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MSTHICS IN BIOLOGY, AN INTRODUCTION

by

W. A. Beyer, M. L. Stein, S. M. Ulam

and

Temple Smith*
Northern Michigan University

ABSTRACT

The use of metrics in biology is discussed. Attention is given to
metrics in pattern recognition, taxonomy, and especially molecular
taxonomy. Various ways of constructing metrics between sequences for
uae in molecular taxonomy are discussed.

1. INTRODUCTION

To compare quantitatively different organisms,

complex molecules, or biological entities in general,

a measure of dissimilarity is required. More gener-

ally, all objects which form the elements of study

in the natural sciences can be compared as to the

degree of their differences. The notion of distance,

in mathematics, is not directly or easily applicable

to such studies, although intuitively any useful

measure of the degree of difference between objects

would seem to convey a measure of distance between

them . The notion of distance between two seta of

points in a metric space or between functions de-

fined on some space (e.g., on the real line) is

usually considered by comparing the values at each

point separately. The differences are then either

added in absolute value or integrated in the case of

a continuum, and one may take instead of sums of

absolute values, the square root of sums of squares

of the differences, etc. l%is, however, refers to.

numeric objects, (seta, functions, operators) as

rather fixed or rigid entities and does not in

general involve moving or transforming one or both

in order to obtain aa close proximity or “fit” as

*Supported in part by a National
Health postdoctoral fellowship,

Institutes of
grant HD 42801.

possible. Obviously, if one wants to compare two

given different organisms, even purely geometrical

organiams only, one tries to place them in posi-

tions where the comparison is made with real “cor-
1

responding” parts. Mathematically, this means

that one looks for the distance between two sets,

modulo a class of transformations. This class can,

but need not necessarily, form a group.

In this report we shall recall the elementary

notions about metric spaces; we shall then redefine

distances and “pseudo distancea” between sets or,

what is particularly Important, between those

classes of sets defining the entities one deals with

in the natural sciences. The stimulus for this

general discussion stems in part from the interest-

ing work of Fitch and Margoliash2 and others’-’ on

reconstruction of evolutionary trees from the data

on the amino acid sequence of certain proteins. It

also comes from certain other unrelated studies of

the general formulations of the problems of “recog-

nition of patterns” and “artificial intelligence

studies” which were undertaken by S. Ulam, R.

Schrandt, and J. Mycielski.

In biological taxonomy there are attempts to

define such mathematical concepts as subspaces and

neighborhoods within the space of all organisms, yet

the direct application of the more general concepts

1



of metric spaces to this apparent mathematical area

of natural science has met with only li.m%ted suc-
7

cess. The work of Sokal and Sneath8 exemplifies

one of the more successful attempts to extract evo-

lutionary measures or distancea from numeric or

phenotypic taxonomy. These atudiea were often con-

cerned more with statistical analysis of the variz-

bles being analyzed than with more fundamental

mathematical considerations.

The advent of modern molecular biology, and

with it the availability of comparative protein se-

quence data, has renewed interest in numerical tax-

onomy on the part of both biologists and mathemati-

cianaP-ll This is largely because the data are

simple enough to permit tractable evolutionary dis-

tance calculation, although the simple nature of

the 23-element protein space or four-element DWA

genetic space may be misleading. The biological

interpretations of this new molecular taxonomy have

raiaed controversies about our understanding of

evolution.12’13

Because of the current interest in molecular

taxonomy and morphological distances in general we

have outlined in this report the mathematical con-

cepts of metric spaces and distances which may be

applicable to these areaa. l%is outline is then

followed by a discussion of the protein sequence

problem.

II. DISSIMILARITY COEFFICIENTS AND METRICS

Let P be a set of objects. Following Jardine

and Sibaon (Ref. 14, pp.77-78), one saya that a

function p from P x P to the real line ia a dissimi-

larity coefficient if it satisfiea the following

requirements:

1. p(p,q) ~ O for all p,q~p ,

2. P(P,P) = O for all P~p ,

3. p(p,q) E p(q,p) for all Pcp .

Sometimes one requires

4. p(p,q) = O tiplies p(p,r) = p(q,r)

or

for all p,qcP

for all rcP (evenness)

5. p(p,q) = O ~plies P - q

(definiteness).

A dissimilarity coefficient which

6. p(p$r) ~ p(p, q) + p(q,r)

(triangle property)

also satisfies

for p,q,rcP

in addition to properties 1-5, ia called a metric.

Intuitively, it would seem that any meaaure of dis-

tance should satisfy the triangle property. The

triangle property is essential for relating mean-

ingful topological notions to properties defined

by distance. We should note here, however, that

given any assignment of a “semidistance” satisfying

only the first five properties one can obtain a

metric from it by the following procedure: given

two points, p,q, one considers all possible finite

chains from p to q, continuing for example through

P, Xl, X29 ... Xn~ q~ and defining the distance from

p to q as the mintium aum of me lengths uf the

chains:

P(P>d - Min P(P, xl) + P(xntq)
[n,xl, . . . . Xnl

n-1

+~P(x,dci+,) .

i=l

Sometimes it is useful to require that an

additional property be satiafied:

(1)

7. p(p,q) ~ ~ (p(p,r), P(q,r)) for all

p,q,reP (ultrametric inequality).

The ultrametric inequality is important in the the-

ory of p-adic numbers and valuation theory. 15 Its

relevance to biology is brought out by the follow-

ing.
14

“The strongest assumption about evolutionary

rates which can be made is that they are constant.

On this assumption the dissimilarities between

present-day populations would be monotone with the

times since their divergence. They would therefore

be ultrametric, since the times of divergence of

populations In an evolutionary tree form an ultra-

metric. The fact that the dissimilarities between

present-day populations are rarely ultrametric re-

futes the hypothesis of constancy of evolutionary

rates in terms of known measures of dissimilarity.”

The following geometric interpretation can be

given to the ultrametric inequality: every triangle

is isosceles and its base has length less than or

equal to that of the equal sides.

●
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III. METRICS IN THE SPACE OF CLOSED SETS, HAUSDORFF

DISTANCE, AND APPLICATIONS

One of the more general metrics is the Hausdorff

distance. (See Ref. 16, pp. 166-172; Ref. 17, pp.

214-224; and Ref. 18, pp. 20-32. ) This is a defini-

tion of distance between closed sets of points in a

metric space. We assume here compactness of the

underlying space P (this means that given any se-

quence of points Xn of P there exists a subsequence

of these points converting to some point of P). Giv-

en two closed sets, A and B, one defines:

P(A,B) = Max Min p(x,y) +Msx Min p(x,y) .
XCA ycB yellXCA

(2)

This distance satisfies the triangle property. Un-

der this definition of distance the class of all

closed sets in P becomes itself a compact metric

space that is denoted by 2P. One can now iterate

our definition and consider sets in the space 22P.

This means that we consider classes of sets. Again,

one can define a distance between any two of these

classes with the use of the Hsusdorff formula. This

will be important in the sequel becauae when we

speak of properties of sets we really consider

classes of sets having a given property. So, for ex-

ample, when we speak of sets of points on a screen

“looking” like a letter A, we mean the aggregate or

the class of such sets, distinguishable from the

class of sets which “looks” like a letter B. In

this way when we define a distance between objects

Independently of their size and orientation, for

example, we have to consider, given a set, the claas

of all sets obtained from it by translations and ro-

tations and also by changing of scale; then, given

two different objects we are led to two classes of

sets. The degree of their similarity or a quanti-

tative measure of their differences should take into

account possible changea of scale and position. If

we now consider these two classes of sets and take

the Hausdorff distance between them we do in essence

the following. Given a set of the first class we

look at the set in the second class that is aa close

to it as possible; we then take a maximum of this

with respect to all choices of the first set. We

then perform it symmetrically the other way around

by taking a set from the second class, etc. The sum

(or the maximum) of these two numbers gives a mea-

sure of distance between the “letter A“ and the

“letter B.”

In unpublished notes W. A. Beyer and S. Ulam

have compiled possible methods of measuring dis-

tances between sets and certain theorems

should be proved about the distances.

IV. METRICS FOR MOLECULAR TAXONOMY

In molecular taxonomy one considers

which

sequences

of amino acids defining the same protein* in vari-

ous species. This meana, mathematically, a class

of codes each consisting of a sequence of symbols

or words with 23 possible symbols. The encoded in-

formation givea the physical, chemical, and struc-

tural properties of the protein. The length of the

sentences for the protein cytochrome c, e.g., is

about one hundred words, and the first task is to

define a distance function between any two such se-

quences of symbols, each assuming values from O to
22 2,4

. This distance would then give a measure of

dissimilarity. We shall, in this section, discuss

the problem somewhat more generally. We may assume,

for simplicity, that the symbols assume only two

values: O and 1. We thus have a space of all se-

quences of this sort, of variable length, and we

try to define a notion of distance between them un-

der various postulates as to the equivalence or in-

distinguishability between some sequences. In other

words, we shall assume, given a sequence, a class

of other sequences “equivalent” to it and give def-

initions of distance between such classes. This is

analogous with the illustration given above on

classes of objects in the plane.

In mathematical studies, given two sequences

of O’s and

variously.

and b = [yl

‘s, one may define the distance

For example, given Q = [xl, X2, ... Xn]

y2, ... yn] as:

p(a,6) =flxi -yil ,
i=l

(3)

or

*The phrase “same protein!t means a clasa of proteins
all of which perform the same biochemical function,
and which are by Implication evolutlonarily re-
lated.

3



P(~,B) = ~ (xi - Yi)2 .
i=l

(4)

Still another way, suggested for coding problems by

Hamming,
19 ~5:

P(~,B) = & [1-6(Xi, Yi)1 , (5)

where 6(x,Y) is the Kronecker delta function. We

note that this metric is equal to that defined by

Eq. (3) only for binary sequences. This will be of

value later when considering the problem of protein

sequences which are formed from the 23-symbol amino

acid space.

We might, however, assume that the given se-

quences of O’s and 1’s are written not linearly but

on a circumference of a circle, and we can arbitrar-

ily rotate this circle rigidly so that each se-

quence of a given length n is equivalent to n-1

other sequences. Definition of distance, then,

would concern a distance between classes of equiv-

alents.

This ia quite a general situation. In mathe-

matics one defines a distance between two functions

f(x) and g(x), for example, as follows:

p(f,g) -Max If(x) - g(x)l , (6a)

p(f,g) = J“lf(x) - ~(X)l dx ,

1/2
p(f,g) = {.I”(f(x)- g(x))2 dx) ,

(6b)

etc. We may, however, wish not to distinguish be-

tween functions which are obtained by shifting one

from another. In this case we have

tance between classes of functions,

the Hausdorff metric. Also consult

Marczewski and Steinhaus.
20

to define dis-

perhaps using

the work of

We shall now consider still different defini-

tions of distance between two sequences of O’s and

1’s. One definition could be

P(~,f5) = min (n+m+n’ +m’) (7a)
n, m, n’, m’

where n, m, n’ and m’ are defined by

(Tl)n (T2)m~= (Tl)n’ (T2)m’ 6 . (7b)

Here we allow two

kinds of “steps.”

1 or vice versa.

types of transformation or two

T1 consists of changing a O into

T. consists of a deletion of a
L

s~bol anmhere in the sequence and subsequent con-

traction of the rest, to close the gap. Given two

sequences, one may define as a distance the minimum

total number of steps performed on one or both of

these sequences so as to bring them into identical

form. As an example, let CY- [010101010101] and P

= [101010101010]. Then by Eq. (3) or (5) we would

obtain

P(~,LJ) = 12 (8a)

since all places have different values, while by

Eq. (7) we would have

p(a, p) = 2 (8b)

(6c)

since by deleting the first symbol in a and the last

in b one obtains identical sequences.

If one considers mutations in a chain of DNA

and if amino acids defining a protein are considered

t

1
.
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to be.of the special types defined above, then the

distance as constructed above may correspond to the

number of necessary mutations to transform one se-

quence into the other or both into an anceatral one.

This mutational-transformation approach has been
“.

applied by Reichert and Wong<l to protein and RNA

sequences. Mathematically, this function of a pair

of sequences is of certain combimtorial interest.

It ia not. obvious a priori whether given at random

two such sequences of n binaries the distance be-

tweeu them aa computed by the algorithm above will

be, on the average, a linear function of n. It is

clear that this average will be less than n/2. It

is also of interest to consider infinite aequencea

and diverse definitions of distances between them.

One can allow a number of transformstione on

sequences which lead from a given one to sequences

which we consider equivalent among themselves. GiV-

en such a division into classes, one can define the

distance function between classes ~ la Hausdorff in-

dicated above, starting with a given notion of dis-

tance between individual sequences.

Another distance-type function which is appli-

cable to the sequence problem can be defined as

follows: given two sequences, we consider the num-

ber of l’a in each. We take the absolute value of

the difference between them. Next we consfder the

number of l’a followed by O’s, compsre that number

in the two sequences, and take the difference. We

do the same for O’s followed by l’s, then 1’s

followed by two O’s, etc. We then add the numbers.

This type of “Markov distance” gives us perhaps an

idea of the “visual” distance between the two given

sequences.

The last two distances hsve considerable ap-

peal for the molecular sequence problem. The se-

quence transformation metric defined by Eq. (7)

would seem to have a direct biochemical interpreta-

tion, as pointed out above. However, for the non-

binary sequences (such as proteins defined in the

23-symbol amino acid space) the direct interpre-

tations of the different transformation operators

as the analogs of the physical mutations become

more difficult. This is partly because the physical

events take place in 4-symbol RNA space and are not

always simple* functions of these noncommuting

*For esample, genetic duplications, inversiona, and
the frame shifta as viewed in the protein space.

21
operators.

The “Markov distance” ia alao of considerable

intereat inasmuch as it appears to be a measure of

the overall visual similarity of the sequences.

This may be what is needed since in itself the se-

quence is not the object of ultimate interest but

rather, as in the case of proteins, it is the three-

dimensional structure which is, or chemical proper-

ties which are, encoded in the sequence.

It was in the light of the above consideration

that a new sequence metric was defined. It begsn
9

with an idea of Fitch. Fitch’s original proposal

for detecting sequence homology was defined as

follows. Let ~ = (Xl, ....\) and b=(Y1. ....yN)

be two sequences of amino acids each of length N.

Let I(X,Y) be some measure of the distance from

amino acid X to amino acid Y. Put

Ii-n N-n n+l+]

- np(N - n+l)z, (1 s n s N) . (9)

Here n is what is thought to be a statistically im-

portant subsequence size. The second term is the

expected value of the meaaure assuming nonhomologous

or random sequences with an average element proba-

bility of p. Our new sequence metric can be defined

in a related manner. Put

N-n n+L+l

I min
y(a,6, n) = OsksN-n 1 I)(xjs ‘k+j+ ) (lOa)

!,=0 J=$+I

and

Then the metric is

Ip(u,f3) = Max P’(a,13); p’(6,a)
t

(1OC)

5



This metric has a number of potential advantages in-

cluding the fact that it can be applied to sequences

of varying length although no proof exists as to the

triangle inequality for such cases. It also can

give a measure as to the degree of redundance (sub-

sequence duplications within or among the sequences).
22

In a subsequent paper we shell study this metric

in greater detail.

v. REMARKS

a. One of the major uses of distances in

biology is in cluster analysis and evolutionary

tree construction. J. A. Hsrtigan (unpublished

notes) has pointed out the following objection:

palrwise distances are a more sophisticated form of

dissimilarity judgment than clusters, and so it may

be inappropriate to use them to compute clusters.

However, in tree construction where one wants to

estimate length of branches, the distance concept is

useful. There are other situations where one wants

an estimate of the distance between clusters, and

the distance concept is useful.

b. Another quantity which might be used in

place of distance is a quantity c to be thought of

as relating to the probability of transition from

p to q. o (p$q) should be a mapping from P x P to

[0.11 which satisfies

1. Osu(p,q)sl

2. a(p, q) 2 u(p, r)u(r, q)

for all p,q, rcP. Development of a theory of such

a function might be worthwhile.
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