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DESCRIPTION OF COLLISIONLESS PLASMAS BY

CLASSICAL FIELD EQUATIONS

by

Gary S. Fraley

- [ . B
= = ABSTRACT
-,jiE:iFE
=
‘:’EO’)‘ Classical field equations are derived from quantum
5==¢M .= .. _fields to obtain a different and possibly simpler de-
§§m' scription of a collisionless plasma. The method is to
gao«'g» take the simultaneous limit, h, e, m + 0, of charged
5%04 scalar fields and the electromagnetic field. Laplace
:"""CDP el te transforms for perturbations in a uniform relativistic
g gg;. plasma are compared with corresponding results from the
iI==m Maxwell-Vlasov equations. For the nonlinear case, a
§;O)l_ distribution function defined on the classical fields is
E(V)__ N shown to satisfy the Vlasov equation.
S———— . . - - . -

I. DERIVATION

We are interested in finding a different de- classical system itself is a limiting case (h + 0)
scription of a collisionless plasma, in parti- of a quantum system SQ’
cular, one with about the same physical content as
the standard description but which may, in some

z

S = lim

cases, have a simpler mathematical structure. It cp lim SQ . (2)

e,m >0 £ +0

is useful to examine a derivation of the standard

description the Vlasov equation. An ensemble
Here we investigate the case where some of the

average over classical ionized particles gives the
limits are exchanged. The initial limit {is

BBGKY hierarchy of equations.l When second order

correlations are neglected, the first equation of

the hierarchy reduces to the Vlasov equation. It s' = 1im s. , (3)
is generally assumed that in the limit e, m + O, P e,my, h + 0 Q
both e/m and n o remaining constant, where n,, e,
and m are the particle density, charge, and mass, where the ratios of e, m, and h remain constant.
respectively, second order correlations disappear. Other derivations of plasma phenomena from
We may then write quantum systemsz_a have corresponded to the limit
h + 0. Because these limits are singular, their
Scp = e]_:;m . Z sc Q) exchange may not give the same results. The re—
o> sults must be investigated in each case. We

neglect spin effects; S, is represented by charged
where Sc represents the equations for classical scalar fields (¢q) for each charge species (q)
particles, Scp the equations for a collisionless and the electromagnetic field (A). The equations
plasma, and I an ensemble average. Because the are
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where aq - eq/hc and uq - mq c/h. The Lorentz
gauge 3uAu = 0 is used. We use Gaussian units.
The fields are quantized by commutation rules such

as

[ao¢q(’£,:), ¢q(*,t)] =-1chgx-Y)
(s>

[aoAu('i,t),Av(?,:)] =-ik4rch §(x -y) v

where ggg = 1 = =9;) = = 9y, = = 933

The fields differ from their standard repre-
sentation (¢s) in that ¢ = h¢s. The fields, ¢,
have the same dimensionality as the electromagnetic
field; the square of their derivatives gives an
energy density.

The field equations are invariaant under the
limit; the commutators disappear. We may then
interpret the fields "classically" as complex
number functions. The new system is deterministic
although it has finite de Broglie wavelengths. We
are interested in the case where the de Broglie
wavelength 1s small compared to any other scale
length. It may be considered an infinitesimalj
its precise value is not important if it is small
enough. It appears reasonable that these equations
correspond to a collisionless plasma. The colli-
sionless approximation smooths over particle
effects. Conversely, the quantization adds part-
icle-like or discrete effects to the fields.

In the absence of an electromagnetic field,

the charge density due to positive energy plane

wave solutions is

T p ) =a Z exp [11-X]
2

. Zakal:-!. Weog eXPlily, o~ )t] + coc. ,

L3

where a, and w, are the amplitude and frequency of
the plane wave with wave number k. For a uniform
plasma the coefficients for 2 # O should disappear.
This will be true over an ensemble average if the
different Fourier coefficients (ak) are uncorre-
lated. In an individual plasma, the number of
terms in the sum over k = 0O (l/h3). Then, for
uncorrelated ay, the density coefficient for 2 #

0 is 0(h3/2). In a second limit (h + 0, i.e.,
and u tend to infinity), the density (averaged over
any finite volume) becomes uniform in an individual
plasma for uncorrelated a. In general, if the

plasma changes over a scale length Rl, there should

be correlations between wave numbers for
|Ak| = 0(1/£1).

IT. COMPARISON WITH THE MAXWELL-VLASOV EQUATIONS

A. Linear Perturbations

We will compare solutions for the initial
value problem in a uniform relativistic plasma
with no zero order electromagnetic field. Long-
itudinal and transverse waves are done separately
with the coupling between them ignored. The
charged particle fields are separated into zero
order and first order parts. Calculations for

each charged particle species are done separately.
$=0 40,
>
4= D & exp LEX - 001, (6
k

by = D by exp [1RF]
k



where Wy > 0. For longitudinal waves, A has a time-
like part

0 - O -b.-§
A Z A (t) exp [1k-x], 7
13

and a space-like part

A% - E e A (t) expik-X], a =1, 2, 3 ®)
X

where ey is a unit vector parallel to k. The

Lorentz gauge gives

- A (t) = 2o AD (2).

For transverse waves there is only a space-like
part with each polarization perpendicular to k.

The linearized equations are

1 TRV vk v .®

N AT SR 9)

!
i

M 2 u '
(abu+u)¢l+21aA 3,400 .. (10)

For longitudinal case the Laplace transform of Eq.
(10) gives

2 4
[ 2 2 | '
(:2-+k +u) bk(s) = c—z (s bk0+bko)
0
'“%Z"z(’”“’k-z)
2

) [s - -:7:% (s + '“’k-z’]

-21¢ ;Aw ak_z(-'ﬂ - I) . (11)

where

b - b i ]
ko = By (t=0), by,

= A0 'l
A A, (t=0), Ag = 5= (£ =0) .

The transform of Eq. (9) for v = 0 is

2
1 S 2 0 1 '
la ‘ *
M Z g Py
2

a . *
‘e Zzakﬂ (s + Tuyg) byls+in )

(12)
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£
2 Z 0 *
~a A -
&~ l(s + iwj ‘mfﬁ'j‘k) ajafd'j-k + c.c. .
»

The substitution of Eq. (11) into Eq. (12) couples
the Fourier modes of Ao. The coupling between Ag

0 *
and Aﬁ is of the type a, a -k

§ For a uniform
plasma the coupling = 0(h3;2) since the different

aj are incoherent. The coupling disappears in the
limit & + 0, and we have

A)(s) = 5/D(k,8) (13)

where S, the source term, depends on initial con~-
ditions, and D(k,s) is the Laplace transform "dis-
persion relation."
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where u is the velocity corresponding to j. With
ithe substitution

2 -
Iaj[ w; = nofo(;) heZ/2, pen] as

where n, is the particle density, p is momentum,

and fo is the momentum distribution function,

s2 2
lim D(k,s) = |= + k
h-+0 (4

2 f ¢ oo (p) [ _('9’;_'12_)2/@]

A1+ w
P y(s+i_lz-:) 2 ,

(16)

where mp is the plasma frequency.
The square brackets are identical to the

equivalent Vlasov equation dispersion relation1

* of . (p)
Dv(k,s) =1 - :I.Ju)2 m k- d3p To—_;'_,
P K ap(s+ik-u)
Qa7
' —_ . .
This is shown by integration by parts. The same

procedure may be carried out for transverse waves.
We obtain

Ak(s) = 8/D(k,s) ,

where

2
Dlks) = &5 + K ara® D Ja, 12
' J

(18)

>+ 2,22 2 4
2 2 (Jee )%(s%c" + k%)
- 8na Z[aj] kz —
] UJ (S + fkeu)

where e is the polarization vector.

2,2, % [ )
'l‘.im d{k,s) = =5+ kS + 5 / 0
-0 [ c Y

(19)
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Transverse waves in a relativistic plasma have
been investigated by Lerches and Felderhof,6
among others. Apparently, however, there is no
explicit expression for the Laplace transform.
Comparison can be made only for special cases., If
the denominator in the last integral is not too
small, the last term is a relativistic correction,
and in the nonrelativistic limit we obtain the
standard expression

w? = K24 mf, . (20)

The last term of Eq. (19), for small velocities
parallel to i, produces the Weibel instability.

B. Nonlinear Case

Here we attempt to find a functional of each
particle field which corresponds to a distribution
function, and which satisfieg the Maxwell~Vlasov
One diffi-
culty is that a continuous charge distribution
does not, in general,.satisfy the Vlasov equation,

e.ges

equations in a self-consistent way.

£(p,%,t) = g(x,t) 8[p-p(x,t)] ,



where
P(x,t) = p(X,0) + [-(v-V)p
+E+TV B e +o0ed, (21)

and v is the particle velocity. The delta function
factor satisfies the Vlasov equation, but g, the
charge density, does not.

%f_ +0 . 3GEe) gl =0 . (22)

A point particle distribution,

G0 = D 60 - K 0] 8 - 501, (@3
i

does formally satisfy the Vlasov equation.

We look for solutions of the field equations
which correspond more closely to "particles" than
to a continuous fluid. Consider uncorrelated
wave packets with radius = o(rl), where r, * 0
in the limit h + 0. The wave number spread i
Akl =0 (1/r1), which gives a velocity dispersion
= Aklh = O(h/rl).
requires that h = O(r1 ). The charge of the wave
packet, e is 0(r13), therefore self forces do

To maintain a radius = O(rl)

not expand the wave packet to a radius greater
than O(rl).
We define
-> > -
f(p,x.t) = d3k| wz(kl-ko) [glgz + C.C.] B (21‘)

where

3 > > - > -
g -_/d Xy exp (=t X1 W o) olxp,e)

and

3 - - - >
g, /d xy explik =%, ] W) (x=x;)

[-13, - aayG 167G, 0,

and
-
i% = p/h + oA .

e
V‘(x-x‘) = const, [;-;,l <r

3 1

-> >
=0, [x-xll >r.o+r, .

3 2

> = -> =
Hz(k-kl) = const,|k-kl|< k3 .

- b
=0, lk—kll > k3+k2.

rgo Bk, NG, r§k3 -0 -
wl and Wz have continuous first order derivatives.
We assume ¢ has only positive energy solutions. A
more complicated definition is necessary if there
are also negative' energy solutions. The distri-
bution function is ensemble averaged because the
number of wave packets in the support of Wl X Wz
goes to zero in a single system. In the region
where Wl X wz is constant, the function acts as a
counter of wave packets because it reduces (by
Parseval's formula) to an integral over charge
dengity. Only the asymptotic overlap of these wave
packets in the boundary region of W1 x Wz contri-
bute to the derivatives of f. Derivatives of ¢ of
0(1) of these wave packets may then be neglected.
Since the volume of the boundary region over the
total volume goes to zero, we may neglect deriva-
tives of ¢ of 0(1) in general. This is important
since derivatives of 0(1/h) reflect the dynamics
of charged particles, but derivatives of 0(1),
which are necessary for charge conservation, are

not directly connected with the particle dynamics.

We need local solutions for ¢. Let

0Gk,t)) = Z a, exp {1[?-?1 - w&l,cl):ll} . (25)
k



We assume that A changes slowly over distances of
O(rl). Wavelengths of this size come from
collisions between wave packets, and the collision
strength vanishes in the limit. We expand w in

an asymptotic seriles in orders of h,

-

w(E, t) -): w, &t ,

=0
where mj - O(hj_l) s (26)
and
> n
uu(x,t) = }E: “ﬁn(;) t .
n=-0

Then w.may be solved explicitly. When only those

terms necessary for the first order derivatives

> >
o£ f(p,x,t) are kept, and w is expanded about
(x,t) ’

¢(;:l.tl) = Z ak pr{i[-k.‘;] = (tl't)
k

Wy + av'A G 0] } , 27)

-

where Wgs Vs and A are defined at (x,t). (Double
Greek indexes indicate a summation over all indexes;
double Latin indexes indicate a summation over

space-like indexes.)
p? = h(k%:an?) .

1/2
p° = (mzch + czpapa) .

(28)

Application of the Vlasov operator to f gives

a - - > a
[at +vo+ e(E + vxB) apa]f
(29)

Y
= @.f), + (% f, -ata 3
LN a ko ua ks

.For 8> the three derivatives in Eq. (29) give
(inside the Fourier integral of ¢), respectively,

(@) - ilug(k) + av'l) A (x,=x)%]

a a
» = ilt) + B8 )7 ¢ (%‘.:—’)kow-kn‘
0

+ avt (k) Aua(x,-x)a] ,

) - vk =k)? (30)
and
() v Auaxla

- U Ry . H a
fav Aua(xl x)® + iav Auax

where

a
[ z
0

The underscored terms are cancelled by the same

terms for 8y- After cancellation we have

- laAua(x-xl)a[v(ko)-v(k)]u . (31)

This cancels to the first approximation, but the
remainder is greater than 0(1l).
the negative of term (31).

From g, we obtain
The action of
(—iat-aAo) on ¢* produces a coefficieni which
multiplies each Fourier component of ¢ .,



- alfy (%, t) = Ag(%,t)] *W"“ua(*rx)“} NEY)

Term (31) and its negative from gz cancel the first

braces { } of term (32). This leaves terms of
0(:2k,), 0(hk§r3) = o(1). The (logarithmic) de-
rivatives of term (32) itself are of O(l) and may
be neglected. Then Eq. (29) is o(l) for h -+ O.
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