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ON THE PROBABILITY OF INITIATING
A PERSISTENT FISSTON CHAIN

by
George I. Bell and Clarence E. Lee

ABSTRACT

We derive and discuss the integro-differential equation
for the probability of initiating a persistent fission chain.
pThe probability is considered to be a function of space, en-
=5 r ergy, and time. For the time-independent case, we describe
====q> the SNP code, which is & form of the DSN code for efficiently
rsolv1ng the nonlinesr probgbility problem. Additional nu-
%;;;;r—- ~clear parameters which are required for this probability cal-
;EEE=<>I culation are noted, snd the results of a few test problems
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F ’ INTRODUCTION

IN

In his clessic paper on the statistical behsvior of neutron chains,l

Feynmen considered the space and energy-dependent probability of obtain-
ing, from a single neutron, s divergent neutron chain in & stationary
system. He showed that this probsbility satisfies a nonlinear integral
equation, the kernel of which is the same s&s that for the linear neutron
transport problem. Numerical solutions of this integral equation were
obtained for metal spheres of ... with one neutron velocity group by
Blocker2 in 1953. Vhen Carlson devised his Sn method for numericsl
solution of the transport equation, it was seen by Lee, Longmire, Gosad,
and others that this method should be applicable to the solution of
the nonlinear probabilily problem as well, and a one velocity code wes
devised for this purpose in 1955 by Goaed.

In this paper, we first derive and discuss the integro-differential
equstion for the probability of a divergent chain, wvhich is considered to

be a function of space, energy, and time. For the time-independent csse,




we then describe the SNP code which is g form of the DSN code for effi-
ciently solving the nonlinear probability problem. The addiiional nuclear
parsmeters required for the probability problem are noted, and the results

of a few test problems are shown.

FUNDAMENTAI, EQUATIONS

We now derive an integro-differential equation for the probsgbility
of obtaining a divergent chain. The notation is as follows:
Let p(T)Q,v,t) be the probsbility that a neutron at position T,

time t, with direction ff, and speed v produces a divergent chain reaction,

Let q(¥,Q,v,t) be the probability that such a neutron does not
produce a divergent chain so that ¢ = 1 - D,
Let o(?,ﬁ,v,t) be the probability per cm that the neutron will have

a collision,

- = = . s
Let ci(r,Q,v,t —eﬁ)ivi, seny in]!_) be the probebility that i neutrons

emerge from the collision having velocities "15)1’ vefi)e up to viﬁ)i'

assumed that the neutrons emerge from the collision instantaneously.

It is

Let § be a vector starting at T and in the direction @, 5 = s{l, and
let the intersection of s and the fixed boundary of the problem be ?s.

It is assumed that no material lies beyond ?s.

We can now write an integral equation which states that the probe
ability of no divergent chain, q, equals the probebility that the neutron
escapes from the sy_stem without collision plus the probability that it
collides somewhere, and the resulting neutrons lead to no divergent

chains, Thus (with T = © + s0)

%
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s
- = - Sy
a(r,Q,vyt) = exp{- f? o{r?,Q,v,t + -;)dr
-—)

I‘s - = B ?' 3y D 8%\ .=
+f_) a(rt,Q,v,t + ;) exp{ = f? o(r"yQ,v,t + T)u
r

. d?[co(?‘,s_f,v,t + %) +ffdv'd.(_z)'cl(?',s_)),v,t + _‘_sr - Qt,vt)g(T,at,v,t + -3)

- o s = -
+ eee +ff... ffci(rt,n,v,t t = D Q1yV]y eeey Q;'.L,v'i)

. Q.(?',ﬁ)i,vl,t + %) ses q_(?',a;.,vi,t + %)M_i;:dva- ese dﬁ);.dv:'i. + oto] . (l)

The integrals over T or ?" are taken along the direction (i?) of neutron
motion, Here the first term is the probability that the neutron esceapes
from the system without collision; the second is the probebility that the
neutron has a collision from which no neutrons emerge; the third is the
probability of a collision from which one neutron emerges but does not
lead to a divergent chain etc,

If we now differentiate q along the direction _s_:, we obtain an integro-
differential equation, Differentiating the right-hand side, we obtain from
the exponentials (differentiated with respect to lower limit of integration)

the term +o0q plus additional terms from the collision integrels, Thus dg/ds

is
— =
o erad g(T,0,v,t) + %_a_q_(_r%_m)_ = 0(T,0,Vyt)a(T,0,vyt)

- o(?,ﬁ),v,t)[(:o(i?,ﬁ*,v,t) +ffdv'd§)'cl(?,§),v,t ——)(?',V')q(?,ﬁ)',v',t)
-, = - = - -
+ 400 +ffoooffdv'd-0' eoe dv:'.Ldﬂici(r,Q,V,t "’Q',V', ssey Q:'.LV;-)

d \i(?a)' ! t) cee q_(? g_l)'V!t) T oo . (2)



This is our fundamental equation for q(f;EZV,t). It is to be solved sub-
ject to the boundary conditions that q(T,,,v,t) = 1 for all &+ 1 >0,
vhere 1 is an outward normal to the boundary surface at E;. (Note that
if we deal with a re-entrent system, the boundary surface can be taken
vell outside of the material boundary.,) Evidently a corresponding equo~
tion for p can be obtained by substituting q = 1 - p in Eq. (2)s The

result is
Qe grad p+ % %% = 0P = o{ffdv'dﬁ"cl(?,s?,v,t aﬁ',v')p(?,ﬁ",vf,t)

+ eee +ff'"ffd"'d5" dvidﬁ’ici{l - (l - p(?,f—f':v',t))
(1 - P(I_",ﬁ']!_,v;,t))] + } (3)

with the boundary condition p(?s) =0ifg o1 >0

In principle, Eq. (3) could be solved directly, However, very
little is known ebout the functions c 5 for fission,and considerable
simplification results if we assume that each fission neutron emerges
isotropically in the r system and uncorrelated in energy with other
fission neutrons. Then each fission neutron has the probability f(v?t)
of emerging with velocity v', where £(v') is the normalized fission
spectrum (j' fvt)avt = l). This assumption does not seem to seriously

by5

contradict existing fission theories, With this assumption, oc,; may

ve written (1 > 1)

> ) X,y =)
oo, = ol,(r,Q,v,L)(:i(r,.(z,v,t)i‘(v') cee f(v;!L), ()



where Op is the fission cross section and cz is the probability of i

neutrons emerging from fission. Then the cy term in Eq. (3) becomes

i
Ry -
cf(?,s?,v,t)ci(r’,g’,v,t)[l - (1 - fdvtf(v')p(?,vl,t)) ]

il

.  fa 2
cfc;{i [ anteennEv ) - -:E-(-l—g—'-!'—-l—)-(fdv'f(v')p(?,v',t))

c . ~ 3
4 i - %2(1 - 2) (‘fdytf(vt)p(EZVt,t)) + ...} . (5)

Here p(E;v,t) = fdﬁ%(fiﬁiv,t).

If we now assume thal all collisions are either scattering (os),

. . . . % —_—,—y =
fission (o), or absorption (o, = ¢ = o = o) and let izolci = v(r,Q,v,t)
and
- =
E 1{i = 1) eee (i = n) X Xn+l(r,9,v,t) 6)
(n+ 1)% AR F F N

i=0

then Eg. (3) becomes

= - = 1dp _
Q o grad p(r,Q,v,t) + =<t =op

o, [[avtaite (Za,v,0 -8 ,v)pEE v ,t)

- = -—— =) — Xe(?’ﬁ’v’t)

2 X Ty oV t) 5
(T ! ' 32272 Yo (7. vt t
[ﬁ[f(v Jo(r,vt,t)dv ] + ————Eﬁ—-~—-[.ff(v Jo(r,v ,t)dv'}-...}) (7)

where ¢_ is ¢, for scattering (elastic or inelastic)s, If one wishes to
allow for (n,2n) or (n,3n) reactions, the appropriate additional terms

can be easily found from Eqe (3).
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It is interesting to note that if the nonlinear terms were removed

from Eqe (7 ), one would obtain an equation in which p could be interpreted
as a time-dependent importance function.6 In fact, p could be the ex-

pected number of neutrons in the system at some late time, t £2 due to one

neutron present at time t. "o see this, let us write down the integral
equetion for E(?,ﬁ’,v,t;tf), the average number of neutrons in the system

at t. due to one at i (at ¥ with velocity v)s As in Eq. (1),

-
r

-,
s rt t
'ﬁ(?,ff,v,t;tf) =], ATt o (7,0, v,t + %) exp <- f__, o(T%8,v,t + -:—- ) d.?b
r r

. {f dfz')'dv'cl(?',ﬁ'),v,t + % - @, vR(T A, v, + ‘{B,'itf)

f 2

. ['ﬁ(?‘,ﬁ’i,vi,t + 256) + W(F, A, vE,t + g;tf] TR (8)

If we differentiate along the direction @ and assume uncorrelated fission
neutrons, we obtain Eq. (7) with n replacing p and all nonlinear terms
missing (thus formally X, = X, = X, = 0)e Evidently the initial condiw

2 3 i

tiononn isn=1at t = t., and the boundary condition is H(?s, ses) = 0

f,
if @ e+ >0, Thus 7 has a different initial condition than p but the

same boundary condition.

Note that for large t, - t, 7 will be composed only of neutrons
from divergent chains, Thus the ratio —ﬁ/p is the average number of
neutrons at time tf in a divergent chain, which can thus be found as a

function of T, 9, v, and te



Let us now consider the form of Eq. (7) for a stationary system.

For such a case, dp/dt = 0, and the cross sections have no {?dependence,

although c_ will be a function of (@ + Q')e We then have

0« gred p(T,q,v) = op - osffdv'ds_f'cs(?,ﬁ,v - Q1 vt )p(T,0t ,v1)

- of(?,v)[;(?,v)(ip(?)) f.(f.;l (fp "))2 P Mt and 5(r’V) (fp(”)) - ], (9)

where

(@) = [rvpEvlav, (10)

with the boundary condition p(?s,(-z),v) =0if Qe 1 >0

Except for the terms involving o., this equation (plus boundary

f,

condition) is identical to that for the neutron adjoint for eigenvalue

ke The equation for the adjoint has the fission term,

o (Tyv)V(Tyv)
2 (2)

instead of

cf(—r_),v) [ ] s

where k is the eigenvalue, It follows that any DSN or other technique
for computing a neutron adjoint can formally be made applicable to a

probability calculation by introducing the nonlinear terms of Eg, (9) in

place of (-]3 - l) (i‘P(_)))



THE SKNP CODE

The SNP code is a straightforward modification of the new DSN code*
which then computes probebilities for stationary systems and uncorrelated
fission neutrons; that is, it solves Eq, (9), subject to rigorous cone
servation of p(iﬁﬁ:t), using equations of reference 9.

Previous experience with one-velocity calculetions hed shown that
straightforward iteration of Eq. (9) was a very slowly convergent process
for small p. 'Therefore the SNP code starts by camputing the adjoint k dis-
tribution (nonlinear terms neglected), then multiplies this distribution
by & normalization factor to.satisfy the integral of Eq. (9) over the
whole system. Tt then proceeds to iterate Eq. (9) but after each outer
iteration, it scales the solution agein. This procedure appears to con-
verge very rapidly, and the time for a p calculation is not much longer
than for an adjoint k calculation. 7he procedure is now described in

more detail.

In multigroup form and for spherical geometry and isotropic scatter-

ing, Eq., (9) can be written as

-0 o grad pg(r,p) + cg(r)pg(r,p) = Sg(r), 8= 1)2y aee G (11a)

X
The new DSN code uses sliphtly different difference equations from the
SN code discussed in references 7 and 8 and enforces rigorous neutron
conservation,"

[ 24




where
G

Azijos,gﬁg.(r)pg.(r) + 05, (r)v, (r)P(x)
g'=1

2 . Xi(r) i
MO JREILPE 6

i=2

Sg(r)

G
D 0y g (P12 (1) + () (120)

g'=1

il

and
G

1
JRERCEI O Z; rpa(x), (1)
gl=

]

1
Pg(r) 5

with the boundary condition pg(rmax,p) = 0y p > Os We assume that not
more than five neutrons are emitted in fission., Although the above equa-
tions are written for spherical geometry and isotropic scattering, the

SNP code can also be applied to planes and infinite cylinders, and a

first order anisotrépic scattering epproximation can be used, Evidently
the same procedures can be used for multidimensional geometries,
The calculation begins by solving the linear eigenvalue problem in

which Sg(r) is replaced by Sg(r) where

g 05 ()Y (2)B(z)

Sg(r) -3 0, ggt ()P () + £ . (12)
g'=1

Once this solution has been found in the usual DSN manner, we test to make
sure that k >1, If so, we then multiply pg(r) by the constant factor A,

where A is chosen so that




10

5
D[ 0wz (§ - 1) = = 3 [afope(n) Sen)?
g i=2

g

% (r)

it

pr(rpi-t, (13)

AP(r) is then used as the first guess for the solution to Eq, (11). The
purpose of this normalization is to insure that if AP(r) is used for come
puting Q(r), then the integral of Eq. (1la), over angle and the volume of
the system, is satisfied. It is analogous to the scaling procedure8 which
has been found useful in ordinary DSN calculations, Qg(r) is formed from
AMP(r) and used as a fixed source in Eq. (11b) during the next iteration,
At the end of the next iteration, we have found & new pg(r) and new P(r),
and we compute a new value of k as the ratio of new X [ cfvP to old

2 [ 0,vPe A new scale factor is determined such that the integral of

Eqe (11a) over the whole system holds when new velues of pg(r) are used

throughout, Thus N is found from

Zfd'f’ofg(r)vg(r)P(r) (% - 1) + Z ng(r)d?
g

&
2 X. (r)
= = Efd?cfg(r) 2 (-l)i—l—irPi(r)hi-l: (14)
£ i=2

and this new value of %.Pg(r) is used to compute Qg(r) which is held cone
stant through thé next iteration., This procedure is continued until both
k and A are sufficiently close to unity., In practice, the first value of
A (obtained from Eqe (13)) is usually very far from unity, being typically

~10° , and to avoid difficulty in finding the correct root of Eq. (13), we




have ignored the P3 and higher terms in obtaining this first A. Subse-
quent values of A are quite close to unity and for them, the quartic
equation for A, Eq. (lh), is solved, Convergence has been found to be
quite rapid, requiring only eight or so iterations on A to give p to
~o1%.

Date input for a SNP problem is the same as for a DSN problém except
that the eigenvalue index is set to =1 (IO4 = -1 in new DSN), and the ad-
ditional paremeters cfX2/2!, de5/3!, cth/h!, and ofX5/5! are entered in
front of the absorption cross section in the cross section table for each

element, These parameters are discussed in the following section,

ADDITIONAL FISSION PARAMETERS

Terrell5 studied the probability of obtaining vearious nurbers of
neutrone from fission., He found that all the experimental data on neu-
tron multiplicity could be fit by a universal distribution, If c, is

the probability of obtaining n neutrons, he found

v ( -
v=+1l/2)/0 .2
c = —l——-f e T /2dt,
‘EE: n
21 Yo
n=0

with ¢ = 1,08, With this distribution, c, is only a function of v, We
have used the distribution to compute E?n(n « 1) eee (n =~ m++ l)cn. The
calculations were performed by Mrs. J.n;gﬁers, and in Figure 1 are plotted
X,/2Lv, x5/31'6, %) /4tv, and x5/55 vs. Vo For use in the SHP calculation,
these numbers are multiplied by'vbf and entered as the first four entries
of each cross section table (they are entered for each material and group).
Macroscopic cross seclions are formed from these microscopic cross sections

by the code in the usual way,

11
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Figure 1 Fission parameters as functions of v
TEST PROBLEMS
A number of problems were run with the code by R. Anderson for come-

parison with previous results, First of all, a very slightly super-

eritical system was run for comparison with the linear problem. For

simplicity in compuling integrals, the system was a one group uniform



A theory for the very slipghtly supercritical case was sketched by
Feynman for the integral equation approach, We here show, for the one

group case, how the theory can be applied here. Generalization to many

groups is straightforward. For a slightly supercriticel system, p(r)

3

will be small, and in Eq. (11) we ignore terms in p” and higher powers

of p. Equation (11) can then be written

_9 %2 2
0 o grad p(ryn) = (e - L)p(r) = = p°(x), (152)

where we have set ¢ = 1, ¢ 1s the average number of secondary neutrons
per collision, and X2/2 the mean number of pairs. We consider the cor-
responding linear eigenvalue equations for the neutron flux n(r) and

ad joint n+(r):

+
-0 ¢ grad d;(r,u) = (ci - l)ni(r), (15b)
@+ gred n (r,1) = (e; = L)n,(x), (15¢)
where ny is the eigenfunction corresponding to the eigenvalue ci. Assum=

ing, as 1is customary, that the functions n;(r,u) form a complete set, we

expand
(o o]
+
p(r,u) = Z an; (ryu). (16)
1=0
Substituting in Eq. (15a), we have
(o 0] o 2
2 ( i (r) = - 2 Z n: (r) (17)
aici-cnir—-e aiir . 7
i=0 i=0

13
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Let us now multiply this by n j(r) and integrate over the volume,

nd(r) and n';(r) are orthogonal, we have

a.'j(c'j - c)fn;(r)nj(r)rgdr = -5 fr drn (r) Z a.n (r)

Now in the p2 term within the integral, one expects that the term

2
(aon;(r)) is the largest. If so, we may approximate Eq. (18) by
X 2
a(ey - c) fn;(r)nj(r)redr ~e 2 fag(ngcr)) n, (r)Par,

which for j = 0 gives

(c - co) fn;(r')no(r')rr‘?dr:

+

8oy = X2/2 f(n';(r' )) 2no(r' )r'edr'

vwhile for j ¢£ O,

nz(r)’

2
% fas(no(r')) nJ(r')r'adr'
2
nj(r) = - 2(Cj - C)

n';(r).

fn;(r' )nj(r' )r'2dr'

From Eq. (20a), we see that a0, O

Since

(18)

(19)

(20-a)

(20b)

is of order (c - co) which is a very

small number for a slightly supercritical system. But Eq. (20b) then



tells us that ajn; is of order

X2 2 2
ETEE—:—ET (c - co) ~ (c = co) s

which is the square of a very small number, .This confirms our assumpe

tion that aoﬁg(r) is a good approximetion to p(r), and we conclude that

p(r) will be given by Eq, (20a) for very small c - cqye

Note that Eq. (20a) is essentially a determination of a normaliza-
tion constant or scale factor 2ge It differs from Eq. (13), which we
use for finding a scale factor first of all trivially, in that Eq. (13)
is in multigroup form and retains p3 end higher terms but also essen=
tially in that in Eq. {20a) both numerator and denominator have been
multiplied by the weighting function no(r). This makes Eq, (20a) more
accurate for slightly supercritical systems, but if we wished to employ
such a weighting in practice, this would require an additional calcule-
tion of no(r) and very likely lengthen the calculation, Of course, for
8 one group calculation, no(r) = ng(r), but in general this is not the
case,

A one group test problem (a 9.5 cm Oy sphere) was run to see if the

SNP code calculates p(r) in agreement with Egq. (20a). Good agreement

was found,

19
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