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USING DIRECT SUB-LEVEL ENTITY ACCESS TO IMPROVE

NUCLEAR STOCKPILE SIMULATION MODELING

Robert Y. Parker

ABSTRACT

Direct sub-level entity access is a seldom-used technique in discrete-event
simulation modeling that addresses the accessibility of sub-level entity information. The
technique has significant advantages over more common, alternative modeling methods —
especially where hierarchical entity structures are modeled. As such, direct sub-level
entity access is often preferable in modeling nuclear stockpile, life-extension issues, an
area to which it has not been previously applied.

Current nuclear stockpile, life-extension models were demonstrated to benefit
greatly from the advantages of direct sub-level entity access. In specific cases, the
application of the technique resulted in models that were up to 10 times faster than
functionally equivalent models where alternative techniques were applied. Furthermore,
specific implementations of direct sub-level entity access were observed to be more
flexible, efficient, functional, and scalable than corresponding implementations using

common modeling techniques.
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Common modeling techniques (“unbatch/batch” and “attribute-copying”) proved
inefficient and cumbersome in handling many nuclear stockpile modeling complexities,
including multiple weapon sites, true defect analysis, and large numbers of weapon and
subsystem types. While significant effort was required to enable direct sub-level entity
access in the nuclear stockpile simulation models, the enhancements were worth the
effort — resulting in more efficient, more capable, and more informative models that

effectively addressed the complexities of the nuclear stockpile.



CHAPTER 1

INTRODUCTION

Simulation is the act of imitating a real-world process or system. The
representation of the system, including the assumptions and relationships between system
elements, is called a model. A model can also be defined as “a representation of a system
for the purpose of studying the system” (Banks, Carson, and Nelscn 11). Hence, a
simulation model is used to evaluate and investigate the behavior of the system over time.
The usefulness of such models depends on the desired goals and objectives of the
simulation study, and whether the information extracted from the model appropriately
addresses those objectives. The key, then, is having the ability to set up the model in such
a way that the necessary behavior is exhibited and the needed information is accessible.

Within the framework in which simulation models are built, there exist various
methods to access and use important model information. Simulation software packages
have been developed specifically to make these modeling tasks easier. Such software
typically contains the underlying structure for automatic model information management
and provides techniques and links for obtaining and using that information during a
simulation. While some methods for accessing information in a simulation model are
quite common, other techniques are less often implemented, but may significantly

enhance the usefulness of a model.



This thesis will focus on applying an important, though seldom-used, information
access technique, called direct sub-level entity access, in discrete-event simulation
modeling. The concept will be applied specifically to improve the usefulness of models in
a domain where it has not been applied before — nuclear stockpile, life-extension

modeling.

1.1 STATEMENT OF PROBLEM

Modeling the United States (U.S.) nuclear weapons complex presents several
challenges to account for the complexities of the nuclear stockpile. Multiple weapon
sites, large numbers of different weapon types and critical subsystems, and
surveillance/maintenance coordination are some of the complexities that need to be dealt
with to effectively model stockpile life-extension issues. Common simulation modeling
techniques have been used to model the stockpile in a limited fashion. However, they are
limited in their ability to effectively access important model information and do not
provide the flexibility to adequately address many required modeling objectives.
Specifically, these common methods employ relatively convoluted and inefficient means
to access sub-level entity information in nuclear stockpile simulation models. They
require the user to implement modeling constructs that are bulky, slow, and inflexible.
These constructs are often only able provide limited functionality in terms of the amount
and type of entity information that can be handled. When model complexity and size is
increased (by adding more weapon types, weapons sites, etc.), common methods fail by
making the model unreasonably large and slow and by lacking the capability to

conveniently access and use specific model information for analysis needs. Consequently,



common modeling implementations result in stockpile models that are limited in
usefulness. More effective modeling techniques must be applied to enhance the

usefulness of nuclear stockpile, life-extension models.

1.2  THESIS STATEMENT

Direct sub-level entity access is an important concept that offers valuable benefits
over more common modeling methods and provides significant advantages — including
enhanced functionality, capability, flexibility, and efficiency — that are critical to

effectively model and analyze nuclear stockpile complexities.

1.3 APPROACH

The thesis will emphasize the application of direct sub-level entity access to
discrete-event simulation models that are used to evaluate the potential response of the
nuclear weapons complex and subsequent impacts on nuclear stockpile characteristics
associated with specific stockpile life-extension plans. Key deficiencies from a current
discrete-event, nuclear stockpile, life-extension model will be identified. Other existing
models that use common modeling techniques to help address the deficiencies will be
obtained and tested. These models will be modified and tested again after implementing
direct sub-level entity access. The results and performance of both the original and
modified versions of the models will be evaluated and quantified/qualified as appropriate.
The information will be analyzed to show the advantages, benefits, and added

functionality that direct sub-level entity access offers over alternative methods —



ultimately resulting in more flexible, useful, and informative models capable of
addressing many complexities presented by the nuclear stockpile.

To more fully understand the focus of the thesis, some additional background
information is addressed in the following sections. Specific topics covered are categories
of simulation modeling, nuclear stockpile, life-extension modeling, hierarchical entity

structures in discrete-event simulation models, and direct sub-level entity access.

1.4  CATEGORIES OF SIMULATION MODELING

The vast number of processes and systems gives rise to many areas of application
for simulation modeling. However, the general area of application addressed in this thesis
will be simulation modeling of manufacturing/production systems within which are the
aforementioned nuclear stockpile models. To further differentiate between this general
area of application and other related areas, three categories of simulation modeling will
be briefly discussed: mechanical modeling, process modeling, and systems modeling.

Mechanical modeling relates to the simulation of the mechanics and/or kinematics
of a machine or workcell. It may include spatial/geometrical and motion control
modeling of the physical system. It is frequently employed in machine automation
exercises and in the design and operation of workcells, robots, etc. (This type of
simulation is not included in the general area of application addressed in this thesis.)

Process modeling relates to the simulation of a collection of activities forming a
specific process. The focus is on “what” is performed by the process itself and its
interrelationship with other processes, as opposed to “how, when, and where” the process

is performed (Harrell and Tumay 18). Process modeling is used to help analyze the



practices and procedures involved in a process. These procedures are the types of things
frequently characterized by flow charts. (Process modeling itself is ndt the general area of
application addressed in this thesis.)

Systems modeling relates not only to the simulation of processes (as in process
modeling), but also of the elements used to perform the processes (resources, controls,
activities, etc.). The focus is on “how, when, and where” the processes occur. Systems
modeling encompasses the dynamic interrelationships between, and the effects on, the
system elements (including the entities being processed), as well as the effects on the
system as a whole. Systems simulation modeling is frequently employed in analyzing the
causes and effects of behaviors in manufacturing/production settings — such as part
production factories and job-shops.

System simulation models are generally categorized as discrete or continuous. A
continuous model is one whose state changes continuously over time. A chemical
delivery system, whose liquid volume changes continuously based on the input/output
flows, is an example of a system modeled in a continuous manner. Values and
calculations in continuous models are updated at evenly spaced time intervals.

A discrete model (or a discrete-event model) is one whose state changes only at
discrete, separate points in time. A manual assembly line at a manufacturing plant is an
example of a system modeled in a discrete manner. Values and calculations in a discrete-
event model are updated only when certain events occur. An event, in this case, may be
the arrival of a part at an inspection station, or the end of a machine’s processing cycle. A
discrete-event simulation essentially produces a series of snapshots representing the state

of the system as the simulation clock steps through the process events.



The general area of application addressed in this thesis is computer-based,
discrete-event system simulation modeling of manufacturing-related systems. This
general area of application is assumed by any reference to simulation or modeling from
this point on (unless otherwise noted). The nuclear stockpile, life-extension models used

in this thesis certainly fall under this general manufacturing-related category.

1.5 NUCLEAR STOCKPILE, LIFE-EXTENSION MODELING

The United States nuclear stockpile is the collection of nuclear weapons
maintained by and for the U.S. government. The Department of Energy (DOE) nuclear
weapons complex embodies those facilities and organizations charged with the design,
production, maintenance, certification, and disposition of the nuclear weapons in the
stockpile.

The end of the cold war and the increasing number of international treaties and
arms limitation agreements have resulted in dramatic changes in the way the DOE must
carry out its nuclear stockpile responsibilities (Lawrence Livermore, Keeping). The size
of the nuclear stockpile is being reduced, underground nuclear testing has stopped, and
much of the weapons production complex has been shut down. Because of these recent
developments, and the fact that no new nuclear weapons are being produced to replace
and modernize existing systems, there is a significant challenge to maintain the weapons
in the stockpile — which in many cases are rapidly approaching their designed life-
expectancy (Lawrence Livermore, Through 8-9).

To help address the requirements of assuring the safety and reliability of the

existing nuclear stockpile without nuclear testing, new weapons development, or a large



production complex, life-extension programs are being developed and evaluated. Various
life-extension options are being explored so that the appropriate organiéations can
anticipate and plan for future maintenance and refurbishment requirements (Lawrence
Livermore, Through 13).

Simulation, with its inherent abilities to capture complex interdependencies and to
do comparative analyses, is being leveraged as a planning, evaluation, analysis, and
communication tool in the nuclear stockpile, life-extension arena. Many questions are
being asked, such as the following:

e What weapons are nearing their life expectancy?

e Where are they located?

e How can they be serviced without diminishing the number of active weapons

available?

e What is the reliability of a specific group of weapons?

e How well can the reliability be predicted with limited testing options?

Models representing the nuclear stockpile and weapons complex have been
developed to begin addressing some of these questions in the context of specific life-
extension options being considered. While promising and somewhat useful, these
preliminary models are still limited in capability and usefulness.

The desire and need is to enhance and improve the stockpile life-extension models
so that they can better address more of the life-extension questions being posed by
decision-makers. Information needs to be more effectively used and extracted from the
models. One way of doing this will be demonstrated in this thesis. An advanced modeling

concept will be applied to enhance nuclear stockpile, life-extension models. The concept,



direct sub-level entity access, is especially applicable to models where the desired entities
of interest are structured hierarchically and where the sub-level entities in the hierarchy
are often just as important as the enclosing top-level entity. Such is the case of the
stockpile life-extension models, where weapons are modeled in the same way they exist

in real life — as hierarchical assemblies of critical sub-component parts.

1.6 HIERARCHICAL ENTITY STRUCTURE

Entities are the dynamic objects that move around within discrete-event
simulation models. They typically represent real-world objects (pélrts, peopie, etc.) from
the system being simulated. Entities are assigned characteristics and attributes that

% &<

identify and individualize them (for example “type,” “color,” etc.). These attributes are
carried by the entities themselves. Model behavior and functionality often rely on this
important entity-specific information.

Batching entities together in discrete-event simulation models is a common
technique for representing manufacturing scenarios, including assembly operations. It is
the primary modeling mechanism for establishing hierarchical entity structures that
represent real-life situations. To illustrate this, consider a simulation model representing
three parts or entities (X, y, and z) each with unique characteristics or attributes. The three
entities are batched together in an assembly-type operation. The resulting assembly is a
new entity ‘B’. Because the assembly may at some future time be separated into its

original parts, entities x, y, and z must maintain their unique characteristics while batched

together. The process being modeled is illustrated in Figure 1.1.



Batching
Operation

Figure 1.1 Entity Batching Operation

Prior to the batching operation, entities x, y, and z are considered top-level
entities. After batching, new entity B (the assembly) is considered a top-level entity,
while entities x, y, and z are now considered sub-level entities (constituent entities of a
batch). In this particular case, a two-level entity structure exists with B being at the top
level, and x, y, and z being at the first sub-level in the entity structure.

Deeper-level entity structures are the result of multiple batching operations. For
example, if a couple of assembly B’s were subsequently batched together into another
assembly ‘C’, then the new assembly C would be at the top of the resultant three-level
entity structure. The B entities would then exist at the first sub-level while the x, y, and z
entities would exist at the second sub-level in the entity structure. Figure 1.2 illustrates
this three-level case.

Whether there are one or more levels of batching, the result is a hierarchical entity
structure in the model that represents the real-world assembly of parts. This is one way
weapons in the United States nuclear stockpile have been modeled. (Note that none of the

models addressed in this thesis deal with three-level or deeper entity structures.)



Entity Structure Hierarchy
e Top Level: Entity C
o First Sub-Level: Entities B1 and B2
o Second Sub-Level: Entities x1,
yl, z1, x2, y2, and z2

Figure 1.2 Three-Level Entity Structure

1.7 DIRECT SUB-LEVEL ENTITY ACCESS

Consistent with the illustration in Figure 1.1, a nuclear weapon is an assembly of
subsystems or sub-components (often represented in models by sub-level entities). The
reliability of the weapon depends on the condition of its critical subsystems. So in a
model where the objective relates to nuclear stockpile life-extension, the subsystem
characteristics and attributes (which may only exist on the sub-level entities themselves)
are of particular interest. For example, consider a system of weapons, each with several
vital, limited-life subsystems. In a model of such a system, the subsystems are unique
sub-level entities with attributes attached to them. The attributes may indicate “part type,”

2% &«

“date of manufacture,” “serial number,” etc. As part of the modeling exercise, suppose all
of the subsystems of a particular type that are older than ten years need maintenance. The
age of a given part is based on its date of manufacture; an attribute that is carried by the
sub-level entity itself. So the ability to access this information — independent of where the
entities are located in the model — is critical.

In most discrete-event simulation models, interaction with and access to entity

attributes occurs at the top-level. That is, entity information is obtained directly from the

10



model entities themselves at designated points in the model while the entities are in a top-
level state. In the case of a weapon, access to attributes on a subsystem is accomplished
by unbatching the weapon assembly entity — bringing the subsystem entities back up to
the top-level — and then re-batching them when done accessing the desired information.
This is one common method that has been used to access and manage necessary
subsystem information in models of the nuclear stockpile and the nuclear weapons
complex. This method also requires that all entities to be accessed be physically moved
or directed to designated points in the model (i.e. local entity access) where the
unbatching takes place.

One technique that has not been implemented before in such models is that of
direct, sub-level entity access. This concept involves accessing and manipulating entity-
specific information directly on entities while they are in a sub-level state — independent
of where the entities are located in the model. This implies that the sub-level entity
information can be accessed globally from anywhere in the model. Such direct, sub-level
entity access is a very useful, though uncommon, technique in discrete-event simulation
modeling, and has not been applied in nuclear stockpile, life-extension models. The
ability to extract sub-level entity information from the model during a simulation is vital
to addressing many of the complexities of the nuclear stockpile. The advantages and
benefits of using this technique to improve nuclear stockpile simulation modeling will

become apparent through this thesis.
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1.8 DELIMITATIONS

Direct access of sub-level entities implies the ability to view, change, and set
entity-specific information (primarily attributes) on entities while they are in a sub-level
state — independent of where the entities are located in the model. This concept, as
presented in this thesis, applies only to discrete-event system simulation modeling as
defined previously in section 1.2. This means that continuous simulation modeling,
process modeling, static modeling, symbolic modeling, mathematical modeling,
mechanical simulation modeling, motion control modeling, automation/control modeling,
and other forms of modeling will not be addressed.

The implementation and demonstration of direct sub-level entity access in this
thesis will be conducted on nuclear stockpile, life-extension models using the same
simulation environment in which the selected original models are found.

Although it is not an oft-used concept, direct sub-level entity access can be
applied in a variety of models of different systems. The direction of this thesis, however,
will be toward nuclear stockpile, life-extension issues in the nuclear weapons complex.
Specifically, the focus will be on manufacturing- or production-type models that are used
to help demonstrate and evaluate the nuclear weapons complex response to certain
stockpile life-extension plans and the subsequent effect on nuclear stockpile
characteristics. Other specific areas of potential applicability may be mentioned but will
not be demonstrated.

The nuclear stockpile models in which the direct sub-level entity access concept is
applied only have weapons represented as either one- or two-level entity structures. That

is, weapons are represented either by a top-level weapon entity only, or by a top-level

12



weapon entity with one layer of sub-level component entities (as in Figure 1.1). Direct

access of entity information at deeper sub-levels will not be demonstrated.

1.9  DEFINITION OF TERMS

Attributes: User-defined characteristics of entities in a discrete-event simulation model.
Individual entities can carry different values for a given attribute. For example, an
entity representing a part may have attributes called Type and Color, with certain
values assigned to differentiate between this and other entities.

Batch: A group of entities that have been assembled (batched) together. This is the same
as an assembly entity.

Batching: The act of assembling model entities together in a discrete-event simulation
model. The result of a batching operation is a top-level entity representing the
assembly, with contained sub-level entities representing the constituent sub-
components used to make the assembly.

Discrete-Event Simulation: A type of simulation in which the state of the model
changes at discrete points in time based on the occurrence of events. A discrete-
event simulation essentially proceeds by producing a series of snapshots
representing the state of the system as the simulation clock steps through each
specific event time during a simulation run. An example of an event is the arrival
of a part at a processing station or the scheduled shutdown of a processing cycle.

Entity: A dynamic object of interest that moves around within a discrete-event
simulation model. For example, in a nuclear stockpile, life-extension model,

weapons and associated sub-component parts would be the entities of interest.
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Global Entity Access: The ability to access entity information globally from anywhere
in the model, independent of where a given entity resides. Entities are not
required to pass through certain points in the model in order to have their
attributes read. Direct sub-level entity access is capable of such global entity
access. However, the common modeling techniques for accessing sub-level entity
information that are addressed in this thesis are incapable of such global entity
access.

Hierarchical Entity Structure: The resulting entity construct after an entity batching
operation. In such a structure, a top-level entity exists with sub-level entities
contained within it. The sub-level entities may, in turn, contain other constituent
entities, and so on, as in Figure 1.2. (Note: This thesis only deals with entities
down to the first sub-level, as in Figure 1.1.)

Local Entity Access: The ability to access entity information locally — when an entity is
at a specific, designated point in the model. Access to entity-specific information
takes place only at certain points in the model through which an entity must pass
in order to have its attributes read. The common modeling methods for accessing
sub-level entity information that are addressed in this thesis are instances of local
entity access. Direct sub-level entity access can also be applied as a local access
implementation.

Model: A representation of a system for the purpose of studying the system. A

simulation model is used to evaluate and investigate the behavior of the modeled

© system over time.
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Nuclear Stockpile: The collection of existing nuclear weapons in the U.S. nuclear
arsenal.

Nuclear Stockpile Life-Extension: The act of extending the life of existing nuclear
weapons in the stockpile through maintenance, refurbishment, etc. This can entail
policies, programs, schedules, or options for executing a desired life-extension
plan.

Nuclear Weapons Complex (Or the DOE weapons complex): The collection of facilities
and organizations whose responsibilities include the design, production,
maintenance, safety, certification, and disposition of the weapons in the nuclear
stockpile.

Simulation: The act of imitating a real-world process or system with the intent of
studying the system’s behavior over time.

Sub-Level Entity: An entity in a discrete-event simulation model that has been batched
together with other entities to form an assembly entity. It is an entity that is
currently a constituent sub-component of a top-level assembly.

Surveillance/Surveillance Analysis: As used in this thesis, surveillance refers to
performing quality assurance tests on a small sub-set of a given weapon
population which is essentially analogous to statistical sampling. Surveillance
analysis (as performed by simulation models discussed herein) involves
determining age-related weapon defect rates based on the attributes carried by the
weapon entities and their subsystems that are actually included in the sample set.

Systems Modeling: An approach to modeling whose design is to capture the behaviors

and interdependencies of the system as a whole.
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Top-Level Entity: An entity in a discrete-event simulation model that exists at the top
level of the entity hierarchy. It is an entity that is not currently a constituent part
of any other batch of entities.

True Defect Analysis: The process (as performed by simulation models discussed
herein) by which age-related weapon defect rates are determined based on the
attributes carried by all the weapon entities and/or their subsystems in a given
weapon population. That is, the entire population (as opposed to a limited sample
set) is used in the analysis.

Unbatching: The act of disassembling model entities that had previously been batched
together. Unbatching operations can bring constituent sub-level entities back up to
the top level.

User/Modeler: A person who builds and/or uses a simulation model, or who uses a

simulation software product to construct simulation models.
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CHAPTER 2

REVIEW OF RELATED WORK

Complex-wide, systems simulation modeling of the entire nuclear stockpile has
only recently been undertaken. Simulation is being leveraged as a way to capture the
complex interdependencies encountered in the nationwide network of nuclear weapons-
related facilities, and the functions they contribute to the nuclear stockpile effort.
However, most current simulation models rely on rudimentary techniques for using
model entity information. More advanced, less common capabilities exist in discrete-
event simulation modeling, however these capabilities have not been extensively applied
to develop more useful methods for using entity information, especially sub-level entity
information. Furthermore, no techniques for directly accessing sub-level entity
information have been used to improve current nuclear stockpile modeling efforts. This
thesis will address this lack by implementing an advanced, seldom-used modeling
concept (direct sub-level entity access), and showing that it can be of great value in
enhancing nuclear stockpile simulation models.

For the purpose of reviewing related work, the thesis topic can effectively be
divided into two separate areas:

1) Nuclear stockpile simulation modeling

2) Sub-level entity access in discrete-event simulation modeling
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The following sections in this chapter address these two areas by briefly discussing
current nuclear stockpile modeling efforts, methods of entity information access in
discrete-event simulation modeling, and capabilities existing in current simulation

software products.

2.1 NUCLEAR STOCKPILE MODELING

Behaviors and characteristics of individual‘ nuclear weapon components have
been, and continue to be, modeled extensively using complex physics and mathematical
models. However, when it comes to modeling the entire stockpile as a whole, less
extensive relevant work is encountered — none of which was found in documented open

~ literature.

2.1.1 Nuclear Stockpile Simulation Modeling

Most of the discrete-event simulation modeling relating to the nuclear stockpile
has not been focused on the stockpile itself, but rather on specific weapon-related
facilities in the DOE weapons complex. In these facility-specific models, the objectives
relate to things like optimal glovebox placement (Hench, Olivas, and Finch), localized
production planning (Kjeldgaard et al), machine utilization, and other issues addressed by
more traditional manufacturing process simulations.

The simulation models that have been developed for taking a system-wide look at
the nuclear stockpile itself are relatively immature compared to other facility-specific
models and consist largely of concept and developmental models that are typically

constrained to a limited sub-set of the entire stockpile. The desire, of course, is to expand
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the scope of these simple models to incorporate greater portions of the nuclear stockpile
and to address the related issues more effectively (Helm, Boerigter, and Eisenhawer).
However, many modeling techniques being currently implemented restrict the
expandability of such models. This applies to current simulation models built to address

stockpile life-extension issues.

2.1.2 Nuclear Stockpile, Life-Extension Modeling

Nuclear stockpile, life-extension issues include scheduling weapon maintenance
and component production, determining weapon surveillance and disposition policies,
and estimating the reliability of the weapons. Most existing stockpile life-extension
models that address some of these issues are static in nature — primarily spreadsheet
models (Boerigter). As such, they do not adequately address the dynamic
interdependencies, nor take into account a system-wide view of the stockpile that
simulation models have the potential to do. However, the existing stockpile life-extension
simulation models are fairly limited in breadth and scope. This thesis will show some of
the enhancements that can be made to these kinds of models by applying direct sub-level
entity access. By so doing, the work contributed by this thesis significantly broadens the

capability and expandability of stockpile life-extension models.

2.2 METHODS OF SUB-LEVEL ENTITY INFORMATION ACCESS
There are various methods for accessing and using entity-specific model
information in discrete-event simulation models. This section will outline a few of the

most common methods for accessing sub-level entity information, as well as a couple of
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less common techniques. Included in the discussion will be how/where the direct sub-

level entity access concept (applied in this thesis) fits in relative to the other methods.

2.2.1 Common Methods

The most common methods for accessing sub-level entity information (i.e. the
attributes carried on sub-level entities) involve interacting with or manipulating the
information at the top entity level. This is because it is usually assumed that when several
entities are batched together into an assembly, the assembly is the primary entity of
interest (as opposed to the sub-component entities making up the assembly). If the sub-
level entity information within the assembly’s sub-components is needed, there are
common ways to make it available. This is typically accomplished through an

unbatching/batching technique or through some type of attribute-copying technique.

Unbatch
Entities

Batch
Entities

Read and
Change
Attributes
on CCZ”

53

Figure 2.1 Unbatch/Batch Technique used to Access Sub-Level Entities

In the unbatch/batch technique for accessing sub-level entity information (see
Figure 2.1), sub-level entities are brought up to the top entity level by unbatching the

assembly. That is, the assembled entity is taken apart, effectively bringing the constituent
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entities back up to the top-level (Imagine That, Extend+MFG 146). Here the entities and
entity information can be accessed like any other top-level entity. After the entity
information has been used or changed as needed, the original constituent entities are re-

batched into the assembly.

B
TypeX =1

TypeY =2
TypeZ =73
Batch Entities BdayX =0
and copy Bz 10
Attributes to TagK = 0
Resulting TagY =0
Assembly “B” TagZ =0

Figure 2.2 Attribute-Copying Technique

The attribute-copying technique for accessing sub-level entity information (see
Figure 2.2) does not directly access the information from the sub-level entities, but it
copies the sub-level entity attributes to a different top-level entity (the created batch
entity) where the information is more readily accessible. The top-level batch entity
essentially contains merged properties of its constituent sub-level entities (Imagine That,
Extend+MFG 141). For example, when several entities are batched together into an

assembly, all the relevant attributes from the constituent entities are copied onto the top-
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level entity that represents the assembly (see Figure 2.2). The redundant attributes on the
top-level can be viewed and used in the model without digging down into the sub-levels
of the batched entity. However, if the attributes on the top-level are modified, the changes
are not automatically reflected on the sub-level entities.

Neither the unbatch/batch nor attribute-copying techniques involve directly
accessing the information from the sub-level entities themselves while they are in the
sub-level state. They both require more complicated procedures just to get the entity
information in an accessible, top-level state. This is where the direct sub-level entity
access concept applied in the thesis differs from these other common methods. Direct
sub-level entity access bypasses all the extra steps and accesses the entity information

directly without any extraneous entity manipulation.

2.2.2 Database Concept

Implementing a separate custom database or database-type structure in a discrete-
event simulation model is not nearly as common a technique for managing and using sub-
level entity information as the previous methods discussed. Although most simulation
software packages automatically manage entity information in built-in data structures,
this database concept essentially entails the user setting up and managing a separate set of
entity information (including all sub-level entity information) in some type of database
form. The user-defined database would then be the means whereby access to sub-level
entity information takes place. This concept is somewhat similar to the attribute-copying
technique mentioned in section 2.2.1, in that the information in the database is a top-level

copy of information that otherwise exists at the various entity levels. The database, in this
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case, would be the interface to this model information, essentially replacing the data
management interface already existing in the simulation software.

Some simulation software packages have links to commercial database or
spreadsheet packages (Gobel and Wood; Siprelle, Phelps, and Barnes), although this
functionality is mostly used for holding model input and output data; not real-time
management of entity information. Some simulation software also allows the user to
program their own data structures (essentially a user-defined, pseudo-database within the
software itself), which can be used to manage whatever information the modeler chooses
(Imagine That, Extend). However, in either case, the modeler has to do a lot of extra
programming and setup to establish the necessary links between the model and the
database to effectively manage entity-specific information.

Like the more common techniques of section 2.2.1, the database concept is in
some ways an indirect way of accessing sub-level entity information. It is “indirect”
because it involves working with a set of information that exists independent of the built-
in information management structures already provided in simulation software to track
and maintain entity data. Assuming the entity information already exists and is
maintained in the simulation environment, the database would be a separate, perhaps
redundant, source that would have to be maintained independent of the software’s
existing model information manager. This, again, is a primary difference between the
database concept and the modeling concept applied in this thesis (direct sub-level entity
access). The direct sub-level entity access technique involves accessing entity-specific

information directly from the sub-level entity itself in real-time, from where the software
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already manages the information, while in the sub-level state. The other methods take
more inefficient, roundabout approaches to accessing sub-level entity information.

The database concept may be advantageous in some discrete-event simulation
situations, but is not present in any simulation models used in the thesis. It will not,
therefore, be compared against direct sub-level entity access nor addressed further by this

thesis.

2.2.3 Direct Methods

The ability to access sub-level entity information directly from the sub-level
entities themselves while they are in a sub-level state is the focus of the concept applied
to nuclear stockpile, life-extension models in this thesis. This concept is not very
common and is sometimes considered an esoteric function in discrete-event simulation
modeling (Sadowski). The one instance identified in the literature where a similar
concept is frequently applied is in the case of the Visual Simulation Environment (VSE),
a simulation software product from Orca Computer, Inc. The similar concept is called
dynamic object decomposition.

Dynamic object decomposition in the Visual Simulation Environment is an
architecture for creating dynamic, hierarchical object (entity) structures “in order to
achieve the modeling paradigm What You See is What You Represent” (Balci et al,
Dynamic 70). It has been applied in various simulation models primarily to visually
represent a hierarchically based, real-world system more accurately. To illustrate the

concept, Balci states the following:
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In VSE, a dynamic object X can move into another dynamic object Y,
move within the hierarchical structure of Y, while it is moving together
with Y. For example, a cellular phone dynamic object enters into pocket P
component of a passenger dynamic object who enters into a metro train
and moves within it while the train is in motion. Such capability provided
by VSE enables the user to create direct and natural model representations
without any twisting of logic. (Dynamic 70)

To achieve movement of objects within other moving objects, a message passing
capability in VSE exists that allows access to anything in the object hierarchy (Balci,
Quesﬁonnaire). This is where the framework in VSE is essentially analogous to the direct
sub-level entity access concept applied in this thesis. Both enable direct access to the sub-
level entities in a hierarchical entity structure. While the concepts are similar, no current
application of the VSE technique to nuclear stockpile simulation models was found (the

area to which direct sub-level entity access will be applied in this thesis).

2.3  SURVEY OF VENDORS

As part of the exercise of reviewing work associated with the thesis topic, various
discrete-event simulation software vendors were surveyed. This was done to identify
existing capabilities relating to the direct sub-level entity access concept. Specific
software vendors were selected by consulting experts in the nuclear stockpile simulation
modeling arena, visiting vendor web sites, and reviewing published simulation software
surveys. The final group of vendors ultimately surveyed was determined by identifying

those discrete-event simulation software products typically used for building
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manufacturing-oriented systems simulations (like the existing nuclear stockpile, life-
extension models). A few other general-use simulation packages that can be applied in a
similar way were also included.

A questionnaire (included in Appendix A) was developed to gather specific
information relating to direct sub-level entity access capabilities. This, along with an
explanatory covef letter, was sent to specific individuals (who had been pre-identified
and pre-contacted) at the vendor companies. Of the 16 vendors surveyed, 14 responded
with completed questionnaires addressing the capabilities of 16 different simulation
software products. Based on the questionnaire responses and subsequent follow-ups with
vendors, some inferences about currently available capabilities were made.

In most of the software packages, some capabilities can be developed by the user
to allow some degree of direct sub-level entity access. Limited forms of the capability
come built-in to only a few of the 16 products, and only one product (discussed
previously in section 2.2.3) applies the capability with any regularity. Overall, direct sub-
level entity access is a concept seldom exploited in discrete-event simulation modeling
and not very conveniently available. In fact, one vendor did not even think that modelers
would benefit from, or see as useful, capabilities allowing direct sub-level entity access.
However this thesis will demonstrate that direct sub-level entity access can be very useful
and effectively applied to enhance nuclear stockpile simulation models (and, hence,

worth the effort).
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CHAPTER 3

METHODS

The primary purpose of this thesis is to show that using direct sub-level entity
access in discrete-event simulation modeling is useful and often preferable in nuclear
stockpile, life-extension models. To do this, the following general steps were taken —
each of which is addressed in detail in subsequent sections of the chapter:

1) An existing nuclear stockpile, life-extension model was obtained.

2) Specific, relevant deficiencies were identified in the model where direct sub-

level entity access could potentially be applied.

3) Existing concept models that attempted to address the deficiencies using

common modeling methods were obtained.

4) Direct sub-level entity access was implemented in the concept models

replacing the more common modeling techniques.

5) The implementations were analyzed and compared to the original concept

models.

6) Using information established from the analysis of the concept models, direct

sub-level entity access was applied to help expand and address the

deficiencies in the original nuclear stockpile, life-extension model (step 1).
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3.1 STEP1 - EXISTING NUCLEAR STOCKPILE MODEL (2X2 MODEL)

An existing discrete-event simulation model, herein referred to as the “2x2
model,” was built at Los Alamos National Laboratory using the Extend™ simulation
software package (Imagine That, Extend). The model was designed to demonstrate and
evaluate the effect of specific surveillance and maintenance schedules on weapons in the
nuclear stockpile. A brief description of relevant portions of the model follows.

The 2x2 model represents the US DOE nuclear weapons complex at a high level,
including representations of several facilities, organizations, and locations involved in the
design, production, maintenance, storage, and disposition of the weapons in the nuclear
stockpile. The model essentially simulates the movement of two weapon types around the
complex and tracks vital information (attributes) on the weapons as they move and are
acted upon during the simulation. For the purposes of this thesis, the primary elements of
interest in the system are associated with the movement of weapons in response to
maintenance and quality assurance (surveillance) requests. Figure 3.1 illustrates the basic

flow diagram of this portion of the model.

[} |
Maintenance | ! Surveillance
Requests i } Requests
. —p| Disassembly/
Stockpile Weapon Assembly
Entities Facility

Figure 3.1 2x2 Model — Basic Entity Flow Diagram
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As shown in Figure 3.1, scheduled maintenance and surveillance requests are
made to the stockpile for a specific set of weapons. Those weapons leave the stockpile
and go to the assembly/disassembly facility. The required weapon disassembly,
maintenance, and re-assembly are performed. Surveillance testing (quality assurance
testing performed on a limited set of the weapon population) is also conducted at the
facility when appropriate. The serviced weapons then return to the stockpile. More

specific descriptions and assumptions relating to the basic elements of Figure 3.1 follow.

3.1.1 Weapons

The primary entities of interest in the model are the weapons. In the 2x2 model
there are two weapon types included, each made up of two subsystems (hence the 2x2
model designation). The weapons are represented by top-level entities with attributes
identifying the characteristics of both the assembled weapon as well as the subsystems
making up the weapon assembly. Hence, the entity structure representing a weapon in the
model is consistent with Figure 2.2, where all relevant information is copied to and
maintained on the top-level entity. Some of the most important aitributes carried by the

weapon entities are related to the “age” of the weapon and its associated subsystems.

3.1.2 Maintenance and Surveillance Requests

Maintenance and surveillance requests are sent independently to the stockpile to
initiate the movement of certain weapons from the stockpile to the assembly/disassembly
facility. The requests are sent according to a schedule. Each request generally specifies

the number of weapons of a particular type that are requested, the type of work that is to
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be performed (i.e. changing a subsystem or just doing surveillance testing), and the
particular weapons to be sent (i.e. the oldest or a random selection). For example, a given
maintenance request might be to “send the 20 type ‘A’ weapons that have the oldest ‘X’
subsystems to the maintenance facility to have the ‘X’ subsystem replaced.” Note that the
request does not necessarily contain unique information about individual weapons or
exactly where a particular weapon should come from. The request just asks for weapons
meeting certain characteristics — regardless of where the weapons are actually located in

the model.

3.1.3 Stockpile

In the “stockpile” section of the 2x2 model (refer to Figure 3.1), the weapon
entities are actually kept segregated, according to type, while they are waiting for use.
That is, the two weapon entity types are housed in separate holding queues within a given
storage site in the stockpile. Furthermore, another simplifying assumption is that the
stockpile is not spread out among many storage sites, but consolidated into a single
storage site instead (see Figure 3.2). This was all done so that the maintenance and
surveillance requests for a particular weapon type could be handled more easily. If both
weapon entity types were held in the same holding queue and/or distributed among
several different storage sites, it would be much more difficult (using the common
modeling constructs applied in the 2x2 model) to properly sort out the appropriate

weapon entities when a given request arrived.
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Stocknpil The Stockpile essentially consists of

ockprie a single primary storage site within

) . which all the weapon entities reside
yd . (butin separate holding queues).
Storage Site
Weapon ‘A’ Weapon ‘B’
Holding Holding
Queue Queue

Figure 3.2 Simplified Stockpile Representation in 2x2 Model — Entity Segregation

3.1.4 Assembly/Disassembly Facility

In the 2x2 model, when a weapon arrives at the assembly/disassembly facility, it
is serviced and/or surveillance tested according to the original request. When
maintenance is performed, an old subsystem may be replaced with a newer one. When
surveillance testing is performed, the age of the weapon or an associated subsystem is
calculated based on an attribute carried by the weapon entity, and this information is used
to determine whether an age-related defect exists. This data is compiled during the
simulation from the relatively small sample set of weapon entities that are actually

surveyed to estimate the defect rates in the entire weapon entity population.

3.2 STEP2-DEFICIENCIES IDENTIFIED IN THE 2X2 MODEL
The primary deficiencies identified in the 2x2 model include the limited form of
doing defect analysis (surveillance only), the oversimplified representation of the

stockpile (single storage site with entities segregated by type), and only having two
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weapons and two subsystems addressed in the model. These deficiencies highlighted the
need to expand the capabilities of the model so that it could address three new required
objectives:

1) Performing true defect analysis

2) Modeling multiple storage site locations

3) Including more weapon and subsystem types

These objectives are briefly discussed in the following subsections.

3.2.1 True Defect Analysis

“True” defect analysis involves checking every weapon and/or weapon subsystem
for age-related defects (as opposed to checking just a few weapons as in surveillance
testing). While resource and other constraints prevent this in real life, having the model
perform true defect analysis — independent of the surveillance defect analysis done at the
disassembly/assembly facility — provides very useful insights. It can be used, for
example, to help determine how well a particular surveillance program reflects the actual

condition of the stockpile.

3.2.2 Multiple Storage Sites

The 2x2 model essentially models the stockpile as a single storage site where all
the weapons reside. This makes the task of modeling maintenance and surveillance
requests much easier. However, this oversimplifying assumption limits the usefulness of
the model. In reality, the stockpile weapons are distributed among many sites. To account

for the complexities involved with coordinating between sites, the model must represent
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multiple sites and be able to schedule maintenance/surveillance effectively — independent

of which site holds a particular weapon.

3.2.3 Additional Weapon and Subsystem Types

Adding more weapon and subsystem types further complicates the previous two
objectives. The 2x2 model only tracks two weapon types (each with two constituent
subsystems). More weapon types require more holding queues at each storage site just to
keep all the types segregated. This undesirable situation can be alleviated if all the
weapons (independent of type) at a given storage site reside in a single holding-queue.
More subsystem types require tracking more attributes. In the 2x2 model all relevant
attributes are maintained on the top-level weapon entity. However, modeling many
additional subsystems makes maintaining attributes for all of them on the top-level entity
cumbersome and undesirable. Consequently, a true hierarchical entity structure, where
the attributes for sub-level entities (the subsystems) are actually maintained and accessed

on the sub-level entities themselves, is more efficient.

3.3 STEP 3 - CONCEPT MODELS OBTAINED

Two different existing concept models were obtained. The purpose of these two
models was to propose ways to address, in part, the objectives discussed previously —
namely enabling true defect analysis, accounting for multiple weapon sites, and including
more weapon and subsystem types. Both concept models employ only common modeling
techniques and are described below. (These two models are hereafter considered the

baseline cases for comparative analysis purposes.)
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3.3.1 True Defect Analysis Concept Model (Baseline-1)

The baseline case of the “True Defect Analysis” concept model (denoted
“Baseline-1"") demonstrates a method for performing true defect analysis on weapons in
the stockpile (separate from continuing surveillance defect analysis) using common

modeling techniques. Figure 3.3 illustrates the general flow of the model.

Surveillance E i True Defect
Schedule | | Analysis Schedule
- —»|  Surveillance
Stockpile Weapon Defect Analysis at
Entities Disassembly/
Assembly Facility
Weapon
Entities
True
| Defect
Analysis

Figure 3.3 True Defect Analysis “Baseline-1” Model — Basic Flow Diagram

In the Baseline-1 model, a small sample of select weapon entities move from the
stockpile to the disassembly/assembly facility according to the schedule for surveillance
defect analysis (similar to the 2x2 model). After the weapons are tested, they return to the
stockpile. Periodically, a true defect analysis is performed by triggering the release of all
weapon entities from the stockpile. The common modeling methods employed for doing
true defect analysis require that all of the weapons entities be moved out of their stockpile

holding queues and routed to a designated point in the model. This stockpile movement is
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required so that the appropriate attributes can be accessed on all the weapon entities to

determine the “true” defect profile of the entire weapon population.

There are three weapon subsystem types represented in the Baseline-1 model.

Also, the weapon entities are hierarchically structured such that the weapon assembly is

represented by a top-level entity, and the subsystems within the weapon are represented

by different sub-level entities. The attributes on the sub-level entities need to be accessed

whenever a defect analysis is performed. To do this, the common unbatch/batch

technique (discussed in section 2.2.1) is used. For every weapon entity that is analyzed

(by either surveillance or true analysis), Figure 3.4 illustrates the process required to

obtain the necessary information. Each time a weapon is checked for defects, it must be

unbatched to reveal its constituent subsystem entities, and then re-batched after the

appropriate subsystem information has been read from the sub-level attributes.

B

Weapon
Entities from
Stockpile

Unbatch
Weapon
Entity

SIS

Read
attributes
from sub-
system
entities
Use
sub-
system
attributes
for defect
analysis

Re-batch
Subsystem
Entities

NOTE: B is the weapon entity, and x, y, and z are subsystem entities.

Weapon
Entities back
to Stockpile

Figure 3.4 Accessing Sub-Level Attributes for Defect Analysis (“Baseline-1” Model)
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The surveillance defect analysis generates defect profiles for each weapon
subsystem based on the small sample of weapons routed to the assembly/disassembly
facility. The true defect analysis generates defect profiles for each subsystem based on

the entire weapon population.

3.3.2 Multiple Storage Sites Concept Model (Baseline-2)

The baseline case of the “Multiple Storage Sites” concept model (denoted
“Baseline-2") demonstrates a method for having the stockpile divided among multiple
storage sites while still being able to select weapons according to a given maintenance or
surveillance schedule using common modeling techniques.

In this model a typical maintenance request asks for a specific number of weapons
that are the oldest of a specified type (determined by an age attribute carried by each
weapon entity). However, since like weapon entity types are distributed among multiple
storage sites, something must be done to sort through and select from the collective
population of the given weapon type. This is not easy to do using common modeling
techniques unless all the weapons are brought to a single point and considered together.
The flow diagram of how the Baseline-2 model does this is illustrated in Figure 3.5.

When a maintenance request is made, all the weapons of a particular type are
released from the various weapon sites at the same time. They are routed to a single point
in the model so an age-related attribute on each weapon can be read. The oldest are
identified and sent for maintenance, and the others are returned to their original storage

site locations.
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Figure 3.5 Multiple Storage Sites “Baseline-2”” Model — Basic Flow Diagram

While there are three weapon subsystem types represented, the Baseline-2 model
regresses by having all relevant subsystem attributes maintained on the top-level weapon
entity (similar to the attribute-copying technique discussed in section 2.2.1). This was
done to prevent the model from being further burdened by digging down (unbatching) to

entity sub-levels every time sorting/selection was done.

34 STEP 4 - CONCEPT MODELS MODIFIED
The two concept models (Baseline-1 and Basline-2) described in the previous
section employed common modeling techniques to address specific deficiencies

identified in the 2x2 model. These baseline models were then modified to incorporate
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direct sub-level entity access as an alternative to addressing the deficiencies. The

following sections describe the modified versions of the baseline models.

3.4.1 True Defect Analysis Concept Model (Mod-1A)

The first modified case of the True Defect Analysis Baseline-1 model is denoted
“Mod-1A.” The Mod-1A model is the same as the Baseline-1 model except where the
weapons are analyzed for defects in the “True” and “Surveillance” analysis sections
(refer to Figure 3.3). Instead of unbatching the weapon entities to obtain the sub-level
information, (as in the Baseline-1 case shown in Figure 3.4), a special functional block
was created to get the sub-level information without bringing the sub-level entities to the

top level. Figure 3.6 illustrates this modified process.

NOTE: B is the weapon entity, and X, y, and z are subsystem entities.

B “Get Attribute (sub-level)”’ Use sub- B
1
—>p| Reads sub-level attributes Let‘t,:;bu tes
directly (without £
. . or defect
unbatching weapon entity) analysis
Weapon Weapon
Entities from Entities back
Stockpile to Stockpile

Figure 3.6 Accessing Sub-Level Attributes for Defect Analysis (“Mod-1A” Model)

As a weapon entity passes through the special block, the appropriate sub-level
attributes are read from the appropriate sub-level entities (X, y, z) without unbatching the
weapon entity. The special block that does this (called Get Attribute (sub-level))

represents a local implementation of the direct sub-level entity access concept. It is local
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in the sense that sub-level entity attributes can only be accessed on weapon entities that
actually pass through the block. The Get Attribute (sub-level) block dialog (i.e. the

block’s basic user interface) is displayed in Appendix B.

3.4.2 True Defect Analysis Concept Model (Mod-1B)

The second modified case of the True Defect Analysis Baseline-1 model is
denoted “Mod—lB.” The Mod-1B model is the same as the Mod-1A model except in the
“True” defect analysis section (refer to Figure 3.3). The “Surveillance” defect analysis
section remains as a local implementation of direct sub-level entity access (Figure 3.6).
This is because the surveillance section models a real-world occurrence where weapons
have to actually move to a designated place (the disassembly/assembly facility) to be
analyzed. However, the “True” defect analysis section does not necessarily model a real-
world, physical transfer of all the weapons to a physical location for analysis. Instead, it
is intended to be a “virtual” analysis of the entire stockpile where no weapons actually
move. Consequently, a global implementation of the direct sub-level entity access
concept was used for the “True” defect analysis section of the model. The basic Mod-1B
flow diagram is illustrated in Figure 3.7.

As shown in the figure, weapon entities do not have to leave the stockpile to be
analyzed. The true defect analysis section that was in the baseline model is replaced by a
special functional block (called Defect Analyzer) that was created to handle global direct
sub-level entity access. This block directly accesses the sub-level attributes of the weapon
entities remotely, independent of where the Defect Analyzer block is or where the weapon

entities are in the model. Hence, it can globally access the necessary information from the
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sub-level entities themselves without physically disturbing or moving the weapon
entities. The Defect Analyzer block dialog (i.e. the block’s primary user interface) is

displayed in Appendix C.
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»| Surveillance at
Weapon Disassembly/
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Facility

Stockpile

No movement of weapons
necessary for “remote” true
defect analysis to take place.

“Defect Analyzer”
Performs true

defect analysis
A

1 True Defect
E Analysis Schedule

Figure 3.7 True Defect Analysis “Mod-1B” Model — Basic Flow Diagram

3.4.3 Multiple Storage Sites Concept Model (Mod-2)

The only modified case of the Multiple Storage Sites Baseline-2 model is denoted
“Mod-2.” The Mod-2 model is the same as the Baseline-2 model except in the way that
weapon entities are sorted and selected for surveillance or maintenance. The Mod-2
model does not rely on attribute-copying techniques to access sub-level information. The
model takes advantage of the model’s hierarchical entity structure and accesses
information directly from sub-level entities as needed. Instead of routing all weapons of

the requested type from all storage sites to a central place just to sort out the oldest (as in
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Figure 3.5), it sorts and selects without moving any weapon entities at all. To achieve this
enhanced functionality, a special functional block was created to select the appropriate
weapons remotely based on the surveillance/maintenance request information. The block
uses a global implementation of the direct sub-level entity access concept to access the
sub-level entity information remotely without having to move any weapon entities from

their holding queues. The Mod-2 flow diagram is illustrated in Figure 3.8.

Stockpile
Storage Site >
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E Maintenance Storage Site .
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Selects weapon (no intermediate
entities remotely sorting required
without disturbing Stockpile p ©n route)
them, then triggers Storage Site
only those selected
entities to be
released for Stockpile >
maintenance. Storage Site

Figure 3.8 Multiple Storage Sites “Mod-2” Model — Basic Flow Diagram

In this case, weapon entities do not have to leave the stockpile storage sites to be
sorted and selected by age. The new special functional block (called Remote Chooser)
directly accesses the sub-level attributes of the weapon entities independent of where the
Remote Chooser block is or where the weapon entities are in the model. Hence, it can

globally access the necessary information from the sub-level entities themselves without
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physically disturbing or moving the weapon entities. The Remote Chooser block has a
global view of all entities in the model and selects the ones that meet the requested
criteria. It can then trigger the release of the appropriate weapon entities. The Remote

Chooser block dialog (i.e. the block’s primary user interface) is displayed in Appendix D.

3.5 STEPS5- CONCEPT MODELS ANALYZED AND COMPARED

Three different scenarios representing different input conditions were run for each
model. The different models were run using the same input scenarios, then compared and
analyzed with each other as appropriate. The True Defect Analysis Baseline-1 model was
compared against the True Defect Analysis Mod-1A and Mod-1B models. The Multiple
Storage Sites Baseline-2 model was compared against the Multiple Storage Sites Mod-2
model. While the results and analysis will be discussed in detail in chapter 4, a brief

discussion of some of the methods and metrics used in the analysis are given below.

3.5.1 Comparative Analysis Methods

Several actions were taken to ensure that the models were tested under the same
operating conditions and yielded the same output (within a given input scenario). The
same random seed values were used in each case to help verify that the output could be
replicated and to assure that comparative differences were not the result of stochastic
variations between the simulation runs. The models were all run for the same simulated
elapsed time (5000 weeks). Three different input scenarios were run for each model with
the same input scenarios being used between each compared case. The simulation output

was compared and verified in each case to assure that each scenario of the baseline and
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corresponding modified models were performing the same functionality and giving the
exact same output results.

The reason for assuring that the output was the same for each compared case was
because the desired comparison was between the modeling methods — not the model
output data. Had the simulation results not been equivalent for each of the compared
cases, the quantitative metrics used in the comparisons would not have been valid (i.e. a
“level playing field” would not have been assured).

After the models were verified to be functionally equivalent and operating under
the same conditions, the models were run again to gather data and inferences relating to
the metrics listed in the next section. From the results, relative advantages, benefits, and
disadvantages were established for using direct sub-level entity access (as in the modified

models) compared with common modeling methods (as in the baseline cases).

3.5.2 Analysis Metrics

Table 3.1 lists the quantitative and qualitative metrics used in the model analyses.

Table 3.1 Analysis Metrics

Metric Type Description
Run Time Quantitative | Clock time in which the model runs. Simulation speed.
Size Quantitative | Size (memory usage) that a given implementation

contributes to the model.

Complexity [ Qualitative | How convoluted/difficult an implementation/mode] is.
Scalability Qualitative | How easily expandable a given implementation or
model is in response to adding modeling components
and constructs (like storage sites or weapon and

subsystem types).
Flexibility/ Qualitative | How easily adaptable to change or to different
Functionality configurations an implementation or model is. The

limitations/constraints (or alternatively strengths/
options) associated with an implementation or model.
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The Run Time metric is a measure of how fast the simulation runs in terms of real
clock time, as opposed to simulation time. The run time is a vital issue for analysts using
a simulation model. The time it takes to run a model is an important factor that directly
affects the ability to deliver timely results based on model analysis. Any improvement in
run time (without adversely affecting the simulation behavior) is always desirable.

In the case of the concept models analyzed in this thesis, the run time is a time

duration based on Equation 3.1.

Run Time = End Time — Start Time — Initialization 3.1

End Time is the time at which simulation execution ends, Start Time is the time
at which simulation execution begins, and Initialization is the amount of time the

simulation spends initializing the model and is characterized by Equation 3.2.

Initialization = Last Entity Arrival Time — Start Time 3.2)

The models start empty with no entities present. During initialization, the
appropriate entities are generated and placed in the proper holding queues in the model
(i.e. the original weapon entities are created and loaded into their respective stockpile
storage locations). This puts the model in the proper starting state. The arrival of the last
initialized entity to its appropriate holding queue (Last Entity Arrival Time) signals the
end of the initialization period. The initialization period is not included in the run time

since initialization takes the same amount of time in each compared case, is very small
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(less than 0.5 seconds), and has nothing to do with the impact that the various modeling
techniques have on execution speed.

The run time calculation was implemented in code and integrated into the
simulation models so that when a simulation run concluded, the run time would
automatically be calculated and displayed. Each model case was run five times (five
replications) with the run time being recorded for each replication. The sample mean X)
and standard deviation (s) of the run times were calculated based on Equations 3.3 and

3.4 respectively:

Foa (3.3)

(3.4)

where X; is the run time value observed for each of the individual simulation replications
and n is the number of replications (sample size). The results are included in chapter 4.
The Size metric is a quantitative measure of how much a given modeling
construct contributes to the size of the model (in terms of bytes). This value is provided
automatically in the simulation software by selecting the desired portion of the model to
be measured. The memory consumed (number of bytes) by that portion of the model is

then displayed.
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In the concept models, the sections specifically relating to accessing sub-level
entity information for true defect analysis and weapon selection were selected and sized.
This allowed the different modeling techniques to be compared according to size. This
comparison was valuable in helping to establish and illustrate which methods were more
size efficient. Since the sizes of the given modeling constructs are constant between

simulation replications, no statistical quantification on the size metric was performed.

3.6 STEP 6 -2X2 MODEL IMPROVED (7X7 MODEL)

Taking what was learned from the comparative analyses of the concept models,
the 2x2 model was improved and expanded using direct sub-level entity access
techniques. The new, improved model is hereafter referred to as the “7x7 model.” The
7x7 model does everything the 2x2 model does and more. It performs true defect analysis
on the stockpile weapon entities, models several different storage sites with all weapons
distributed appropriately among them, and tracks seven weapon types, each with seven
constituent subsystems (hence the 7x7 designation). Additionally, the weapon types are
no longer segregated into different holding queues at each storage site. All weapons at
each site reside in a single holding queue.

The entity structure in the 7x7 model is hierarchical, with all sub-level entities
(the weapon subsystems) maintaining their own attributes. True defect analysis is
performed in the model using the same global implementation of direct sub-level entity
access applied in the True Defect Analysis Mod-1B model. Sorting and selection of

weapons from the multiple storage sites is done remotely using the same global
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implementation of direct sub-level entity access as applied in the Multiple Storage Sites
Mod-2 model.

Since the 7x7 model is markedly different than the 2x2 model, the two were not
quantitatively compared (since the quantitative metrics used to compare the other models
would be meaningless). However, some observations relative to the qualitative metrics

were made and will be discussed in chapter 4.
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CHAPTER 4

RESULTS AND ANALYSIS

The results supporting the use of direct sub-level entity access to improve nuclear
stockpile simulation modeling come primarily from the comparative analyses of the
concept models described in the previous chapter. This current chapter presents the
results and observations from the analyses and discusses additional implications relating
to the use of direct sub-level entity access in nuclear stockpile models. The discussion
will be divided into the following sections:

1) Comparison of the True Defect Analysis models

2) Comparison of the Multiple Storage Sites models

3) Comparison of the 2x2 and 7x7 models

4) Potential disadvantages of implementing direct sub-level entity access.

4.1 TRUE DEFECT ANALYSIS MODELS

The True Defect Analysis Baseline-1 concept model was compared against the
two corresponding modified cases (Mod-1A and Mod-1B). Both quantitative and
qualitative metric comparisons were performed to identify the advantages of using direct
sub-level entity access.

To provide an ample base for comparative observation and analysis, three

scenarios were set up under which all the models were run to explore the behaviors under
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different input conditions. All input parameters were the same in each of the three
scenarios with the exception of how often true defect analysis was performed. Table 4.1

lists the parameter values that varied between the scenarios.

Table 4.1 Scenario Parameter Values for the True Defect Analysis Models

Models Perform True Defect Analysis Every ...
Scenario 1 13 weeks
Scenario 2 26 weeks
Scenario 3 52 weeks

The three scenarios represent situations where true defect analysis is conducted

quarterly, semi-annually, and annually.

4.1.1 Quantitative Analysis

Table 4.2 lists the average run times (as well as the standard deviations) of the
three True Defect Analysis models for each of the scenarios tested. The Baseline-1 model
implements the common unbatch/batch technique for doing true defect analysis, while the
Mod-1A and Mod—lB models represent local and global implementations of direct sub-
level entity access used to accomplish true defect analysis. The values in the table are
based on five simulation replications of each model/scenario. As mentioned previously in
chapter 3, all the models produced identical model output data within a given scenario.

This allowed the modeling methods to be compared as opposed to the output data.
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Table 4.2 Run Time of the True Defect Analysis Models

Baseline-1 Model Mod-1A Model Mod-1B Model
Scenario 1 97.2 seconds 56.9 seconds 9.4 seconds
(Avg. / Std Dev) | 0.10 seconds 0.07 seconds 0.00 seconds
Scenario 2 50.0 seconds 30.5 seconds 5.8 seconds
(Avg. / Std Dev) | 0.05 seconds 0.05 seconds 0.04 seconds
Scenario 3 27.2 seconds 16.1 seconds 4.1 seconds
(Avg. / Std Dev) | 0.05 seconds 0.05 seconds 0.00 seconds

One important thing to note about the run times of the models is that there is very
little spread in the observed values for any given case (reflected by the standard
deviations). These variations are statistically insignificant for the purposes of comparing
run times.

The local implementation of direct sub-level entity access applied in the Mod-1A
model resulted in a run time that was between 1.6 and 1.7 times faster than the baseline
case (depending on which scenario was run). The global implementation of direct sub-
level entity access applied in the Mod-1B model produced a run time that was between
6.6 and 10.3 times faster than the baseline case (again, depending on the scenario).

The various scenarios are presented to illustrate the point that different models
and modeling conditions will affect — to different degrees — the run time improvements
achieved from implementing direct sub-level entity access. However, the trend holds that
significant run time improvements still result from implementing direct sub-level entity
access in place of more common modeling methods. The actual amount of improvement
is model dependent.

Table 4.3 shows the relative size differences (in terms of memory usage) between
the unbatch/batch implementation of doing true defect analysis in the baseline case, and

the local and global direct access implementations employed in the Mod-1A and Mod-1B
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cases respectively. Since the size of the constructs remain constant between all runs, no

reference to the different scenarios is necessary.

Table 4.3 Size Contributed to Model by each True Defect Analysis Implementation

Baseline-1 Mod-1A Mod-1B
Implementation Implementation Implementation
Size 158 KB 148 KB 2 KB
(Memory Usage)

A relatively small improvement in size of the local access implementation (in the
Mod-1A model) occurs compared with the very large improvement in size of the global
access implementation (in the Mod-1B model). This happens because a significant part of
the true defect analysis in the Baseline-1 and Mod-1A cases involves coordinating and
controlling the routing of entities to a designated location where the sub-level information
is actually read and compiled. The only difference between the Mod-1A case and the
Baseline-1 case (see section 3.4.1) is that the local implementation of direct sub-level
entity access (Mod-1A) does not require the weapon entities to be unbatched and re-
batched to get the appropriate information. The weapon entities still have to move
through a designated point, however, to be accessed. The global implementation of direct
sub-level entity access (Mod-1B), on the other hand, eliminates the need to move or route
the weapon entities to perform true defect analysis. The overhead that goes into
coordinating the movement of entities and compiling the resultant sub-level information
in the Baseline-1 and Mod-1A cases is eliminated by applying global direct sub-level

entity access. The local implementation still provides some improvements and benefits
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over the baseline method in terms of both size and speed; however, the global
implementation has an even greater positive impact.

With model size being an important consideration in computer simulation
modeling, the Mod-1A and Mod-1B implementations of local and global sub-level entity
access illustrate the potential for size improvements that can be obtained by applying
direct sub-level entity access in place of more commonly used methods (as in the baseline
case). The size is related to the number and type of programming variables used in (and,
indirectly, the amount of) the underlying code required to achieve a given modeling
implementation. A benefit of smaller size is the reduced hardware resources needed to
run the simulation (size efficiency). Also, a much smaller implementation usually means
much less code to execute, resulting in faster run times (speed efficiency). Although there
is not an exclusive correlation between size and speed, both are useful measures in
determining the efficiency of a particular setup.

Overall, the speed and size improvements shown in the modified True Defect
Analysis models can be attributed to their more direct approach of getting entity
information. Applying direct sub-level entity access eliminates the many extra execution

steps that more common methods require to perform the same function.

4.1.2 Qualitative Analysis

The implementations of true defect analysis in the baseline model (using the
unbatch/batch technique), the Mod-1A model (using local direct access), and the Mod-1B
model (using global direct access) were analyzed according to the qualitative metrics

identified previously. A comparison of the three cases is presented in Table 4.4.
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Table 4.4 Qualitative Metric Comparison of Defect Analysis Models

Baseline-1 (using batch/unbatch technique): Overly complex by requiring each
entity to move through a given point in the model with each entity being unbatched
to gain access to sub-level attribute information and then re-batched to reestablish
the proper entity structure. Complexity increases significantly to account for
multiple storage sites or additional weapon and subsystem types.

Mod-1A (using local implementation): No unbatching or batching necessary,
though each entity still must be moved through a given place in the model to access
sub-level information. Complexity increases significantly to account for multiple
storage sites (primarily due to work involved with moving the weapons to the
appropriate analysis point). However, accounting for additional weapon and
subsystem types is not as complicated as in the baseline case.

Complexity

Mod-1B (using global implementation): No unbatching or batching necessary.
No unnecessary coordination or movement of entities is required to get the sub-
level information. Negligible increase in complexity to account for multiple storage
sites or additional weapon and subsystem types.

Baseline (using batch/unbatch technique): Not easily scalable to account for
additional stockpile storage sites or additional weapon and subsystem types. Each
additional stockpile storage site requires cumbersome modeling logic to coordinate
the movement of weapon entities from different sites. Additional logic is also
required at the defect analysis point to account for each additional weapon or
subsystem type. Significant adverse size and speed impacts result.

Mod-1A (using local implementation): Requires a smaller modeling construct at
the defect analysis point to account for additional weapon and subsystem types.
However, the local implementation of direct sub-level entity access still requires
the additional modeling logic to coordinate movement of the weapons from each
stockpile storage site. Hence, size and speed still increase, but less than in the
baseline case.

Scalability

Mod-1B (using global implementation): Very scalable. No modeling logic
needed to coordinate movement of entities to the true defect analysis point (since
no entity movement is required). Negligible speed and size impact to account for
additional storage sites or weapon and subsystem types.

Baseline (using batch/unbatch technique): Flexibility is very limited and
functionally constrained since all weapon entities in the model must be physically
moved and manipulated to do true defect analysis. Care must be taken to schedule
the true defect analysis when it will not interfere with or coincide with the other
functions in the model requiring weapon movement

Mod-1A (using local implementation): Somewhat limited because this
implementation is still constrained by how and when entities actually get to the
point of analysis. However, there is more functionality and flexibility (more
options) in dealing with attributes once the entities arrive at the analysis point.

Flexibilitv/Functionality

Mod-1B (using global implementation): Much more flexible and functional. The
analysis is not constrained by movement of entities (since no movement is
necessary) and more flexibility exists for selecting weapon types and subsystem
types for inclusion in the analysis.
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Table 4.4 indicates how well each implementation meets the objectives identified
earlier for improving the 2x2 nuclear stockpile life-extension model; the objectives being
to perform true defect analysis, account for multiple weapon storage sites, and include
more weapon and subsystem types. All three cases were designed specifically to
demonstrate alternative approaches to true defect analysis, so they all potentially fulfill
the first objective. However, as indicated in the table, the complexity and scalability
issues involved with accounting for multiple storage sites and additional weapon and
subsystem types make the Baseline-1 and Mod-1A implementations of true defect
analysis much less desirable that the global direct access implementation in Mod-1B.
With the global approach, all three objectives can be appropriately addressed without the
true defect analysis portion of the model becoming unduly complicated or creating an

adverse impact on the rest of the model.

42  MULTIPLE STORAGE SITES MODELS

The Multiple Storage Sites Baseline-2 concept model was compared against the
corresponding modified case (Mod-2). Both quantitative and qualitative comparisons
were performed according to the previously defined metrics to identify the advantages of
using direct sub-level entity access.

Similar to what was done previously in section 4.1, three scenarios were set up
under which the two Multiple Storage Sites models were run to provide an ample base for
observation and analysis under different input conditions. All input parameters were the

same in each of the three scenarios with the exception of how often weapon entities had
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to be selected from the multiple storage sites for maintenance. Table 4.5 lists the

parameter values that varied between the scenarios.

Table 4.5 Scenario Parameter Values for the Multiple Storage Sites Models

Schedule Maintenance on a Set of Weapon Entities Every ...
Scenario 1 13 weeks
Scenario 2 26 weeks
Scenario 3 52 weeks

The three scenarios represent situations where scheduled maintenance requests
require the selection of weapon entities from multiple storage sites quarterly, semi-

annually, and annually.

4.2.1 Quantitative Analysis

Table 4.6 lists the average run times (as well as the standard deviation) of the two
Multiple Storage Sites models for each of the scenarios tested. The Baseline-2 model
implements a common attribute-copying technique for making sub-level entity
information available during the selection of entities from the multiple storage sites. The
Mod-1 model represents a global implementation of direct sub-level entity access used to
accomplish weapon entity selection. The values in the table are based on five simulation
replications of each model/scenario. Again, all the models produced identical model
output data within a given scenario allowing the modeling methods to be compared as

opposed to the output data.

55



Table 4.6 Run Time of the Multiple Storage Sites Models

Baseline-2 Model Mod-2 Model
Scenario 1 36.1 seconds 5.3 seconds
(Avg. / Std Dev) 0.07 seconds 0.00 seconds
Scenario 2 72.1 seconds 10.6 seconds
(Avg. / Std Dev) 0.11 seconds 0.00 seconds
Scenario 3 138.6 seconds 20.4 seconds
(Avg. / Std Dev) 0.10 seconds 0.05 seconds

As was the case with the True Defect Analysis models, the variations in run times
for the Multiple Storage Sites models are statistically insignificant for the purposes of the
comparison.

The global implementation of direct sub-level entity access applied in the Mod-2
model produced a run time that was 6.8 times faster than the baseline case for all the
scenarios. The run time improvement in this case was essentially constant across the
scenarios because the only functions being performed in the models related directly to the
selection and scheduling of weapon entities (the focus of the varied parameter) with no
other operations occurring in the model. The situation was somewhat different with the
True Defect Analysis models in section 4.1.1. In those models, more operations (both
true defect and surveillance defect testing) were present, while only one (true defect
analysis scheduling) was being varied, resulting in a range of run time improvements
across the scenarios.

The run time observations made here (as well as in section 4.1.1) again illustrate
the potential speed benefits of applying direct sub-level entity access in place of more
common modeling methods while realizing that the actual amount of improvement is still

model dependent.
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Table 4.7 shows the relative size difference (in terms of memory usage) between
the common attribute-copying implementation of selecting and sorting weapon entities
from multiple storage sites (the Baseline-2 case), and the remote, global direct access
implementation employed in the Mod-2 case. Since the size of the different constructs

remain constant between all runs, no reference to the different scenarios is necessary.

Table 4.7 Size Contributed to Model by each Sort and Select Implementation

Baseline-2 Implementation | Mod-2 Implementation

Size (Memory Usage) | 170 KB 31 KB

As was the case with the global true defect analysis implementation, the Mod-2
implementation of remote, global sub-level entity access illustrates the potential for
significant size reductions that can be obtained by applying direct sub-level entity access
in place of more commonly used methods.

The speed and size improvements shown in the modified Multiple Storage Sites
model can largely be attributed to its direct and efficient approach of accessing and using
sub-level entity information. Applying direct sub-level entity access in this case
eliminates — as in other direct sub-level entity acceés implementations — the many extra

execution steps that more common methods require to perform the same function.

4.2.2 Qualitative Analysis
The implementations of sorting and selecting entities from multiple storage sites
in the Baseline-2 model (using attribute-copying to access sub-level information) and the

Mod-2 model (using remote, global direct access) were analyzed qualitatively. A
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comparison of the two cases — in terms of the qualitative metrics complexity, scalability,

and flexibility/functionality — is presented in Table 4.8.

Table 4.8 Qualitative Metric Comparison of Multiple Storage Sites Models
Baseline-2 (using attribute-copying): Overly complex by requiring all entities of
a requested type to move from all storage sites to a given location in the model to
sort and select the appropriate ones to send on. Complexity increases significantly
to account for additional weapon and subsystem types.

Mod-2 (using global implementation): No movement of entities is required to sort
and select the weapons. Sorting and selection are done globally and remotely,
independent of where the weapon entities are in the model and independent of the
number of storage sites involved. The complexity remains essentially constant even
when more weapon and subsystem types are added.

Baseline-2. (using attribute-copying): Not easily scalable to account for additional
stockpile storage sites or additional weapon and subsystem types. Each additional
stockpile storage site and weapon and subsystem type requires additional
cumbersome modeling logic to coordinate the movement of the appropriate weapon
entities from the different sites. Each storage site must be augmented with
additional holding queues and routing logic to keep additional weapon types
segregated.

Mod-2 (using global implementation): Very scalable. No modeling logic is
needed to coordinate movement of entities since no movement of entities is
necessary to sort and select. No segregation of weapon entity types is required. All
weapon entities can be kept in a single holding queue at a given storage site
(independent of the number of weapon types).

Baseline-2 (using attribute-copying): Flexibility is very limited and functionally
constrained in part because all weapon entities in the model must be physically
moved and manipulated to sort and select the appropriate weapon entities.
Furthermore, the common modeling constructs used are limited in the number of
criteria considered and the ability to sort based only on top-level entity attributes.
Mod-2 (using global implementation): Much more flexible and functional since
sorting and selection are unconstrained by the movement of entities (no movement
is necessary). Many more sorting and selection options are available, including the
ability to select entities based on both top-level and sub-level attribute information
simultaneously.

2

Complexitv

calability

Flexibilitv/Functionalitv

Table 4.8 indicates how well each implementation meets the objectives identified
earlier for improving the 2x2 nuclear stockpile, life-extension model; the objectives being

to perform true defect analysis, account for multiple weapon storage sites, and include
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more weapon and subsystem types. Both of the models were designed specifically to
demonstrate how selection of specific weapon entities (in response to a surveillance or
maintenance request) can take place in a multiple storage site environment, so both
potentially fulfill the second objective. However, as alluded to in the table, the
complexity, scalability, and functionality issues involved with accounting for multiple
storage sites and additional weapon and subsystem types make the Baseline-2
implementation of sorting/selection much less desirable than the global direct access
implementation of the Mod-2 model. Using the global approach, the two objectives
relating to multiple storage sites and increased weapon and subsystem types can be
appropriately addressed without contributing adversely to or being an undue burden on

any other part of the model (including true defect analysis).

4.3  ORIGINAL 2X2 MODEL VS. IMPROVED 7X7 MODEL

One of the goals of the concept models was to determine the best ways to improve
the original 2x2 nuclear stockpile model relative to the key deficiencies originally
identified. The analyses of the various implementations in the concept models led to
applying direct sub-level entity access to upgrade the 2x2 model — resulting in the
improved 7x7 model.

Applying the same quantitative metrics to a comparison of the 2x2 and 7x7
models (as was done with the concept models) is not valid because of the differences
between the 2x2 and 7x7. However, the improvements made possible by direct sub-level
entity access as implemented in the 7x7 model can be qualitatively contrasted with the

2x2 model. Table 4.9 compares the two models on the bases of the qualitative metrics
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complexity, scalability, and flexibility/functionality — highlighting the deficiencies
previously identified in the 2x2 model and the ability of the 7x7 model to address those

deficiencies.

Table 4.9 Qualitative Metric Comparison of the 2x2 versus the 7x7 Model

2x2 Model: The simplifying assumptions made in the model are intended to reduce
the complexity for the case of two weapon types and two subsystem types.
However, the complexity increases significantly if the common modeling
constructs and methods used in the 2x2 are merely extended to account for more
weapons, subsystems, and storage sites.

7x7 Model: Fundamentally no more complex than the 2x2 model — and in many
regards, less complex. “Hard wired” components of scheduling and routing in the
2x2 model are handled more gracefully and less intrusively in the 7x7 model.

Complexitv

2x2 Model: Not easily scalable within the existing modeling constructs to account
for additional stockpile storage sites or additional weapon and subsystem types. An
increase in weapon types, subsystem types, and storage sites alone significantly
increases the burden on the model even before being able to address all the
functional deficiencies (like true defect analysis).

7x7 Model: Very scalable with the application of direct sub-level entity access
techniques. The model can be further scaled with additional storage sites and more
weapon and subsystem types without adversely impacting the key objectives
identified earlier (true defect analysis, multiple storage sites, more weapon and
subsystem types). The direct sub-level entity access implementations are more
easily expandable (with less loss of efficiency and function) than the common
modeling techniques used in the 2x2 and baseline concept models.

Scalabilitv

2x2 Model: Flexibility is very limited. With most functions “hard-wired” using
common modeling methods, changes and improvements are more difficult and
tedious to make if done within the existing architecture using the same common
modeling methods. The functionality of the model is limited to that supported by
the common modeling constructs (limited sorting capabilities, only top-level entity
manipulation, routing constraints, etc.). In its present state, the model is obviously
deficient in defect analysis capabilities and in its ability to handle more storage
sites and more weapon and subsystem types.

7x7 Model: Addresses all the key deficiencies from the 2x2 model with the
flexibility to expand and change the model more gracefully and robustly.
Functionally more capable, enabling more flexible and powerful selection criteria
for maintenance and surveillance requests, and offering more control over defect
analysis information.

Flexibilitv/Functionalitv
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The 2x2 model and the baseline concept models all employ similar common
modeling techniques to perform their functions. Likewise, the 7x7 model and the
modified concept models all employ direct sub-level entity access techniques to perform
certain key functions. So analogous qualitative observations can be made between the
2x2 and 7x7 models as were made between the baseline and modified concept models.
Consequently, Table 4.9 does not attempt to list all the similar observations that can be
made based on the observations in Tables 4.4 and 4.8. Also, the observations made in
Table 4.9 are primarily focused on those functions relating to the key
deficiencies/objectives identified for the 2x2 model.

The observations made between the 2x2 model and the 7x7 model help
demonstrate the improvements and impact that direct sub-level entity access can have
when seeking more flexible, functional, useful stockpile life-extension models. All the
advantages observed from applying direct sub-level entity access over more common
modeling techniques in the concept models are combined in the 7x7 model and result in a
more informative, efficient, functional, and robust model than could have been achieved
using the more common modeling methods. The 7x7 model performs true defect analysis,
enabling more accurate and insightful surveillance program analysis (by being able to
compare surveillance data to expected actual defect rates). The 7x7 model can more
easily handle the complexities of routing, selecting, sorting, etc. that accompany a
stockpile consisting of many weapon and subsystem types. The hierarchical weapon
entity structure represented and supported in the 7x7 model more closely depicts the
actual situation and lets the model more effectively communicate information to model

users and developers. The implementations of direct sub-level entity access in the 7x7
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model enhance all of these functions — resulting in a model that is more easily expandable

and flexible to change, making the model even more useful for the future.

44 DISADVANTAGES OF DIRECT SUB-LEVEL ENTITY ACCESS

Several advantages of using direct sub-level entity access have been addressed in
the previous sections. Applying the concept resulted in smaller, faster, more efficient, and
more flexible model implementations. However, a few potential disadvantages of direct
sub-level entity access should be mentioned.

The primary disadvantage of direct sub-level entity access (as experienced in this
thesis) is the initial effort required to enable the capability in a given simulation software
product. This is because direct sub-level entity access is not currently a very common
modeling technique. Most discrete-event simulation software products do not already
have the built-in capability for direct sub-level entity access. That is, the functionality is
not already a pre-defined function readily available to the user. Depending on the
software being used, enabling direct sub-level entity access requires a significant amount
of initial effort — including a substantial amount of programming to get things set up
properly. For example, the special functional blocks (see Appendices B, C, and D) that
were used in the modified concept models required substantial custom programming to
interface with the existing sub-level entity model data properly. On the other hand, a few
simulation software products do support some degree of sub-level entity access more
readily than others. In such cases, the initial effort that is required to enable direct sub-

level entity access in the desired way may be significantly reduced.
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If direct sub-level entity access is not a built-in function of a given simulation
product, software maintenance and support for the functionality (as built-in by the user) is
left to the user. Unless it is a built-in function of a simulation software product, the user
must undertake many of the technical support and maintenance issues relating to the

direct sub-level entity access capability.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The purpose of this thesis was to demonstrate that direct sub-level entity access is
indeed a useful concept that is often preferable in modeling nuclear stockpile life-
extension issues. Direct sub-level entity access — a seldom-used concept — had not
previously been applied to nuclear stockpile models. However, the application of the
concept to such models in this thesis showed that key functions of nuclear stockpile, life-
extension models are well suited to, and can benefit greatly from, the advantages direct
sub-level entity access offers over more common modeling techniques.

Concept models that were designed to address key deficiencies identified in
current stockpile life-extension modeling efforts embodied in the 2x2 model were used to
help analyze the effectiveness of common modeling techniques compared with direct
sub-level entity access techniques. The baseline concept models employed common
modeling techniques, including unbatch/batch and attribute-copying, to access and use
sub-level entity information from weapon subsystems. The modified concept models
used direct sub-level entity access methods to access sub-level entity information. In all
cases, the direct sub-level access approach outperformed the more common approaches.
Direct sub-level entity access, in these cases, resulted in models that were significantly

faster, smaller, more efficient, more flexible to change, more scalable, and more capable
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than their baseline counterparts. The analysis of the concept model implementations
indicated that the best way to meet the objectives of improving the deficient 2x2 nuclear
stockpile, life-extension model was to apply global, direct sub-level entity access.

Applying direct sub-level entity access to the 7x7 model completely addressed the
key deficiencies identified from the 2x2 model; namely true defect analysis, multiple
storage sites, and additional weapon and subsystem types. Had common modeling
techniques been used to expand the 2x2 model (as was demonstrated in part in the
baseline concept models), the resulting limitations would have made improving the 2x2
model very difficult and even impractical. Such limitations include cumbersome routing
constraints, restrictive entity sorting capabilities, inefficient entity information access,
and excessive model size growth; all leading to a slow, inflexible, and overly complicated
model. Instead, the 7x7 model’s use of direct sub-level entity access resulted in a model
that is more capable, flexible, scalable, and informative than the original 2x2 model. The
7x7 model is also faster, more efficient, and better poised for future growth than it would
have otherwise been had common modeling techniques been used.

The 7x7 model embodies some of the real complexities involved with the nuclear
stockpile. Many different weapons and subsystems spread amongst many different
storage sites can make modeling the system quite difficult. However, direct sub-level
entity access (particularly global access) was shown to be well suited to handle such
complex representations and proved critical to achieving the objectives of the improved
stockpile life-extension model.

Some additional observations should be reiterated at this point relating to direct

sub-level entity access. The concept, as presented in this thesis, is intended to make the
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most use of model information as it already exists in the simulation software. The intent
is not for users to create or set up their own custom databases (or something similar) to
hold model information — essentially making a redundant set of data that the simulation
software already manages. Instead, direct sub-level entity access strives to take advantage
of the fact that the software already keeps track of sub-level entity information, and that
this information can and should be more accessible to the modeler — without requiring
that everything be done at the top entity level. Consequently, the concept may require a
greater initial investment of effort to interface appropriately with the existing sub-level
entity model data. The amount of effort required depends largely on the simulation
software being used and its existing capabilities relating to sub-level entity access.
However, considering the advantages that direct sub-level entity access provides, the time

and effort spent to make it work in a model is worth it.

52 RECOMMENDATIONS

Some recommendations for further research that relate to the thesis include deeper
sub-level implementation of direct entity access, database integration, and additional
applications for direct sub-level entity access. These ideas will be briefly described
below.

Using direct sub-level entity access to improve nuclear stockpile, life-extension
models was the primary focus of this thesis. However, the concept is not restricted to this
area of application and would be well suited to a myriad of other interesting simulation
modeling areas outside of the nuclear weapon domain. Many things can be and are

modeled as hierarchical entity structures (for example, automobiles). Any model with
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such entity structures could potentially benefit from direct sub-level entity access
(depending on the objectives of the model). Investigating different areas of application
would be worthy of further consideration.

The specific implementations of direct sub-level entity access in this thesis only
dealt with two-level entity structures (as in Figure 1.1). The special functional blocks that
were created to apply direct sub-level entity access in the modified concept models were
only designed to support access to information from model entities existing at the first
sub-level of a given entity hierarchy. This is because the entity structures in the models
analyzed herein were not composed of more than two levels. Supporting direct sub-level
entity access of deeper sub-levels (as in Figure 1.2) would likely require significantly
more effort to apply. Investigating the impact of deeper direct sub-level entity access and
implementing support for it would be a good candidate for further research. Such an
effort could be applied to nuclear stockpile models as was done in this thesis, or to any
other appropriate area of application.

Setting up a custom database and interface that tracks sub-level entity model data
was mentioned previously as another seldom-used alternative for accessing and using
entity information. While this option was judged to require more effort to implement than
doing single-depth direct sub-level entity access, it would still be interesting to
investigate various database options that could be more fully integrated into simulation

models from any application domain (weapon or otherwise).

67



APPENDIX A

VENDOR QUESTIONNAIRE

Batched (Sub-Level) Entity Access Questionnaire

Thank you for taking the time to complete this questionnaire. Feel free to qualify any
responses or to attach/include additional explanations as you deem necessary.

Background Information/Example:

Consider a simulation model representing three entities (X, y, and z) each with unique
characteristics (attributes). For example, each entity carries the attributes “type” and
“age” and “changeFlag”, but with different attribute values:

“type” value | “age” value | “changeFlag” value
Entity x 0 12 0
Entity y 1 8 0
Entity z 2 17 0

The three entities are batched together in an assembly-type operation. The resulting
assembly is a new entity ‘B’. Because the assembly may at some future time be
separated into its original constituencies, entities X, y, and z must maintain their unique
characteristics while batched together. Entity B (the batch) may even have unique
attributes assigned to it (such as “AssemblyDate” and “type”, etc.). The process being
modeled is illustrated below.

At this point entity B (the assembly) is
Batching considered a top-level entity. Entities X,
Operation y, and z are considered sub-level entities
(constituent entities of a batch).

g

As you proceed with the questionnaire, please keep in mind the above example and how
it would be implemented using your simulation software. The questions refer primarily
to access and control of sub-level entity information (i.e. the attributes on x, y, and z)
while in the batched state. This means accessing/controlling the sub-level entity
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attributes without unbatching the assembly to gain access to them, or without copying the
sub-level information onto the top-level entity where it might be more easily accessible.
(Access to the attributes implies the ability to read/audit the attribute information.
Control of the attributes implies the ability to change and add/remove attribute
information.)

Questions:

1.

Please name the discrete-event simulation product, including version number,
for which information is being provided in this questionnaire:

Is the primary interface to modeling with your product (for the typical user):
2a) Programming (writing code)?

L1YES

LINO

2b)Or is it primarily graphically based (icon/menu/dialog based, point/click,
etc.)?

LIYES
[INO

Is the typical user of your product usually required to program (write code) in
order to build substantial models?

LI1YES

[INo

How would you characterize your product: (mark all that apply)
L] Simulator
[ 1 Simulation Language
[ other (please specify)

Assume a model builder with no programming experience. Would s/he be a
typical user of your product?

LINo

In a model built with your product, do individual entities carry their own
attributes?

LI YES
L1No (f NO, please explain how entity specific characteristics are tracked)
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7. Does your product offer the capability to batch entities AND preserve their
unique attributes, such that when the batch is subsequently unbatched, the
original entities and attributes can be restored?

L1YES
LINoO

8. In a model where entities are batched together (as in the background example)
are the attributes on sub-level entities (x, y, and z in the example) accessible
while they are part of a batch (batch entity B in the example)?

L1YES
LINo

If YES:
8a) Can the sub-level entity’s attributes be read/viewed while still part of the
batch?
L1YES
[LINO

8b) Can the sub-level entity’s attributes be changed while still part of the
batch?
L1YES
[INO

8c) Is sub-level entity attribute access supported at multiple levels of
batching? (this means access to a sub-level entity that is part of a batch
that, in turn, is also part of another batch ...)
L1YES
[LINO

9. If sub-level entity access IS possible (as described in questions 8 — 8b):
9a) Is the capability a built-in functionality that could be used by a “non-
programming” user, (i.e. a pre-defined, built-in function/module or

caﬁlbility that does not require custom “programming” to achieve)?
YES

[INo

9b) If the capability is “built-in” (i.e. if you answered YES on question 9a) and
does not require programming to achieve, please list the function/module/etc.
that performs this action?

9¢) If the capability would require programming to achieve the functionality,
how much programming would be required (on a scale of 1 to 5)?

Very Little Extensive
1 2 3 4 5
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10.

11.

12.

If sub-level entity attribute access/control IS indeed possible:
10a) Could this access be invoked from a single place in the model to act on

entities at other places in the model (i.e. global control)?
L1YES

[INo

10b) Or would the batch entities have to be passed/moved through specific
locations/activities in the model in order to have their sub-entities accessed?
[1YES
[ONo

Do you think users would benefit, or see as useful, built-in capabilities to allow
sub-level entity access/control (as it has been discussed in this questionnaire)?

LJYES
INo

A couple of ways to have some degree of access to sub-level attribute information
without directly accessing the sub-level entities while in the batched state were
alluded to in the background example. That is, one could unbatch the batched
entity (essentially bringing the sub-level entities to the top level again),
manipulate the attributes as desired, and then batch the entities back together
again. Another way would be to copy the sub-level entity attributes onto the top-
level batch during the batching operation such that the information would be
available at the top-level. Aside from these workarounds, is there another
straightforward way to achieve the same goal using your product that has not
already been addressed in this questionnaire?

[l YES (If YES, please explain)

[INO

13. Please list any other information that you think would be relevant, or any other

related work (published papers, white papers, etc.) that you are aware of
pertaining to the topic of sub-level entity access/control.
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APPENDIX B

DIALOG OF GET ATTRIBUTE (SUB-LEVEL) BLOCK

This appendix shows the dialog (the primary user interface) of the Get Attribute

(sub-level) custom Extend block. Only relevant dialog tabs are shown.

Finds attributes on specific sub-level items {which are :
part of the top-level batch passing through the black]). (

Unique Sub-
Item ldentifier Syb-Level
_ |SubSystem | Attribute Display value
gl [DefectDate | (Read Oniy ]
( (DefectDate | (Read Dnly ]
2 (DefectDate | (Read Only |
3 (DefectDate | (Read Dnly |
[None ] (Read Oniy |
[None | (Read Only |
[None ] (Read Only ]
INone ] |Read Only |
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IT the named sub-level attribute is not found, use:
{¢ a NolDalue (blank) as the value.

{* the number as the value.

[~ Do not retain attribute ralues between items




APPENDIX C

DIALOG OF DEFECT ANALYZER BLOCK

This appendix shows the dialog (the primary user interface) of the Defect

Analyzer custom Extend block. Only relevant dialog tabs are shown.

AN L e

Periodically audits a qroup of weapons and reports the
percentage of subsystems (by type) that are defective.

Do first audit at time = |8 |time units

then repeat every |l3 |time units

Search Group Criteria

1) Weapon Type (top level) identified by Attrib name [WeaponType |

Audit weapons with weapon type value of |I |

2) 1™ Limit audit group to weapons with the Attribute [None |

equal tul l

3) Defect Date of sub-system identified by Attribute [DefectDate |

4) Sub-system Type (sub level) identified by Attribute [SubSystem |

Output defect percentages for the following sub-system type 1D's:
Sub-Type 1D # # Audited % Defective
|2

|
|
|
|
|
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APPENDIX D

DIALOG OF REMOTE CHOOSER BLOCK

This appendix shows the dialog (the primary user interface) of the Remote

Chooser custom Extend block. Only relevant dialog tabs are shown.

0] Remote Chooser

Each time an item enters, this block identifies and selects a given
number of items in the model that meet a set of Criteria. The
selected items are tagged with a certain attribute set to "-1".

Copies of the selected items can be output. Failed requests can
be passed out as well.

Use the following Attribute as a tag to identify selected items: [HAttrib ]

(This Attribute name MUST be the same as the name specified in
"OQueus (KChooser)" blocks from which items may be requested.)

The # of items requested is [the ITEM UALUE of the input item. ]

Search Criteria Options:
[Consider BOTH Top AND Sub-Level Criteria |

From those items that satisfy the search criteria,
select the requested quantity:

(based on SUB-Level item Attrib values. ]
Select those with the [LOIWEST | value of the attribute named: [DefectDate |

W Negate** the User-Defined REAL value on chosen Top-Level items, until...

** [NOTE!! ALL ITEMS LEADING THROUGHTHE " P " OR " F " CONNECTORS
AUTOMATICALLY HAVE THEIR USER-DEFINED REAL UALUE SET TO 8. ANY ITEM
WITH A USER-DEFINED REAL UVALUE LESS THAN OR EQUAL TO 8 1S ERCLUDED

FROM CONSIDERATION IN THE ITEM SEARCHES.)
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Search Criteria - TOP ri

R T 5 = 4
Each time an item enters, this block identifies and selects a given
number of items in the model that meet a set of Criteria. The

selected items are tagged with a certain attribute set to "-1".

Copies of the selected items can be output. Failed requests can
be passed out as well.

search Criteria Options: [Consider BOTH Top AND Sub-Level Criteria_|

Userial Real

1) ¥ Consider TOP-Level items with any of the
[User—defined REAL values | listed -—->
(NOTE: Dalues listed must be > B.5) '

2) Consider Top-Level items with attribute values matching the
values found on the input item for the following Attributes:

(Weapon B

AND Group —--> |Location |

[None |

As well as (PLUS):  [None |

OR Group —-> |None ]

INone |

But not including (MINUS):  [None H
NOT Group —-> [None ]

INone ]

The item search uses both the above Top-Level Criteria
* AND *
the Sub-Leuvel Criteria specified on the following tab.
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number of items in the model that meet a set of Criteria. The
selected items are tagged with a certain attribute set to "-1",
Copies of the selected items can be output. Failed reguests can
be passed out as well.

Search Criteria Options: [Consider BOTH Top AND Sub-Level Criteria |

User'Val Real

1) ¥ Consider SUB-Level items with any of the z

[User-defined REAL values | listed --->
{(NOTE: Lalues listed must be > 8.5) !

2) Consider Sub-Level items with attribute values matching the
values found on the input item for the following Attributes:

[SubSystem |

AND Group --> [None
[None ]

As well as (PLUS):  [None ]

OR Group —--> [None

|

INone |

But not including (MINUS):  [None |
NOT Group --> (None ]

[None |

The item search uses both the above Sub-Level Criteria
* AND *
the Top-Level Criteria specified on the previous tab.

11—
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emol Ch V

Each time an item enters, this block identifies and selects a given
number of items in the model that meet a set of Criteria. The
selected items are tagged with a certain attribute set to "-1°,
Copies of the selected items can be output. Failed requests can
be passed out as well.

# of items requested by current input item ( = Item Value):

# of Top-Level items qualifuing for possible current selection:

Arrivals ﬂ Total # of items requested: ﬂ
Departures from P B Total # of items selected: B
Departures from F B << Not Currently Processing a Request »»
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