlinear vibrating string

suggest that in the case of transformationswhich are approximately

linear, differing from linear ones by terms which are very simple in the

algebraic sense (quadratic or cubic in our case), something analogous to

the convergence to eigenstates may obtain.

One could perhaps conjecture a corresponding theorem. Let Q

be a transformation of a n-dimensional space which is nonlinear but is

-1o-
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still rather simple algebraically (let us say, quadratic in all the

coordinates). Consider any vector ~ and the iterates of the trans-

formation Q acting on the vector ~. In general, there will be no

question of convergence of these vectors Qn(~) to a fixed direction.

But a weaker statement is perhaps true. The directions of the

vectors Qn(~) sweep out certain cones Ca or solid angles in space in

such a fashion that the time averages, i.e.y the time spent byQn(~)

in Ca , exist for n -+ a. These time averages may depend on the

initial ~ but are able to assume only a finite number of different

v~ues, given Cm . In

into a finite number of

; taken from any one of

other words, the space of all direction divides

regions R , i = lY
i

... k, such that for vectors

these regions the percentage of time spent by

images of = under the

The graphs which

in various modes as a

& are the same in any Ca.

follow show the behavior of the energy residing

function of time; for example, in Fig. 1 the

energy content of each of the first 5 modes is plotted. The abscissa

is time measured in computational cycles, at, although figure captions

give ~t2 since this is the term involved directly in the computation

of the acceleration of each point. In all problems the mass of each

point is assumed to be unity; the amplitude of the displacement of

each point

points and

a denotes

cubic term

is normalized to a maximum of 1. N denotes the number of

therefore the number of modes present in the calculation.

the coefficient of the quadratic term and @ that of the

in the force between neighboring mass points.
a

.

.

We repeat that in all our problems we started the calculation from

the string at rest at t = O. The ends of the string are kept fixed.

-11-
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0
‘o 10 20 30

t IN THOUSANDS OF CYCLES

Fig. 1. The quantity plotted is the energy {kinetic plus potential
in each of the first i~e modes).

~
The units for energy are arbitrary.

N= 32; a= 1/4; 6t = 1/8. The initial form of the string was a single
sine wave. The higher modes never exceeded in energy 20 of our units.
About 30,000 computation cycles were calculated.
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.

100

50

0
0 2 4 6 8 10 12 14

t IN THOUSANDS OF CYCLES

Fig. 4. The initial configuration assumed was a single sine wave;
the force had a cubic term with # = 8 and 6t2 = 1/8. Since a ~~bi~
force acts symmetrically (in contrast to a quadratic force), the string
will forever keep its symmetry and the effective number of particles
for the computation N = 16. The even modes will have energy O.
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E

-8

-12

-16

u 2 4 6 8 10 12 14 16
POSITION OF THE MASS POINT

Fig. 8. This drawing shows not the energy but the actual sha es>
i.e., T?=the displacement of the string at various times (in cycles
dicated on each curve. The problem is that of Fig. 1.
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