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FINITE~DIFFERENCE SOLUTION OF AXIALLY
SYMMETRIC NUCLEAR SINGLE-PARTICLE POTENTIALS

E. O, Fiset, J. R. Nix, and M. Bolsterli

ABSTRACT

We have investigated an implicit finite-difference method for solving
Schrodinger's equation for axially symmetric static nuclear single-particle

potentials.
lined by Dickmann.

The method used is an improved version of the procedure out-
The finite-difference equations are obtained in prolate
spheroidal coordinates by use of a variational principle.

The eigenvalues

and eigenvectors of the resulting band matrix are found by use of inverse

iteration, with the linear system of equations solved directly.

The method

works satisfactorily, but requires approximately 25 times as much computing
time as an expansion of the wave function in deformed harmonic-oscillator
basis functions, for comparable accuracy in the eigenvalues.

I. INTRODUCTION AND CONCLUSION

Many studies in nuclear physics involve solving
Schrodinger's equation for axially symmetric static
nuclear single-particle potentials. Such equations
arise for slightly deformed potentials in connection
with various ground-state properties of deformed
nuclei, and for more highly deformed potentials in
connection with the influence of single particles
on the fission process and on heavy-ion reactions.

There are two general methods for solving these
equations: expanding the wave function in a set of
basis functions and finite-difference methods. Ex-
pansion methods traditionally have been used for
small deformations, but at the beginning of this

study serious questions had been raised regarding

the convergence of these methods for the large dis- °

tortions encountered in fission and in heavy-ion
reactions (see, for example, Ref. 1). We therefore
decided to investigate the accuracy and speed with
which the equations could be solved by means of a
finite-difference method.

The approach that we have followed is an im-
proved version of the procedure outlined by
Dickmann.2 This 18 an implicit method, in which all

the values of the wave function are connected

simultaneously through a system of linear equations.
For small deformations Rost3 and TarpA have consider-
ed an explicit finite-difference method, in which

the potential itself is expanded in a sum of func-
tions separable in the spherical coordinates r and

8; this leads to a set of coupled differential equa~
tions to be solved simultaneously. However, it
appears that for large deformations so many terms
would be required in such an expansion of the poten-
tial to make this approach impractical from the out-
set.

In the meantime, expansion methods using de-
formed harmonic-oscillator basis functions have also
been develdped for large defo):mz-ltions.s_7 This per-
mits a direct comparison to be made between the ex-
pansion and finite-difference methods. It turns out
that for fairly smooth potentials, such as general-
1zed Woods-Saxon pot:ent:ials5

tials,6’7

or folded Yukawa poten-
the convergence of the deformed harmonic-
oscillator expansion is much faster than we had
originally anticipated, even for very large deforma-
tions. For comparable accuracy, the single-particle
energies can be computed for such potentials roughly
25 times as rapidly by use of the expansion method

as by use of the finite-difference method (for a



general reflection-asymmetric axially symmetric
shape) .

Although of limited usefulness for calculating
single-particle energies for smooth potentials,
there are two areas where a finite-difference method
could still conceivably be preferable to an oscil-
lator-expansion method. The first is in connection
with less smooth potentials, such as those contain-
ing cusps in the equipotential surfaces. For exam-
ple, the convergence of a deformed (one-center)
oscillator expansion i8 very slow for a generalized
two~center oscillator potential.8 Although this
particular potential is efficiently treated in terms
of a deformed two-center oscillator expansion, other
potentials containing strong cusps might be solved
advantageously by a finite-difference method.

The gsecond area where a finite-difference meth-
od might be useful is in calculating the asymptotic
behavior of bound-state wave functions for very de-
formed potentials. The asymptotic behavior of wave
functions calculated in an oscillator expansion is
Gaussian, whereas the true asymptotic behavior of
the bound-state wave functions is not (for realistic
potentials that approach zero at large distances).
To obtain the proper asymptotic behavior in the ex-
pansion method would require replacing the calcu-
lated wave function at large distances by the known
asymptotic solution. On the other hand, the proper
asymptotic solution is given automatically in the
finite-difference method.

Since our primary interest is in calculating
the energies for smooth potentials, we have not
seriously investigated either of these areas.

For the benefit of anyone who would like to
pursue either these or other aspects of a finite-
difference method of solution, we describe briefly
in the remainder of this report the method that we
have studied. Some of the details and relevant
formulas have already been given by Dickmann2 and
willl not be repeated here. Reference 7 discusses
the specific single-particle potential that we have
used, as well as some physical applications of the
results. The present report is not intended for
further publication, and is purposefully brief and
informal.

II. SELECTION OF GRID PQINTS

In the finite-difference approach the single-
particle wave functions are calculated at only a
finite number of spatial grid points, and the dif-
ferential Hamiltonian is replaced by a finite-dif-
ference matrix which couples the values of the wave
function at neighboring points. Because of the limi-
tation to axially symmetric shapes, our potentials
are functions only of p and z, where p and z are the
usual cylindrical coordinates. Consequently the z-
component of total angular momentum is a constant of
the motion.

Since only a finite number of grid points are
used, it is desirable to distribute them advan-
tageously, with most of the points concentrated in
regions where the wave functions change rapidly.
This 1s accomplished in two steps. First, we make
a coordinate transformation to prolate spheroidal

coordinates, which is given by

p = a sinh n sin 68 ,
z = a cosh n cos 0 ,
v=y .

The coordinate surfaces are prolate spheroids (n =
constant), hyperboloids of revolution of two sheets
(8 = constant), and half planes (y = constant). The
quantity a is the distance between the origin and
the focus common to the spheroids and hyperboloids.
The shape of the coordinate system is changed by
varying a, which is selected so that the eccentricity
of the coordinate spheroids approximates that of the
given nuclear shape.

The second step in distributing the grid points
advantageously is to use a nonuniform spacing in n,
with the points spaced more closely for small values
of n than for large values. Since in practice it is

~ more convenient to make finite-difference approxi-

mations in terms of constant step sBizes, we make a
further nonlinear transformation to the variable t,
defined by

bt
a - 3% + ctd

sinh n = , 0o<t<1.

The constants b, o, and ¢ determine the distribution

-



of points. 1In particular, the number of points dis-
tributed near the p = 0 axis is determined largely
by the choice of b, the rate at which n approaches
infinity (i.e., the number of points in the large p
reglon) is determined by the choice of o, and the
distribution of points in the intermediate range

In most of our studies we
1.5, and b =
2Ro/a, where R. is approximately the nuclear radius.

0
At this point we could also consider a nonuni-

depends largely upon c.

have used the values o = 0.5, ¢ =

form spacing in the angular coordinate 6, but have
found that a uniform spacing is adequate. However,

for convenience we choose to change the range of the

variable so that it runs from -1 to 1. This is
accomplished by the transformation
6 =m(l -s)/2, -1€<g<1.

For setting up the finfte-difference matrix we
have used 20 intervals in t and 40 intervals in s
This gives

Because the

(20 for positive and 20 for negative s).
a step size of 0.05 both in t and in s.
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Location of finite-difference points in the
s-t plane. The numbers indicate the order-
ing of the spatial grid points in the fi-
nite-difference matrix., Since we used
nearest-neighbor finite-difference approxi-
mations it is clear from the figure that
point 1 is coupled only to points 2 and 20;
point 2 is coupled to points 1, 3, and 21;
point 21 is coupled to points 2, 20, 22,

and 40; etc. Because of spin-orbit coupling
there are spin-parallel and spin-anti-
parallel components associated with each
point. This leads to a matrix of dimension
2 X 18 X 39 = 1482 and bandwidth 2 x (2 x 19
+ 1) +1 =179,

wave functions vanish both at P = ® and at |z] = =
the points at t = 1 necd not be considered explicit-
ly. In addition, the symmetry or antisymmetry of
the wave functions is used to eliminate the points
at P = 0, [These are the t = 0 points which lie be-
tween the two foci, and the s = 21 (8 = 0 or T)
points which lie outside the foci.) Thus we are
left with 19 points in t and 39 points in s. The
distribution of these points is shown in Fig. 1.

In the most common method, finite-difference approxi-
mations for the various derivatives that enter are
applied directly to the differential equation, in our
case the Schrodinger equation. In the second method,
the finite difference approximations are made inside
the expression for the eigenvalue, in our case
CY|H|Y .

yielding nonsymmetric matrices whose eigenvalues are

The former method has the disadvantage of

The corresponding distribution of points in the
original p-z space is shown in Fig. 2 for the case
of 2l‘oPu at the deformation y = 0.24, which is the
shape indicated by the solid curve. (See Ref. 7 for
a precise definition of y.)

To make the following discussion more general,
we denote the number of points in the t and s di-

rections by n_ and n_, respectively.

ber of spatiai grid points 1s then given by non =
741, but because of spin-orbit coupling we have to
calculate a spin-parallel and a spin-antiparallel
component at each spatial point. Thus the dimension
of matrices we consider is N = Zntns = 1482.

1I1. DERIVATION OF FINITE-DIFFERENCE EQUATIONS
There are two standard methods used to obtain

finite~difference equations for eigenvalue problems.

The total num-

5,
2 T T ] T ] T T T T
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Location of finite-~difference points in

the p-z plane for Pu at the deformation
y = 0.24. Also shown is the outline of the
equivalent sharp-surface potential for this
shape. Cross sections of the spheroids
and hyperboloids corresponding to constant
n and 0 are easily discernible.



not necessarily real. Although thig problem can be
removed by a technique used by Dickmann, we chose to
use the latter method, where the bilinear appearance
of ¥ enables a symmetric finite-difference matrix to
to identified.

In the latter method, the eigenvalue equation
is obtained directly from a finite-difference ap-

proximation to the variational equation

symbol to denote different forms of a given quantity.)
The subscripts i and j each refer to the N spatial-

spin grid points used in the calculation. The weight
factor Wy in the right-hand side of this equation is

removed by the transformation

ll'i"‘"i""i'

1 1

4 \Y](H - E)l‘l’) = § /ds ﬁt w(s,t)‘l’f(s,t)(H - EI)¥(s,t) = 0 .

-1 0

The wave function ¥(s,t) is a two-component column
vector representing the spin-parallel and spin-anti-
parallel components, W+(s,t) is its complex-conju-
gate transpose, H is a 2 X 2 Hamiltonian matrix
which couples the two spin components, and I is the
2 X 2 identity matrix. The azimuthal dependence of
the wave function has been eliminated explicitly.
The weight function w(s,t) is given by the product
of the volume element in prolate spheroidal coordi-
nates and the Jacobian for the transformation to s

and t, namely

dn)
dt

a8

w(s,t) = 2ﬂa3(sinh2n + sinze)sinh n s8in8 3s

In the above integral, terms that involve
second derivatives are integrated by parts before
This

transforms the second derivatives into first deriva-

the finite-difference approximations are made.

tives, which are then approximated by means of a
two-point finite-difference rule (whose error is
proportional to the square of the grid-point step
size)., A two-dimensional trapezoidal rule (whose
error is consistent with the error in the finite-
difference approximation) is used to evaluate the
integral. Taking the variation of this result then

leads to the matrix equation

N
ZHijwj - Ba ¥, i=1, ***, N,
J=1

where the finite-difference Hamiltonian matrix H is

gsymmetric. (In several instances we use the same

This converts the equation into the standard form

N

D Hagby =B

i=1

where the elements of the symmetric matrix H are
given by

Hyy = Hyglaguy

The ordering of points in the s-t plane for the
purpose of constructing the Hamiltonian matrix is in
principle arbitrary. The system we have used is
shown in Fig. 1. Since the finite-difference approx-
imation couples only nearest-neighbor points, the
wave function at point number n is coupled to the
waQe function at points n+ 1, n -1, n + n, and
n - n., provided that point n is not on any of the
edges of the s-t plane.

The spin-orbit term requires that the wave
functions have two components, which correspond to
the spin being parallel to and antiparallel to the
total angular momentum. That is, the two £z values
Q+ % and Q - 3% are coupled because Lz is not a good
quantum number in the presence of spin-orbit forces.
Such a two-component wave function is commonly

written as



where Wl is the spin-parallel component and Wz is
the spin-antiparallel component. However, if writ-
ten in this way, the spin-orbit coupling between Wl
and WZ would lead to nonzero elements far off the

diagonal, which would make a direct diagonalization
of the matrix more difficult, It is far more con-

venient to reorder the various elements of ¥ accord-

ing to

¥ (D)
¥, ()
¥,
¥,(2)

V1(741)

W2(741)

where, e.g.,?l(n) refers to yl at the nth spatial
point. With this ordering the nth (spatial-spin)
component of ¥ 1s coupled to at most the n #

(2nt + 1) components of ¥, These couplings result
in a finite-difference Hamiltonian matrix that has
a band structure with nonzero elements off the
diagonal only as far as 2nt + 1 elements on elther
side. Of course, many of the elements within the
band are alsc zero, reflecting the fact that the
finite-difference approximation does not couple, for
example, the 13th and 18th points. The actual struc-
ture of the resulting band matrix is shown in Fig.
3, where nonzero elements are indicated by black

dots.

IV. DETERMINATION OF EIGENVALUES AND EIGENVECTbRS
For each value of Q there are N (1482) eigen-
values of the finite-difference Hamiltonian matrix.
However, we are interested in obtaining only a rela-
tively few of them, in particular the bound states.
Therefore, we use the method of inverse iterationm,
which picks out particular solutions. The method
involves making an initial guess for a particular
eigenvalue and eigenvector, and then successively

improving the eigenvector. For example, to find

) 70 T35

Structure of finite-difference Hamiltonian.
Dots indicate nonzero matrix elements.
Numbers along the axes indicate the numbers
of the spatial points as shown in Fig. 1.
The number of the row or columm of the
matrix is given by twice the number shown
minug one. The numbers on the top and left
refer to the upper left-hand portion of the
matrix, and the numbers on the bottom and
right refer to the lower right-hand portiom.

Fig. 3.

the eigenvalue closest to A, we let A be our eigen-~
value guess. The initial guess ¢0 to the eigenvector
can be taken to be an N-element column vector whose
elements are all equal. We generate a new (unnor-
malized) guess ¢1 to the eigenvector from the equa-

tion

- ADé; = ¢ ,
or

¢1 - (H - AI)_1¢0 ’

where H 18 the finite-difference band matrix, and I

is the N x N identity matrix. In general, a jth

guess can be generated from the j-lst guess by
H - AL = R
@ - D¢ = ¢,

or

- -t = (g - A1)
by = (- ADTH, ) = - AD Ty,

To demonstrate that ¢j is a better approxima-

tion to the wave function corresponding to A than




is ¢b’ it is convenient to use completeness to write
¢0 as a linear combination of the N eigenvectors of

H. Then the preceding equation becomes

N N
a
- i
oy = @ - a07TY g - Zm“’( >
i=] =l 1

By virtue of the factor 1/(Ei - A)j, the jth guess
has greatly accentuated that eigenvector in the ex-
pansion of ¢o corresponding to the eigenvalue near-
est to A,

The general procedure that we have followed
involves selecting a A and a ¢0 and then obtaining
the inverse of the matrix (H - AI). The inverse is
then raised to the jth power (where j = 5 in prac-
tice), and the result is dotted into ¢o to give a
new wave function ¢,. The quantity E, = (¢j|H|¢j)/
(¢3|¢3) is formed, and if it is sufficiently close

to A, we stop. If it differs from A by more than a

o’
We calculate a new

certain amount we start over again using ¢j as
but still using the original A.

¢j and a new E We continue the process until the

1

new E; 1s sufficiently close to the previous one.

1
When this occurs we say the process has converged

to the eigenvalue E;, and the final ¢j (after nor-
malization) is the corresponding eigenvector ¢(1).

The value of A is not changed to E, in subsequent

iterations because the inverse of %H ~ AI) has al-
ready been obtained whereas the inverse of (H - Ell)
has not. Since the process of taking inverses is
the most time-consuming part of the calculation, it
is desirable to minimize the number of inverses re-
quired.

The inverse of (H - AI) can in general also be
used to find the second closest eigenvalue to A
once the closest has been found. This is accom-
plished by using as the initial wave-function guess
a vector that is orthogonal to the previously found
eigenvector. Once the second eigenvector and eigen-
value have been found, a third can in general be
obtained by using a guess that is orthogonal to
both previously found eigenvectors. In principle
this process could be continued and all desired
eigenvectors found with just the one inverse,
@ - 7L

where )\ is sufficiently far from the eigenvalue

However, in practice a point is reached

being sought that the number of iterations required

ig too large, and it becomes more economical to use
a new A and compute a new inverse., With the use of
any one A, it is8 necessary to continually subtract
out from a newly generated ¢3 components of previous-
ly found eigenvectors that are generated because of
numerical errors.

The inversion of the band matrix was performed
by the standard procedure of first factoring the
band matrix into upper and lower triangular factors
and then inverting the two factors. The use of a
direct method for inverting the band matrix was
found to be roughly 100 times as fast as the Kaczmarez
iterative method used by Dickmann.2 However, the
direct method requires substantially more storage
space than the iterative method, which makes some
form of extended-core storage imperative for imple-

menting the direct method.

V. NUMERICAL ACCURACY

The computer program that we have written finds
all eigenvalues and eigenvectors between two input
enexgles. (For example, all bound states are calcu-
lated if these two energies are the bottom of the
potential well and 0.) The accuracy with which the
eigenvalues of the Hamiltonian matrix (which are only
approximations to the eigenvalues of the true Hamil-
tonian) are found is an input quantity, which we

5

have taken to be 107> MeV. With this accuracy re-

quirement and the number of grid points that we used,

the program averages about 30 sec of CDC 6600 com—

puting time per level. The program has no problem

resolving very nearly degenerate states because of
the orthogonalization procedure described above; it

has resolved states that are as close together as

1077 MeV.

The program was used to obtain the eigenvalues

240

and eigenvectors for Pu for symmetric deforma-

tions ranging fromy = 0 to y = 0.4 and for the

298

superheavy nucleus 114 for deformations from

y =0 toy= 0.2, (See again Ref. 7 for a definition

In addition, the program was tested exten-
240

of y.)

sively for Pu for the spherical shape, for y =

0.24, for the case of two equal tangent spheres, and

for a very asymmetric shape corresponding to the

x = 0.8 Businaro-Gallone saddle point:.9
The finite-difference approximation introduces

an error which is to be distinguished from the

accuracy of the inverse-iteration solution mentioned




above. This finite-difference error depehds upon
how rapidly the wave function is varying and upon
the magnitude of the step size, If the wave func-
tion is a smooth function of p and z (and therefore
of s and t), the solution is quite accurate., How-
ever, for more oscillatory wave functions there is

a degradation of the accuracy. We found in practice
that nodes (or oscillations) in the radial direction
caused more serjous degradation than did nodes in
the angular direction.

The accuracy of the solutions could be checked
by comparing the eigenvalues obtained for a sphere
with exact spherical solutions obtained with a one-
dimensional program, and for general shapes with
golutions obtained by use of deformed harmonic-
oscillator exp:-zns:tons.sn7
like 298

For superheavy nuclei
114, the accuracy for the number of grid
points used ranged from several thousandths of an
MeV for the ground-state level up to almost 1 MeV
for highly oscillatory,levels that are nearly un-
bound. The accuracy was somewhat better for lighter
nuclei. For almost every level, we found that the
finite-difference result was lower than the exact
results. (This is not a contradiction of the varia-
tional principle, which applies only when an exact
Hamiltonian is used; in our case the Hamiltonian has
been replaced by a finite-difference approximation.)
The single-~particle energies can be computed
with comparable accuracy for a general reflection-
asymmetric axially symmetric shape in about 1.2 sec
of CDC 6600 computing time per level by use of de~

formed harmonic-oscillator expansiom-;,s‘-7 which is

ALT/bs:606(325)

approximately 25 times as fast as the finite-differ-~
ence method. Expansion methods are therefore to be
preferred when the main interest is in calculating
the single-particle energies of relatively smooth
potentials., It is possible that a finite-difference
method could be useful in connection with less
amooth potentials and for calculating the asymptotic
behavior of bound-state wave functions., However,

we have not pursued either of these areas.
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