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ON THE PROBABILITY OF INITIATING 

A PERSIST1~T FISSION CHAIN 

by 

George I. Bell and Clarence E. Lee 

ABSTRAC'r 

We derive and discuss the integra-differential equation 
for the probability of initiating a pe~sistent fission chain. 

__ ~e probability is considered to be a function of space, en­=" r ergy, and time. For the time-independent case, we describe 
Iii-~: the SNP code, which is a form of the DSN code for efficiently 
~-cor· solving the nonlinear probability problem. Additional nu-o ~- ..... c-clear parameters which are required for this probability cal­
.J~M-

~;;:;:;o I culation are noted, and the reAults of a few test problems 
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I INTRODUCTION 

In his classic paper on the statistical behavior of neutron chains, 1 

Feynman considered the space and energy-dependent probability of obtain­

ing, from a single neutron, a divergent neutron chain in a stationary 

system. He showed that this probability satisfies a nonlinear integral 

equation, the kernel of which is the same as that for the linear neutron 

transport problem. Numerical solutions of this integral equation were 

obtained for metal spheres of ••• with one neutron velocity group by 
2 Blocker in 1953. v1hen Carlson devised his Sn method for numerical 

solution of the transport equation, it was seen by Lee, Longmire, Goad, 

and others that this method should be applicable to the solution of 

the nonlinear probability problem as well, and a one velocity code was 

devlged for this purpose in 1955 by Goad. 

In this paper, we first derive nnd discuss the integra-differential 

equation for the probability of a divergent chain, vhi~h is considered to 

be a funr.tion of space, energy, and time. For the time-independent case, 
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we then describe the SNP code which is a form of the DSN code for effj­

ci.ently solving the nonlinear -probability problem. 'Phe additjonal nuclenr 

parameters reaui red for the probability problem are noted, And ·the results 

of a few test problems are shown. 

FUNDAMENTAL EQUATIONS 

l-Ie now derive an integro-differential equation for the probability 

of obtaining a divergent chain. The notation is as follows: 

Let p(~1rt1v1 t) be the probability that a neutron at position~ 

time t, with direction n~ and speed v produces a divergent chain reactiono 

Let q(11 rt1v 1 t) be the probability that such a neutron does not 

produce a divergent chain so that q = 1 - p. 

Let cr(~1rt1v1 t) be the probability per em that the neutron will have 

a collision. 

(~ -) -i_ ~ ) 

Let ci r 1n 1v 1 t ~ nrvi1 •• ., n;_vi be the probability that i neutrons 

~ ~ ~ 
emerge from the collision havinB velocities v1n11 v 2n2 ~to vini. It is 

assumed that the neutrons emerge from the collision instantaneously. 

Let "it be a vector startinB at ~ and in the direction rt, "it = sa, and 

let the intersection of ft and the fixed boundary of' the problem be Its. 

It is assumed that no material lies beyond It • s 

We can now write an integral equation which states that the prob-

ability of' no divere;ent chain1 q1 equals the probability that the neutron 

escapes from the system without collision plus the probability that it 

collides somewhere 1 and the resulting neutrons lead to no divergent 

chains. Thus (with ~~ = r/ + sn) 

\ .... 
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(J.) 

The inte~als over It• or ;u are tal{en along the direction an of' neutron 

motion. Here the first term is the :probability that the neutron escapes 

from the system without collision; the second is the :probability that the 

neutron has a collision from which no neutrons emerge; the third is the 

probability of' a collision from which one neutron emerges but does not 

lead to a divergent chain etc. 

If vre novr differentiate q along the direction ft, we obtain an integro-

differential equation. Differentiating the right-hand side 1 we obtain from 

the exponentials (differentiated with respect to lovrer limit of' integration) 

the term +crq plus additional terms from the collision integrals. Thus dg}ds 

is 

(2) 
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( ---)---) ) This is our fundamental equation for q r,n,v,t • It is to be solved sub-

ject to the boundary conditions that q('its,n,v,t) = 1 for all~ • 'it > o, 

'Where ri is an outward normal. to the boundary surface at 1 . (Note that s 

if we deal with a re-entrant system, the boundary surface can be taken 

uell outside of the material boundary.) Evidently a corresponding equa-

tion for p can be obtained by substituting q = l - p in Eq. (2). The 

result is 

••• 

with the boundary condition p('i!s) = 0 if n. r: > o. 

In principle, Eq. (3) could be solved directly. However, very 

little is known about the functions ci for fission,and considerable 

simPlification results if we assume that each fission neutron emerges 

isotropically in the 1 system and uncorrelated in energy with other 

fission neutrons. Then each fission neutron has the probability f(vt) 

of emerging with velocity v', where f(v') is the normalized fission 

seem to seriously 

(5) 

spectrum (Ir(v' )dv1 = 1). This assumption does not 

contradict existing fission theories~l5 \-lith this assumption, crc. may 
~ 

"be written (i > 1) 

> > ·X· -> -> 
lh~.- o

1
.(r,r.,v,L)(:.(r,n,v,t)f(v 1 ) ••• f(v!), 

~ ~ ~ 
(4) 

. , 



* where crf is the fission cross section and ci is t.l-J.e probability of i 

neutrons emerginG from fission. Tnen the ci term in Eq. (3) becomes 

i(i - l)(i - 2) ( fd 'f( '). (~ ' t))3 ] + 31 v v p r,v , + ••• • 

If we nmr assume that all collisions are either scattering ( cr ) 1 s 

(5) 

" * -,~ ~ ) fission (crf), or absorption (era= a - a - crf) and let ~ ic. = v r,n,v,t 
6 • 0 l. 

l.:= 

and 

i(i .. l) ••. (i - n) 
(n + 1)1 

then Eq. (3) becomes 

* xn+1 (1,n,v,t) 
ci = (n + lH J (6) 

where cs is c
1 

for scattering (elastic or inelastic). If one wishes to 

allow for (n1 2n) or (n,3n) reactions, the appropriate additional terms 

can be easily found from Eq. (3). 
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It is interest~ to note that if the nonlinear terms were removed 

from Eq. ( 7), one would obtain an equation in which p could be interpreted 

as a time-dependent importance function. 6 In fact, p could be the ex-

pected number of neutrons in the system at some late time1 tf, due to one 

neutron present at time t. 'l'o see this, let us write down the integrRl 

-(-7 -7 ) equation for n r,n,v1 t;tf , the average number of neutrons in the sy~;tem 

at tf due to one at t (at 1 with velocity vn). As in Eq. (l) 1 • 

(8) 

-7 
If we differentiate along the direction n and assume uncorrelated fission 

neutrons, we obtain Eq. (7) with n replacing p and all nonlinear terms 

missing (thus formally x2 = x3 = xi = o). Evidently the initial condi­

tion on n is n = l at t = tf, and the boundary condition is n(l?s, ••• ) = 0 

"f -7 -7 ~ n • n > o. Thus n has a different initial condition than p but the 

s~e boundary condition. 

Note that for large tf - t 1 n will be conu><>sed only of neutrons 

from divergent chains. Thus the ratio n/p is the average number of 

neutrons at time tf in a divergent chain1 which can thus be found as a 

-7 -~ 

fw1ction of r, Q' v 1 and t. 



Let us now consider the form of Eq. (7) for a stationary system. 

For such a case, "dpjert, = o. rmd the cross sections have no a dependence, 

although cs 1or.i.ll be a function of (S1 • n•). We then have 

where 

f:p(rJ = J f(v• )p(1,v• )dv1 , 

vTith the boundary condition p(1S1n1v) = 0 if n • 'ii > Oe 

Except for the terms involving crf, this equation (plus boundary 

condition) is identical to that for the neutron adjoint for eigenvalue 

k. The equation for the adjoint has the fission term1 

instead of 

crf(1,v)v(11v) 

k 

where k is the eigenvalue. It follows that any DSN or other technique 

for computing a neutron adjoint can formally be made applicable to a 

(10) 

probabilJty calculation by introducing the nonlinear terms of Eq. (9) in 

place of ( i ... l)crrv(rp(~). 

·r 



THE SNP CODE 

i(· 
The SNP code is a straightforward modification of the new DSN code 

which then com;putes probabilities for stationary systems and uncorrelated 

fission neutrons; that is1 it solves Eq. (9) 1 subject to rigorous con-

--+--+ 
servation of p(r,n,t), using equations of reference 9· 

Previous experience with one-velocity calculations had shown that 

straightforward iteration of l<~q. (9) was a very slowly convergent p1·ocess 

for small -p. 'l'herefore the SNJ:l code starts by computing the adjoint k dis­

tribution (nonlinear t.enns neglected), then multiplies this distribution 

by a normali?.:ation factor· to satisfy the integral of Eq. (9) over the 

\Thole system. It then proceeds to iterate Eq. ( 9) but after each outer 

iteration, it scales the solution ag~in. This procedure appears to con-

verge ve!y rapidly, and the time for a p calculation :is not m11r.h loneer 

than for an ad.jntnt k calcu..lation. 'l'he procedure is nov descri.bed in 

more detn) 1. 

In multigroup form and for spherical geometry and isotropic scatter-

ing1 Eq. (9) can be written as 

-n • grad p (r1 !l) + a (r)p (r1 1l) = s (r) 1 g B g g 
(lla) 

X 
'rhe new D~..lN co~i.c ur.e~; slit'Jltly different difference equations from the 
PSN code d.i:::euc~c~l iu referencer. 7 and 8 and enforces rir;orous neutron 
CO!lDel'Vntion. •) 
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·•' 

where 

(lib) 

and 

G l Jl p (r) = 2 p (r,~)d~, 
g -l g 

P(r) = ~ f 1P ,(r), ~ g g 
(llc) 

g'=l 

with the boundary condition p (r ,~) = o, ~ 2: o. We assume that not 
g max 

more than five neutrons are emitted in fission. Although. the above eq_1.l,8.. 

tions are written for spherical geometry and isotropic scattering, the 

SNP code can also be applied to planes and inf'inite cylinders, and a 

first order anisotropic scattering approximation can be used. Evidently 

the same procedures can be used for multidimensional geometries. 

The calculation begins by solving the linear eigenvalue problem in 

which S (r) is replaced by s0(r) where 
g g 

G 

= .I; crs,g~g'(r)pg' (r) 
g'=l 

crf (r)v (r)P(r) 
+ g g 

k • (12) 

Once this solution has been found in the usual DSN manner, we test to make 

sure that k > 1. If so, we then multiply p ( r) by the constant factor ')...1 g 

where ')... is chosen so that 



lO 

,L'j~crfg(r)vg(r)P(r) (~- 1) =- .L'Jd1crfg(r) 
g g 

(13) 
X. (r) 

• ~1 Pi(r)~i-1. 

~P(r) is then used as the first guess for the solution to Eq. (ll). The 

purpose of this normalization is to insure that if ~P(r) is used for co~ 

puting Q(r) 1 then the integral of Eq. (lla) 1 over angle and the volume of 

the system1 is satisfied. It is analogous to the scaling procedure 8 'Which 

has been found useful in ordinary DSN calculations. Q (r) is formed from 
g 

hl'(r) and used as a fixed source in Eq. (llb) during the next iteration. 

At the end of the next iteration, we have found a new p (r) and new P(r) 1 g 

and we compute a new value of k as the ratio of new ~ I crfvP to old 

L. I crfvP. A new scale factor is determined such that ·the integral of 

Eq. (lla) over the whole system holds when~ values of p (r) are used 
g 

throughout. Thus ~ is found from 

(14) 

and this new value of ~P (r) is used to compute Q (r) which is held con-
g g 

stant through the next iteration. This procedure is continued until both 

k and ~ are st~ficiently close to unity. In practice, the first value of 

~ (obtained from Eq. (13)) is usually very far from unity, being typically 

-103, and to avoid difficulty in finding the correct root of Eq. (13) 1 we 
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have ignored the -s? and higher terms in obtaining this first ')1.. Subse-

quent values of' ')1. are q~te close to unity and f'or them, the quartic 

equation f'or ')1.1 Eq. (l4) 1 is solved. Convergence has been found to be 

quite rapid_, requirine only eight or so iterations on ')1. to give p to 

Data input for a SNP problem is the same as f'or a DSN problem except 

that the eigenvalue index is set to -l (I04 = -l in new DSN) 1 and the ad­

ditional parameters cr.;<2/2t 1 crf1-:/3t1 crf'X1J411 and cr.;<-
5
/5! are entered in 

front of' the absorption cross section in the cross section table f'or each 

element. These parameters are discussed in the following section. 

ADDITIONAL FISSION PARAMETERS 

Terrell5 studied the probability of' obtaining various numbers of' 

neutrons from fission. He found that a.:u the experimental data on neu-

tron multiplicity could be fit by a universal distribution. 

the probability of' obtaining n neutrons_, he found 

~ l 

1 
(v-V+l/2)/cr -t2/2 

~ c = --- e dt1 
n;::O n ~ -oo 

If' c is 
n 

with cr = l.08. With this distribution, c is only a function of' v. We 
con 

have used the distribution to compute L n(n- l) ••• (n- m + l)c • The 
n n;::m 

calculations were performed by Mrs. J. Powers, and in Figure l are plotted 

X2/2tv1 x
3
/3tv1 x4/41v1 and x

5
/5tv vs. v. For use in the SNP calculation1 

these numbers are multiplied by vcrf' and entered as the first four entries 

of' each cross section tn.ble (they are entered f'or each material und grou;p). 

r.1acroscopic crosr. ::;cctions urc formed from these microscopic cross sections 

by the code in the um.w .. l vray. 

11 
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Fiv1re 1 Fission parameters as functions of v 

TEST PROBLEMS 

A number of problems were run with the code by R. Anderson for com­

parison with previous results. First of aJ.11 a very slightly su;per-

cri tical system was run for comparison with the linear problem. For 

nimplici ty in complrLir~j intcr;ro.ls1 the system was a one grou;p unifonn 



A theory for the very slightly su,percriticaJ. case wa~ sketched by 

Feynmari for the integral equation approach. We here show1 for the one 

grou;p case1 how the theory can be applied here. Generalization to many 

grou;ps is straightforward. For a slightly supercritical system1 p(r) 

will be small1 and in Eq. (ll) we ignore terms in p3 and higher powers 

of p. Equation (ll) can then be written 

x2 2 -n. grad p(r111) ::: (c - l)p(r) - 2 p (r) 1 (15a) 

where we have set a = 11 c is the average number of secondary neutrons 

per collision, and x
2
/2 the mean number of pairs. We consider the cor­

responding linear eigenvalue equations for the neutron flux n(r) and 

adjoint n+(r): 

(15b) 

(l5c) 

where n
1 

is the eigenfunction corresponding to the eigenvalue c
1

• Assum­

+ 1ng1 as :Ls customary, that the functions n. ( r 1 J-1.) form a complete set, we 
~ 

expand 

Substituting in Eq. (15a) 1 we have 

00 

I 
i=O 

2 

a.n:(r0. 
~ ~ ) 

(16) 

(17) 
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Let us now multiply this by nj ( r) and integrate over the volume. Since 

n j ( r) and n: ( r) are orthogonal1 we have 

(18) 

2 Now in the p term within the integral1 one expects that the term 

(a0n~(r))
2 

is the largest. If so1 we may approximate Eq. (18} by 

(19) 

which for j = 0 gives 

(20a) 

while for j -/: 01 

(20b) 

From Eq. (20a) 1 we see that a0n~ is of order (c - c0 ) which is a very 

small number for a slightly supercritical system. But Eq. (20b) then 



, 

+ tells us that a.n. is of order 
J J 

which is the square of a very small number. . This confirms our assl.ml.P­

tion that a0n~(r) is a good approximation to p(r) 1 and we conclude that 

p(r) will be given by Eq. (20a) for very sma.ll c - c0 • 

Note that Eq. (20a) is essentially a determination of a normaliza­

tion constant or scale factor a0 • It differs from Eq. (13) 1 which we 

use for finding a scale factor first of all trivially., in that Eq. (13) 

is in mul tigroup form and retains p3 and higher terms but also essen­

tially in that in Eq. (20a) both numerator and denominator have been 

multiplied by the weighting function n0(r). This makes Eq. (20a) more 

accurate for slightly supercritical systems, but if we wished to ern@1oy 

such a weighting in practice., this would require an additional calcula­

tion of n
0
(r) and very likely lengthen the calculation. Of course., for 

a one group calculation., n0 ( r) = n~ ( r) 1 but in general this is not the 

case. 

A one group test problem (a 9.5 em Oy sphere) was run to see if the 

SNP code calculates p(r) in agreement with Eq. (20a). Good agreement 

was found. 

l'> 



REFERENCES 

1. R. P. Feynman, T..os Alamos Scientific Laboratory, private communication, 
~1946). 

2. YT. Blocker, r,os Alamos Scientific Laboratory, p·.~1 .rate communication, 
(1954). 

3. B. Carlson, "Solution of the Transport Equation by the Sn Method_," 
Los Alamos Scientific Laboratory Report LA-1891 (1955). 

4. R. B. Leachinan and c. s. Kazek1 Jr., Phys. Rev. 1051 l5ll (1957). 

5· J. Terrell, Phys. Rev. 1081 783 (1957). 

6. J. Lewins1 "Time-Dependent Adjoint Equations •• • , " J. Nuclear Energy 
A1 ~~ 108 (19(50) • 

7. B. Carlson, C. Lee 1 and W. Worl ton, "The DSN and TDC Neutron Trans­
port Codes," Los Alamos Scientific Laboratory Report LAMS-2346 (1959). 

8. B. Carlson, "Numerical Solution of Transient and Steady-State Neutron 
Transport Problems, 11 Los Alamos Scientific Laboratory Report LA-2260 
(1959). 

9. C. Lee 1 "The Discrete Sn Approximation to Transpor:t Theory 1 
11 Los Alamos 

Scientific Laboratory Report LA-25951 to be issued. 

10. G. Hansen, "Properties of Elementary Fast Critical Assemblies 1 " Proc. 
Second Inte1n. Conf. Peaceful Uses Atomic Energy_, Geneva, Vol. 121 
:p. 84 (1958) and :private communication. 

,. 



.:::1 
· .. J 
> 
,_,__J 
·,.,) 
; . I 
........ -

' 




