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ABSTRACT 

An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX 

has been written and is working. In conjunction with the SPHINX code the new implicit 

code models fluids and solids under a wide range of conditions. SPH codes are 

Lagrangian, meshless and use particles to model the fluids and solids. The implicit code 

makes use of the Krylov iterative techniques for solving large linear-systems and a New- 

ton-Raphson method for non-linear corrections. It uses numerical derivatives to construct 

the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce 

the amount of computation. It is believed that this is the first implicit SPH code to use 

Newton-Krylov techniques, and is also the first implicit SPH code to model solids. 

A description of SPH and the techniques used in the implicit code are presented. 

Then the results of a number of tests cases are discussed, which include a shock tube prob- 

lem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. 

The results are shown to be in very good agreement with analytic solutions, experimental 

results, and the explicit SPHINX code. In the case of the single jet of gas case it has been 
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demonstrated that the implicit code can do a problem in much shorter time than the 

explicit code. The problem was, however, very unphysical, but it does demonstrate the 

potential of the implicit code. It is a first step toward a useful implicit SPH code. 
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Chapter I 

An Overview & the Goals 

A. Introduction 

The goal of the research discussed in this dissertation is to develop a code, which is 

an implicit version of the Smooth Particle Hydrodynamic (SPH) approach to modeling 

fluid motion, and then to use it to study a select set of examples. The new code has been 

developed as an addition to an existing explicit SPH code called SPHINX. The SPHINX 

code was developed at Los Alamos National Laboratory [18], [22], [78], [79], [92], [93], 

[94], and has the capability to model fluids and solids, using SPH techniques. The desire 

is to move the SPHINX code into a new regime where it can use larger time-steps and 

model low-speed flow and near-steady-state problems. Ultimately, it is envisioned that 

SPHINX will be able to switch automatically between explicit and implicit time-stepping 

as conditions change within a given problem, although this is not part of this dissertation. 

The number of possible new applications that the implicit code could bring to the 

SPHINX code would be numerous. Problems that change slowly with time or are near- 

steady-state, such as plastic flow, would be possible. For example, Oran and Boris [64] 

discuss the use of implicit methods in their Chapter 3 in which they discuss the modeling 

of a laminar flame propagating through a tube of combustible gas, and estimate that the 

computation could take up to 3000 years of computer time using conventional explicit 

methods. To remain stable, explicit methods are restricted to very small time-steps 

because of the need to resolve shock waves and velocities on the order of the sound speed. 

Implicit methods only need to model velocities on the order of the speed of the flame, 

1 



which is typically three orders of magnitude slower than the sound speed, and these meth- 

ods could remain numerically stable but would give up some accuracy. That reduces the 

computer time to about 3 years. They further claim that another reduction of a factor of 

500 can be gained by using adaptive-gridding to avoid gridding up voids, which brings the 

computational time down to about two days, which is more reasonable. SPH codes do not 

use grids, so that advantage would automatically be built in. 

Astronomers want to calculate stellar and galactic models over very long periods 

of time, and to run the models many times with different parameters in an effort to fit their 

calculations to the observations. Very large time-steps are essential to be able to do this in 

one’s lifetime, so implicit methods are commonly used in astronomy. Stellingwerf [76] 

[77] enumerated a number of ways for analyzing astrophysical models once the Jacobian 

matrix has been constructed. Solving this matrix equation is the crux of the implicit 

method. He points out that once the Jacobian is set up, then the “options include (1) for- 

ward time integration, (2) relaxation to steady-state, (3) stability of steady-state and time 

evolution, (4) numerical stability check, and (5) driven oscillations.” Of course, these 

methods can be used in many other fields of numerical modeling besides astronomy. 

B. Fluid Methods 

Modeling of fluids usually follows one of two basic techniques. One method uses 

the fluid equations referenced to the laboratory frame, by defining a fixed mesh or grid and 

modeling the fluid flowing through the mesh. This technique uses the fluid equations in 

the Eulerian form. The other method fixes the mesh to the fluid and calculates the distor- 
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tion of the mesh as the fluid moves. In this method the mass within each cell of the mesh 

remains constant. This technique uses the fluid equations in the Lagrangian form. 

The SPI-I technique, which was originally developed for astrophysical work and is 

fundamentally a Lagrangian approach, does not define a mesh, but instead models fluids 

and solids using particles, with each particle having its own set of physical properties 

assigned to it, such as position, velocity, density, internal energy, and more (see Fig. I. 1). 

Fig. I. 1. Fig. I. 1. An example of particles (dots) and their circles of influence, which An example of particles (dots) and their circles of influence, which 
may be of different radii and change with time. may be of different radii and change with time. Each particle has a local set of neigh- Each particle has a local set of neigh- 
bors influencing its motion. bors influencing its motion. The particles may have different physical properties such The particles may have different physical properties such 
as position, velocity, density, pressure, internal energy, and more. as position, velocity, density, pressure, internal energy, and more. 

This method starts with the Lagrange form of the fluid equations, and then by 

using two approximations, reduces the partial differential equations (PDEs) to ordinary 

differential equations (ODES). These approximations are referred to as the kernel approx- 

imation and the particle approximation. Each particle has constant mass, which is analo- 

gous to the usual Lagrangian approach in which the mass within each cell of the mesh is 

held constant. Each particle has a sphere or circle of influence and set of neighbors as 
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determined by overlapping circles of influence. For instance, in Fig. I. 1. the circle of the 

medium gray particle has as its neighbors the light gray particles, but the black ones are 

not neighbors because their circles do not overlap with the medium gray particle. The cir- 

cle represents a smoothing function, which is a Gaussian-like function that is highest at the 

particle, or the center of the circle, and falls off radially to zero at the edge of the circle. 

The particles are moved according to the fluid equations, and the smoothing functions 

interpolate the fluid properties between the particles. 

Since the SPH method has no grid of cells, one of its main advantages is that there 

is no mesh tangling, which is a problem for most Lagrangian codes. Also, because there 

is no mesh, empty space does not have to be included in the grid, as is often required in the 

typical Eulerian code, even with the use of such methods as adaptive-gridding. 

The SPH method also has the usual advantage of a Lagrangian code over an 

Eulerian code, in that contact discontinuities between fluids can be tracked. As two or 

more materials mix, they can be tracked because each particle has its own material proper- 

ties. SPH can go beyond that, because particles can become thoroughly mixed, which is 

very difficult for a gridded Lagrangian code to calculate. Another advantage of SPH is 

that it is not much more difficult to write a three-dimensional (3D) code than to write a 

one- or two-dimensional code. Once the 1D code is written, the 2D and 3D parts can be 

added very easily to the same code. 

There are some disadvantages with SPH. It is generally not as accurate as the 

gridded codes. There is an instability that is unique to SPH in the modeling of solids, 

where the particles can unphysically clump together when under tension. This problem is 
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referred to as the tension instability. Non-conservation of angular momentum is another 

problem that has been encountered in SPH. This problem has been addressed success- 

fully by Dilts [22], [23] using a moving-least-square (MLS) method, but it is in general a 

more time-consuming computation than SPH. Another problem encountered in SPH is 

that boundaries are not modeled well. The particles at the edge of objects have no neigh- 

bors outside the object, so their densities are less than those for particles internal to the 

object, and one would like the density to be the same all the way out to the edge. MLS 

can handle this problem quite well also, but again it is a more time-consuming method. 

One other problem encountered in SPH is that the spherical kernels can prove to be 

insufficient for unevenly distributed particles. For example, if the particles are stretched 

or squeezed in one direction more than another, then the particles can move apart so far - 

for example in the horizontal - that the spheres or circles of influence no longer overlap, 

but in the vertical they may be squeezed so tightly that they have many neighbors in the 

vertical but none in the horizontal. The calculation falls apart when particles that should 

be influencing each other are not. Attempts to solve this problem have been tried with 

varying degrees of success. One approach is to use elliptical kernels that stretch out as 

particles move apart. Another approach is to introduce more particles in the gaps as the 

original particles move apart. This approach is referred to as particle-splitting because the 

mass must remain constant, and therefore it has to be split up appropriately among the par- 

ticles. 

The explicit version of SPHINX uses primarily a Runge-Kutta method to do the 

time-stepping for solving the set of ODES. It also has packages to do Leap-Frog and 
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Predictor-Corrector time-stepping, both of which are explicit methods. 

C. Implicit Methods 

The main subject of this dissertation is another time-stepping package, which will 

be the first implicit method, to be added to the SPHINX code. One other implicit SPH 

code has been written, but for astrophysical use by Timmes [86], and it will be discussed 

later in this chapter. The SPHINX code is used primarily for modeling interacting solids 

and fluids, as opposed to astrophysical use, so the new implicit SPH code is believed to be 

the first one to model solids. The new code is also believed to be the first implicit SPH 

code to use Newton-Krylov methods for solving the linear system, which will be dis- 

cussed later in Chapter III. 

Implicit codes are used mainly because they are usually unconditionally stable 

with any time-step size. They do lose accuracy with increased time-step size, but the 

solutions do not become unstable; that is, they do not go off to infinity, or go to zero and 

stay there, or oscillate wildly (see Oran and Boris [64], page 94) as explicit codes do if the 

time-step size exceeds a limit known as the Courant condition. The Courant condition 

basically says that the spatial-step size divided by the time-step (which can be thought of 

as a velocity) should be greater than the greatest velocity expected in the fluid being mod- 

eled. Typically the largest velocities of interest are sound waves, but when modeling low- 

velocity flow, these velocities are of little interest and are usually ignored. The Courant 

condition requires an explicit code to take such tiny time-steps to remain stable that the 

code can take much too long to solve the problem. 

The implicit code is not restricted by the Courant condition to remain stable, but, 
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to help maintain accuracy of the desired features of a problem, the time-step should still be 

as close as is practical to that prescribed by the Courant condition associated with the 

physics of interest. What is “practical” is decided by a trade-off between the amount of 

computer time to run the problem with the desired accuracy on the implicit code, as com- 

pared to the run time and accuracy of the explicit code. That is, if one is willing to give up 

some accuracy in exchange for shorter total run time, then the implicit code may be the 

one to use. One would like to run the implicit code with a large enough time-step so that 

the total computer time would beat the total run-time of the explicit code and still maintain 

an acceptable accuracy, which is often the case if the problem is near a steady-state solu- 

tion, or the problem is not changing much over large periods of time. The choice of time- 

step for the implicit code has not been well defined yet, but it would ideally be based on 

the desired accuracy. A first attempt is discussed in Chapter III, Section I. 

The main disadvantage of an implicit code is that it requires the solution to a huge 

number of simultaneous equations or a linear system, and hence requires the formation of 

a very large matrix. Inversion of the matrix has been the conventional method for finding 

a solution, and so implicit methods are typically computationally intensive. The large 

matrix can grow to take up most of the memory of ‘any computer because the user will 

want more resolution and details included. More modern methods of solving linear sys- 

tems use iterative methods rather than actually inverting the large matrices. The iterative 

methods do help speed up implicit codes. but they are still computationally intensive per 

time-step as compared to explicit codes. Iterative methods have become the subject of a 

major effort in research of numerical methods and the topic of a large body of journal arti- 
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cles and textbooks. Some conventional and iterative methods will be discussed in Chap- 

ter III. 

To the knowledge of the author, only one other implicit SPH code has been writ- 

ten, and that is by Dr. Francis X. Timmes [86]. His code was developed for astrophysical 

use and includes self-gravity between particles. It uses the momentum equation and the 

energy equation, but not the continuity equation. He calculates densities by a summation 

method. The neighbor search routine in his code is different from that used in SPHINX in 

that, for a given particle, its neighbor particles are determined by whether or not the other 

particles fall within the radius of its sphere of influence, as opposed to overlapping spheres 

of influence. By implication then, given two particles with different smoothing lengths, 

the one with the larger radius may influence the other but not vice versa. Because equal 

and opposite action is not maintained between particles, energy is not necessarily con- 

served. However, Dr. Timmes claims that this problem can be minimized. 

An example of the way neighbors are counted in Timmes’ code can be seen in 

Fig I. 1. The two particles in the lower left have different size circles. The one with the 

smaller circle falls within the larger circle, so it is a neighbor of the one with the larger cir- 

cle. But since the particle (the dot) with the larger circle does not fall within the smaller 

circle, it is not a neighbor of that particle. One way to maintain equal and opposite reac- 

tion between particles, in Timmes’ method, would be to keep the circles all of equal 

radius. The radii, or smoothing lengths, could still change, but they would have to change 

equally for all particles, which is probably a reasonable approach for many problems. 

Timmes does, however, use variable smoothing lengths or radii. 
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The new implicit code, which is the focus of this research, has a number of differ- 

ences. First, the continuity equation is included as an option to the user. Second, parti- 

cles are counted as neighbors if their spheres of influence overlap. This feature has the 

effect that any two particles have an equal and opposite reaction on each other, which 

allows for conservation of energy. Other differences include the use of iterative tech- 

niques, also known as Krylov methods, for solving the linear system. Also, a version of 

the implicit code has been written that makes use of matrix-free methods within the itera- 

tive techniques. This version has only been partially successful, but the method will be 

discussed in more detail in Chapter III. 

The development of the new implicit code for SPHINX has involved five major 

stages. The first stage was to develop a code based on the analytic derivation of the 

implicit form of the SPH fluid equations. This set of equations involves a Jacobian matrix 

of derivatives. The first version of the implicit code, following Timmes’ approach, used 

the Lower and Upper (LU) decomposition method to factor the matrix, and used a fourth- 

order Rosenbrock solver. The second stage replaced the analytic Jacobian matrix with a 

numerical Jacobian. The third stage replaced the LU decomposition with a selection of 

Krylov solvers. The fourth stage attempted a modification to the Krylov solvers to make 

them matrix-free. The modification replaces the step in the iterative solver where the 

matrix-vector multiply appears with an approximation that involves only vector opera- 

tions. This stage was not completely successful. The fifth stage involved adding a New- 

ton-Raphson iteration to improve the nonlinear convergence and going to sparse storage 

and sparse calculations. The implicit method is covered in more detail in Chapter III. 
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Presented in Chapter II are the basic concepts, assumptions, and mathematics used 

in SPH. The implicit approach is presented in Chapter III. The last two chapters discuss 

a set of examples on which both the implicit and explicit codes have been tested. Chapter 

IV includes a three-particle problem, a rarefaction problem, a shock-tube problem, a Ray- ~ 

leigh-Taylor instability problem, a breaking dam problem, and a single expanding jet of 

gas. Chapter V discusses a set of problems involving neutral plasma jets in 2D and 3D, 

that have application to nuclear fusion. 
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Chapter II 

Basics of Smooth Particle Hydrodynamics 

A. Introduction To Smooth Particle Hydrodynamics 

Smooth Particle Hydrodynamics (SPH) is a relatively new numerical approach to 

simulating hydrodynamic problems on the computer. SPH was introduced by Lucy 

(1977) [51], Gingold & Monaghan (1977) [30], and Monaghan (1982) [58], and has been 

improved on by a growing community of users since then (see Benz [lo], Hernquist & 

Katz [34], Swegle et al. [82], Libersky & Randles [49]). It was used initially by the astro- 

physical community to model galaxies and star formation [30], [34], [57], [73], [86]. 

With the inclusion of material-strength models it has also been found to be useful for mod- 

eling solids [48]. It has been used to model projectiles, solid or fluid, impacting targets of 

various kinds to study cratering, damage, and breakup [39], [79], [93]. SPH has also been 

found to be useful for modeling fracturing of solids such as rock with granular boundaries 

[ll], [52], [83]. Several good reviews exist by Benz [lo], Monaghan [59], and Wingate 

[92]. The current discussion, however, will be restricted mainly to fluids. 

As briefly discussed in Chapter I, fluid dynamic problems are usually solved 

numerically, and the fluid equations are typically cast into one of two common frames of 

reference. One is the lab frame and the other is the fluid frame of reference. The result- 

ing sets of equations are known, respectively, as the Eulerian and Lagrangian forms. One 

form can be converted into the other with an appropriate coordinate transformation. 

Many different ways of solving these equations numerically have been developed. Both 

formulations generally use a grid or mesh which divides space into cells. The codes for 
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either method can be written in one, two, or three dimensions, each dimension adding 

increasing complexity because the phenomena occurring at each boundary of each cell 

have to be taken into account. 

The Eulerian method keeps track of the fluid as it flows in and out of the different 

boundaries of each cell. The cells are fixed in space and do not move. It is a rigid grid. 

One disadvantage of this approach is that, if there is more than one fluid, it is difficult to 

keep track of the two fluids as they mix. There are ways to handle this problem but they 

can make the code very complicated. One example is known as Front or Interface Track- 

ing [33], [64], which will not be covered in this dissertation. 

The Lagrangian method overcomes the mixing problem by not allowing the fluid 

to leave the cell in which it starts, but rather the cells move and deform to account for the 

fluid motion. The mass in each cell remains constant, but the density can change as the 

cell size changes, depending on the pressures and temperatures in each cell. The interface 

between two fluids is easy to keep track of as long as the cells do not become too distorted. 

The cells typically start out in a regular grid or pattern but can soon become highly 

deformed and even tangled, which is a serious problem with this method. The codes are 

usually programmed to stop running or redo the mesh at this point because the results 

often become unphysical under these conditions. 

The SPH method is a Lagrangian approach and is derived from the Lagrangian 

equations, but each cell can be thought of as having been reduced to a point, which is 

referred to as a particle, and the mass of each particle is constant. As a result, the SPH 

approach is mesh free, because it has no grid of cells. A lucid discussion of the SPH the- 

ory can be found in the Ph. D.. dissertation by Fulk [27]. 
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Each particle has the various fluid properties associated with it, and the particles 

are moved in time according to the fluid equations. Each particle has a position (x, y, z), a 

velocity v = (v,, vY v,), a mass m, internal energy e, and a smoothing length h assigned to 

it; from these, pressure P, temperature T, density p, etc. are computed for each particle. 

Each particle has a set of SPH equations that are derived from the usual Lagrangian fluid 

equations: 

The Momentum Equation VP, 

The Continuity Equation 4 
z 

= -(p)Vw, 

The Energy Equation d”, 
dt 

VW. 

(2 2 

Each particle also has a sphere of influence defined by a kernel function that deter- 

mines how strongly each particle interacts with its neighbors as a function of distance 

between them. The kernel function is a bell-shaped function and is commonly made up 

of B-spline functions with compact support on the particle’s sphere of influence. The 

Gaussian function has also been used as a kernel. 

Some of the advantages of the SPH approach are the following: 

1. There is no mesh tangling. 

2. It is almost as easy to write a 2D or 3D code as it is a 1D code, which is not true for 

some approaches. 

3. Different types of fluids are easy to track as they mix because each particle has its own 

material identity. 

4. Empty space does not have to be zoned up as is often required in Eulerian mesh codes. 

5. Fracturing and breaking up of solid objects can be modeled. 

13 



B. The SPH Approximations and the SPH Equations 

The approximations used to reduce the Lagrangian fluid equations from PDEs to 

ODES are the kernel anproximation and the particle annroximation. The kernel approxi- 

mation, also called the kernel estimate, is based on using a bell-shaped interpolating func- 

tion N and is used in the same manner as the Dirac delta function. Either can be used to 

approximate an arbitrary function. The particle approximation divides the fluid into parti- 

cles, which in general are much larger than atoms or molecules. 

Any function A(r) can be written as a superposition of delta functions &r-r’): 

A(r) = jA(r’)G(r-r’)dr’ , (2 -4) 

and following Monaghan [59], the interpolating function, or kernel, is used similarly 

where W(lr-r’l, h) + S(r-r’) as h -+ 0, where h determines the width of the function: 

(A(r)) = IA(r’) W(r-r’, h)dr’ , (2 -5) 

where the angle brackets indicate an approximation. By multiplying the fluid equations 

by W(lrl, h) and integrating, the kernel approximation is formed. 

To evaluate the integral, the particle approximation is used. Assume the fluid is 

divided into particles with masses ml, . . . . mN, and volume elements (mj / pj), then the con- 

tribution to Eq. (2 .5) by thejth particle can be represented as: 

A(r’j) W(r-v’j, h)mj 
P(r’j> ’ 

(2 5) 

and summing over all such terms will approximate the integral in Eq. (2 .5). The kernel 

W has units of inverse volume, so that, when multiplied by the mass over density, the units 

cancel. Hence the units of term (2 .6) are those of A(r). Thus, using the particle approx- 
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imation, Eq. (2 .5) becomes a summation over all particles: 

(A(r)) = i -fk (A(rlj)) W(r-rljt h). 
j = 1 p(r’.i) 

(2.7) 

The fluid equations are the momentum equation, the continuity equation, and the 

internal energy equation. The momentum eouation, Eq. (2 . l), can be rewritten as, 

$7 = -@VP = - v(;)-.!Lvp, (2 3) 

and then approximating the operands of the gradients for the kernel approximation: 

-& -V(;)-;v(P). (2.9) 

Replacing the averages with Eq. (2 .7), and using a more brief notation W(Iri-rjl, h) = Wg, 

where the subscripts indicate that WG is a function of both particles i andj: 

pi = -Vi ~~ ($)jWij m(+)iVi ~~ (P>jWij . 
j=l j j=l j 

(2 .lO) 

The gradients operate only on the quantities for particle i, and WV is the only thing within 

the summations that is a function of i, so the gradients operate only on the kernels, hence: 

gi z -C'"j[(fj), + (s)J’i wij * 
i 

(2 .ll) 

The continuitv eauation Eq. (2 .2) can be rewritten as, and approximated by: 

dP 
dt = -(p>V~v = -V.(pv)+v.Vp=-V.(pv)+v.V(p). (2.12) 

Then using the SPH approximation Eq. (2 .7): 

dPi Nm. N m. 

dt 
=-Vi* ~~(PV)jWij+Vi’ViC “(P)jWij ) (2.13) 

j=l’j j=l’j 
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which simplifies to: 

li= imjc Vi-Vj) ' Vi Wij 
j=l 

(2.14) 

The enerev eauation Eq. (2 .3) follows the continuity equation fairly closely: 

* iii = -($) VW - - p ‘I.V.(pv)-v.Vp]=-; [V.(pv)-v.V(p)] - (p>p ( 1 
(2.15) 

P 

Making the kernel and particle approximations: 

dei - 
dt 

N m. 
Vi l C $(PV)jWij- N mj vi l vi C -(p)jwij 7 

j=l .i j=l’j 1 
and simplifying; 

l?lj (Vi- Vj> l ViWij f (2.17) 

(2.16) 

There have been a number of forms of the three SPH equations derived using dif- 

ferent approximations (for a list, see [28] or [95]). Another form of the momentum equa- 

tion seems a bit contrived, but it has proven to be the most robust form and is the one used 

in SPHINX. It starts with Eq. (2 .l) and adds a term with the gradient of a constant, 

which is, of course, zero, and it is always valid to add zero to an equation. 

2 = -(l+-@V(l) =-(#7(P) -@7(l). 

Then the gradients are replaced by the SPH approximations. 

~i~-(~)i~~l~ (P)jWij- ’ Vi ~ “‘c’)wij) (p)i j= lpj 
which simplifies to: 

zi ZZ -Tmj(‘$)Vi Wij * 

(2.18) 

(2.19) 

(2 .20) 
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An alternative way to derive the energy equation is to allow the pressure to have 

spatial gradients. Then the following treatment yields a somewhat different result: 

de= 
dt 

v*v = -v.($v)+v.v(~)=-v.(~v)+v.v(~~ * (2.21) 

zi =-bi ’ iz(Fv)j wij-vi l vijl;(F)j wij] 7 

and simplifying; 

~i=j~~(~~ (vi-Vj)' Vi Wij. 

(2.22) 

(2.23) 

According to Monaghan [59], either Eq. (2 .17) or Eq. (2 .23) is satisfactory for ideal 

gases, but for metallic equations of state, the latter has slightly better energy conservation. 

The continuity equation is sometimes omitted and replaced with a summation 

using Eq. (2 .7), in which A(r) is replaced with p(r): 

(2 .24) 

This summation is an approximation of the density of the ith particle and is in agreement 

with the kernel and particle approximations. 

C. The Kernel Function 

The basic equations for the SPHINX code consist of three conservation laws, Eqs. 

(2 .20), (2 .14), and (2 .17), sometimes (2 .24), and a kernel function that determines how 

strongly each pair of particles interacts. Each particle i interacts only with its neighbor 

particles j that fall within a certain radius or sphere of influence. 
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The sphere of influence is an interpolating kernel function, usually a bell-shaped 

function, and determines the pressures acting on neighboring particles. It can be any of a 

number of functions such as a Gaussian or B-spline. Other kernels are discussed in the 

papers by Fulk [28] and Monaghan [56] and [58]. The kernel function is denoted as 

W(r, h), where r is the distance between particle i and its neighbor particle j, and has a 

smoothing length h, which determines the width of the function. That is, r = ri - rj, where 

ri and r- are the position vectors of the particles i andj. The interpolating kernel function 

is required to have the following properties: 

1. it is a symmetric, or even, function about r = 0, and reduces to a Dirac delta function in 

the limit as h approaches zero, 

lim Wb-1, h) = &b-l), 
k--SO 

(2 .25) 

2. it is normalized to one, 

~WCb-l, h)dr = 1, (2 .26) 

3. and while the following is not a requirement, the function usually has compact support 

to limit the number of neighbors, and for the SPHINX code it is assumed to be zero 

outside of Irl = 2h, 

W((lrl >2h), h) = 0. (2.27) 

So the radius of the sphere of influence for each particle is twice its smoothing length h, 

and the smoothing length does not have to be the same for all particles. In SPHINX, h is 

often allowed to vary with density. In this case, the average smoothing length between 

two particles i andj is used in the kernel: h = (hi + hj) / 2. Note: the circles of Fig. I. 1 are 

of radius h, so when they just touch, the particles are 2h apart, or 2h when h is variable. 
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The interpolating kernel function for the SPHINX code is a cubic B-spline curve 

of the form shown in the following Eq. (2 .28) (see also Fig II. 1) and is a function of the 

distance TV E Irl between the particles i andj with positions (Xi, yi, ZJ and (Xj, Yj, Zj>* 

C(l-~U$+~LL~), for(05uij< 1) 

Wij = C~(2 - Uij)3, for( 1 5 Uij < 2) , where (2.28) 

0, fOr(Uij2 2) 

7 . .  

EJ u..=-, 
1.1 h and (Xi-Xj)2 + (Yi-Yj)2 + (Zi-Zj)2 ; (2.29) 

and the positive root of Eq. (2 .29) is assumed for yi . C is a constant for normalizing the 

area under Wti to one, and is different for each of the three dimensions; that is, 

2 forlD: C=z , 10 for2D: C=- 
7nh2 ’ 

andfor3D: C=--& . (2.30) 

The Cubic B-Spline Kernel & its First Derivative 
0.8 

I 

0.6 
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0.2 

0.0 I I I I I I 

x/h x/h 
Fig II. 1 The cubic B-spline kernel Wij (left) is an even function, and its first deriv- 

ative (right) is odd. The’kernel has zero slope at the origin and for x > 2h. Since x is 
always positive, only the right half of these functions is actually used in the calculations. 

0.5 

0.0 

-0.5 
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From the above equations one can see that Wti is a function of yij and that i and j 

can be swapped in Eq. (2.29) without affecting the value of rti . The same is true for We , 

because WV is symmetric, which can also be seen in Fig. II. 1. The first derivative of We, 

however, is an odd function, so there is a sign change for the derivatives when i and j are 

swapped, as is discussed in Section D, Chapter II. The index i runs from 0 to N-l, where 

N is the total number of particles and the index j runs over the number of neighbors for 

particle i. (The code described here is written in the programing language C, so the indi- 

ces conveniently start at zero.) 

For a 3D implicit SPH code there are eight ODES per particle to describe their 

motions, derived from three conservation laws. (A 2D code requires six ODES per parti- 

cle, and a 1D code requires 4 ODES per particle.) These are the rate equations of the par- 

ticle’s xi, yi, zi positions, the x y z velocities (vf , VT, vi ), the density pi, and the internal 

energy ei. The eight dependent variables are xi, yi, zi, vf , vy , vi” , pi, and ei , and the inde- 

pendent variable is time t. 

The rate equations for position in the 3D implicit SPH code consist of three veloc- 

ity equations that describe the motion of the particles: 

dxi 
-& =v;, dYi 

dt= vy 7 
dzi 
z 

= v; . (2 .31) 

The rate equation of the velocity, also known as the momentum equation, can be 

expressed in a number of ways. In the terminology of the SPHINX code they are of the 

form known as “Hydro-form 2” (Wingate and Stellingwerf, 1995 [95]), and are the same 

as Eq. (2 .20) but with artificial viscosity terms added. The momentum equation is a vec- 

tor equation, so for the ith particle there is a rate equation for each velocity component: 
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dv; 
dt 

(2.32) 

dv; - =- pi+$ 
dt 

. 
Pi Pj 

(2.33) 

(2.34) 

The summations are over all particles j that are neighbors of particle i. Particle i is 

always included in its own neighbor list. The pressures of the ith and jth particles are 

given by Pi and Pj. Their densities are pi and Pj, and the masses are mi and mj. The I$ is 

the artificial viscosity (for a definition see Monaghan [59] and [62]), which is assumed to 

be zero for the discussion of the analytic Jacobian in Chapter III. The derivatives of WV 

are discussed later (Section D of Chapter II, & Section B.2 of Chapter III). 

The rate equation for density pi of particle i, Eq. (2 .14) is derived from the mass 

continuity equation, and its expanded SPH form is: 

dPi Pi m.- (VT 
aw.. aw.. 

dt = j Jpj = i 
-,;)-&3+(“y +YgJ +($ -v;p 

i J hi i 1 
(2.35) 

The rate equation for the internal energy ei of particle i in the SPH form used in the 

SPHINX code (referred to as “Energy form 3”) is: 

aw.. aw.. aw.. 
(v; -v,“)~~~+(v; -v?)-“~ +(vf -I$)~‘~ 

i J ayi i 

One more equation is needed for closure, and that is usually the Equation of State 

(EOS) for calculating the pressure as a function of the densities and internal energies. 

The EOS can be formulated from any of a number of different models. For the derivation 
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of the analytic Jacobian of Chapter III, the perfect gas model is assumed and is given by: 

Pi E (y- l)f?ipi (2.37) 

where y is the ratio of specific heats. 

D. The First-Order Derivatives of the Kernel 

For the explicit code, only the first-order spatial derivatives of the kernel are 

needed. For the implicit code both the first-order and second-order are needed, but the 

second-order spatial derivatives will be discussed in Chapter III. The kernel Wti is given 

by Eq. (2 .28), and the spatial derivatives of WG are needed for Eqs. (2 .32) through (2 .36). 

The derivatives of WV are partial derivatives because it is a function of the three position 

variables (xi, yi, zi). As noted from Eqs. (2 .28) and (2 .29), Wti is a not a function of 

velocity, density, or energy. The first-order derivatives can be evaluated by first finding 

the derivatives of yij from Eq. (2 .29). 

arij Ay.. - = k.(Xi _ xj) E 9, similar-y: 2 = 2, and arij _ AZ.. 
axi 

- - -Y, 
B ZJ Z B 

azi - y.. 
ZJ 

(2.38) 

where AXE = (xi - Xj> and similarly for Ayi;i = oli - yj> and &e = (zi - zj>. Then the deriva- 

tives of uij, from Eq. (2 .29), are: 

au.. 
ZJ 

axi 
au, _ 1 'Yij and auij l&ij 
- =--7 c3yi h Yij 

-Z-P* 
azi -h 7.. 

(2.39) 
B 

Hence, the derivatives of the first two parts of Wii, Eq. (2 .28) (labeled W aq and W ‘i) with 

respect to Xi, yi, and zi are: 

22 



aW:j - 
aXi 

for (0 I ujj < l), (2.40) 

- = 
aXi 

- ~ ~, (2 - uii)2~ij, 

v 

aW?j - = 
hi 

- ~ (3 - 9~U, A~ij, 

aW\j - = 
ayi 

-~~(2-~ij)~Ayij’ 
d 

dW?j - = 
azi 

-~(3m~u,)dz,. 

i3W?j - = 
azi 

-$2-uij)2Azij, 
ij 

for (1 I uij < 2), (2.41) 

for (0 I uti < l), (2.42) 

for (1 < uij < 2), (2.43) 

for (0 < ujj < l), (2.44) 

for (1 2 uij < 2). (2.45) 

Swapping i and j in Eqs. (2 .40) through (2 .45) shows that the derivatives with 

respect to the jth particle are anti-symmetric; the negative sign comes from the A term in 
aw.. aw.. 

each equation: that is, -‘I = -v 
axi axj 

and similarly for the y and z first-order derivatives. 

So only the three first-order derivatives for the ith particle need to be calculated, and those 

for the jth particle are found by negating those for the ith particle. The relationship 

between WV and the first-order derivatives are given here: 

WV = Wji 7 (2.46) 

aWti/ilxi = -dW+lxj, 

i3Wg/i3yi = -i3W&3yj, 

i3Wg/iki = -ilW+kj. 

(2.47) 

(2 .48) 

(2.49) 
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E. The Neighbor Search Routine 

Typically the most time-consuming aspect of an SPH code is the neighbor search- 

ing, and a great deal of effort has gone into finding the most efficient method. There are a 

number of different neighbor search routines used in the field of SPH, Fulk [27] Section 

2.3.10. For the SPHINX code, two particles are defined as neighbors if they have overlap- 

ping spheres of influence,’ that is, the distance between them is less than the sum of their 

smoothing lengths. 

The simplest known search scheme is the N-squared routine. Let the total number 

of particles be N, then each particle i is compared with particles i through N. In other 

words, the 0th particle will be compared to all the other particles, but the next particle will 

be compared to all the other particles except the Oth, and the next particle will be com- 

pared to all but the 0th and 1st particles, and so on. Each particle is included in its own 

neighbor list because, for instance, its own mass has to be included in the calculation of its 

density along with its other neighbors. The number of operations for this is proportional 

to N x N, hence its name. 

The neighbor search most often used, and the default in the SPHINX code, is an 

octree search for 3D, a quadtree search for 2D, and a bitree search for lD, (see Hernquist 

and Katz [34]). It takes on the order of N log (N) operations to find the neighbors of each 

particle, which is more efficient than the N-squared method. Depending on the dimension 

of the problem, each axis is divided in two. For 3D, using the octree method, space is 

divided into eight equal cubes; then each of those can be divided into eight and so on. If 

there are no particles or just one particle in a subcube, then it is not divided any further. 

24 



This procedure can be viewed as forming a tree of finer and finer branching until each par- 

ticle is isolated in its own cube. Thus each particle becomes a leaf on the tree. Then by 

traversing the tree the neighbors can be found by looking at the hierarchy of the branches. 

For a given particle its neighbors will be found along one branch and not the others, elimi- 

nating a search through most of the particles. 

A third method, known as a linked-list, or cells method, is generated by placing a 

temporary grid, with a cell spacing of about 2h, on the space or volume of the problem. If 

h is constant for all particles, then the neighbors of particle i will be in either its cell or the 

immediately adjacent cells. Depending on the dimension of the problem, the number of 

cells is 3, 9, or 27 for lD, 2D, or 3D respectively. A single pass through all the particles 

can assign each particle to a cell, and all the particles within a cell are linked together. 

Then the neighbors for particle i are determined by searching only through the linked par- 

ticles of its associated cells. If the average number of neighbors is N, , then the number 

of operations would be on the order of N, N, and if N >> N, then its efficiency can 

approach that of order N. If, however, h is variable, then the choice of the cell size 

becomes more difficult, and this method can become less efficient than the octree method. 

The octree is usually the method of choice when h is variable. 
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Chapter III 

The New Implicit SPH Code 

A. Introduction to the Implicit Code 

If the fluid problem being modeled does not have rapidly changing properties and 

is not being dominated by shock waves, but the time-steps determined by the Courant con- 

dition are still very short because of the sound speed of the fluid, then by using an implicit 

code, larger time-steps can generally be taken to get through the problem in a reasonable 

amount of time. An explicit code has to use the time-steps dictated by the Courant condi- 

tion or else the solutions may become unstable. Most implicit schemes, however, can be 

shown to be unconditionally stable for any time-step size. They do lose accuracy, with 

increased time-step size, but remain stable. The main disadvantage of an implicit code is 

that it is computationally intensive because a huge linear system or matrix needs to be 

solved. There is a trade-off region, above which the time-step size versus total computing 

time makes it more advantageous to use an implicit code, and below which it is more 

advantageous to use an explicit code. 

Using the implicit SPH method, the number of equations for a problem of N parti- 

cles in dimension D is (D+l)2N, hence a large number of simultaneous equations must be 

solved. For a 3D problem of N particles, there are 8N equations and 8N dependent vari- 

ables. To solve the SN fluid equations implicitly leads to the computation of a Jacobian 

matrix of partial derivatives, which are the derivatives of the 8N equations with respect to 

the SN dependent variables. The result is an 8N x 8N matrix in 3D, or a 6N x 6N in 2D, 

or a 4N x 4N matrix in 1D. This matrix is very large when N is several hundred to over a 
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million particles, no matter what the dimension is. These are the numbers of particles the 

explicit SPHINX code is capable of handling, depending on the type of computer used. 

Thus the implicit method is computationally intensive and is best for problems for which 

large time-steps are possible. 

Various techniques have been developed for implicit calculations to shorten the 

computational time and save on computer memory. For a sparse matrix, such as the one 

generated by the implicit SPH code, sparse techniques have been developed in which only 

the non-zero elements of the matrix are stored, and matrix-vector products can still be per- 

formed within these sparse constructs. Along with the storage issues, sparse computa- 

tions can be done if it is known a priori where the non-zero elements are going to be, thus 

saving on computer time. Another way to shorten the computational time is to use itera- 

tive techniques to obtain an approximate solution to inverting the matrix. Another 

method for saving memory is known as the matrix-free method in which all matrix-vector 

products are replaced by terms from a Taylor expansion, obviating the need to form the 

matrix at all; the matrix-vector product is replaced by a sum of vector operations. 

For a set of linear ODES with constant coefficients, the matrix equation to be 

solved is of the general form, following Press et al. [66] 

Y’=-A*Y, (3 .l> 

where A is a matrix, Y is the state vector, and the prime indicates a derivative with respect 

to the independent variable, time. Using n to represent the current time-step number, an 

example of exnlicit time differencing is: 

Y’rl = (Y,+1 - Y,) /At, (3 2) 
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or solving for Y,+l at the new time-step At 

Y n+l = Y,+AtY’, = (I-AtA)*Y,, (3 *3) 

where Eq. (3 .l) has been used to replace Y’, . The quantity in the parentheses is a 

matrix, where I is a unit matrix, and this matrix does not need to be inverted to solve the 

system of equations. 

On the other hand, an example of imnlicit time differencing is: 

y’n+ 1 z (Y,+~ - Y,) /At, (3 .4) 

Y n+l = Yn+AtY’n+l = (I+AtA)+Y,, (3 *5) 

where Y’,+i was replaced, as before, by Eq. (3 .l) and Eq. (3 .5) is solved for Y,+t . The 

quantity in the parentheses is a matrix that is to be inverted. Modern iterative techniques, 

however, avoid actually inverting the matrix. Instead they solve the linear system: 

(I+AtA)*Y,+, =Y, (3 .6) 

by guessing at a solution for Y,+r and iterating on it until Eq. (3 .6) is satisfied to within 

some tolerance. 

For a set of nonlinear ODES, things have to be handled differently. Let f(Y) be an 

arbitrary vector function of the vector Y, which may be nonlinear. For SPH, f(Y) would 

represent the right-hand sides of the velocity, momentum, continuity, and energy equa- 

tions. Then a general nonlinear set of equations can be represented as: 

Y’ = f(Y), (3 -7) 

where the prime indicates a time derivative. After implicit differencing, Eq. (3 .8), one 

can linearize f(Yn+l) by keeping the first two terms of the Taylor expansion, Eq. (3 .9), and 
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then collecting the Y,+r terms, Eq. (3 .lO): 

Y n+l G Y, + At f(Y,+,), (3 .f9 

G Y, + At [f(Y,) + aflay], l (Y,+~ - ~~11, (3 .9) ” 

= Y, + At [I - At aflay]-l l f(Y,), (3 SO) 

Y n+l = Y,+J-l*Y’,,=Y,+dY (3 .ll) 

where J = [I/At - af/aY] is a Jacobian matrix containing partial derivatives of f(Y) with 

respect to the dependent variables. This is the Jacobian of the residuals, which will be 

discussed later in sections F and K of this chapter. The Jacobian has diagonal elements 

consisting of a unit matrix divided by the time-step, which makes the diagonal, in general, 

non-zero. As the time-step is decreased, the matrix becomes more diagonally dominant, 

which makes the matrix easier to invert. 

The last term of Eq. (3 .l 1) is an inverse-matrix vector multiply and can be 

regarded as dY, which is added to Y, to update to Y,+r. So dY = J-l l Y’, is the usual 

form for the inverse matrix problem. Various methods have been developed for inverting 

matrices. To get started on the implicit SPH code, the first attempt was just to try the LU 

decomposition method, and the Jacobian was derived analytically. 

B. The Analytic Jacobian 

B.l. Derivatives for the Implicit SPH Code 

The implicit version of the SPH code requires the computation of the Jacobian 

matrix. The 3D Jacobian is a matrix of the derivatives of all 8N equations, Eqs. (2 .31) 
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through (2 .36), with respect to all 8N dependent variables. The derivation of the equa- 

tions to fill the 8N x 8N Jacobian matrix is the subject of this section. 

In the following equations, the time derivatives of Eqs. (2 .31) through (2 .36) 

(which are total derivatives) are denoted by a dot above the variable on the left-hand side 

of the equation. The subscripts i andj are used to denote a pair of particles. The index i 

represents a particular particle and in that sense is considered fixed. The index j will 

range over all the neighbors of particle i and is represented as a summation in the equa- 

tions. Another index, k, needs to be introduced at this point to indicate with respect to 

which of the 8N dependent variables the derivative is being taken. The new index runs 

from 0 to N-l. Like index i, the index k is considered fixed in the sense that each Jacobian 

element is the derivative with respect to only the kth dependent variable. For an example 

matrix of a 1D 3-particle problem see Fig. III. 1, at the end of this section. 

The following derivatives have been taken with respect to the kth dependent vari- 

able, and it is found that, except for k = i or k = j, the derivatives are zero; that is because 

the kth variable does not appear in the equations except when k = i or k = j. The deriva- 

tives are also zero when a pair of particles are not neighbors. Taking the derivatives of Eq. 

(2 .3 1) is simple since only the components of vi appear in the equations. Hence all deriv- 

atives are zero, except for those with respect to the appropriate component of the velocity, 

and those derivatives always equal 1. Thus, 

hi 
1, 

aPi -= 1, 
aii = -= 1, 

aVizi aViEi aVtzi 

and all others are zero. 

(3 .12) 

For the derivatives of Eqs. (2 .31) through (2 .36) there are summations, over the 
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neighbors of particle i, and it has been found that for k = i the summation survives in the 

derivative. These terms show up in 8 x 8 blocks along the diagonal of the Jacobian matrix 

(see Fig. III. 1). But for k =j only one term survives from each summation. These terms 

show up in 8 x 8 blocks off the diagonal and represent the terms due to interaction with the 

neighboring particles. Since most of the particles will have only a small number of neigh- 

bors relative to the total number of particles N, most of the off-diagonal 8 x 8 blocks will 

be filled with zeros. Therefore, the Jacobian will be a sparse matrix. Timmes estimates 

[86] that a typical Jacobian will have only 1.12% non-zero elements. 

a. The derivatives of Gx i , Eq. (2 .32), with respect to the kth dependent-variables follow: 

a+: 
c = -~mjp)$& ?fL = -mk(~)g!&., (3.13) 

ax, =j 

ali: =--& = -~TIz~(~)~$~&, $ = -mk(%)&y (3.14 

ali; 
k=i = -Tmj(z)&. 
aZ $ = -mk 

5+pk a2yk ( 1 -- 
pipk azkaxi’ (3 *15) 

alj; 
-= 0, 
av; 

alj; 
- = 0, 
av; 

a+; 
- = 0. 
av; 

(3 .16) 

Of Eqs. (3 .13) to (3 .15), the three equations with the summations contribute to the blocks 

along the diagonal, and the other three contribute to the off-diagonal blocks. Note too the 

latter three equations have k subscripts, since k is considered a fixed number andj is not. 

Because the pressure is a function of the density and energy, the next two sets of 

derivatives use the perfect gas law, Eq. (2 .37). When this EOS is used, pi cancels in one 
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term within the parenthesis of Eq. (2 .32) and pj cancels in the other term, so the derivative 

with respect to Pk=i is different than when taken with respect to pk=j. Again, note that for 

the case of k = j, only the one term, k = j, survives from the summation: 

a+; ei awik ~ = 
aPk=i (y- ‘)mkpz 7 c3*17) 

k i 

ad; 
~ = 
aek=i 

(3 .18) 

b. The 8 derivatives of I’; , Eq. (2 .33), are similar: 

ad; 
- = 0, 
av; 

a$ 
- = 0, 
av; 

a$ - = 0, 
aV; 

(3 .19) 

(3 .20) 

(3 .21) 

(3 .22) 

ei ayk 
aPk= j 

= (Y- ljrnk"G 7 (3 .23) 
Pk 

a,;; - = 
de 

k=i 

ad; “k awik - = -(y-l)-?& . 
aek= j 

(3 .24) 
i 1 

Evaluation of Eqs. (3 .19) to (3 .21) at k = i and k =j is simple and is analogous to that shown 

in Eqs. (3 .13) to (3 .15), but for Eqs. (3 .23) and (3 .24) the results are different again. 
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c. The 8 derivatives of 1’4 , Eq. (2 .34), are also similar: 

aljf - = 0, 
av; 

alif 
- = 0, 
av; 

alj; - = 0, 
aV; 

(3 .25) 

(3 .26) 

(3 .27) 

(3 .28) 

ei awik 
= (Y- l)“kTF ’ (3 .29) 

Pk 

- = 
de k=i 

a+; mk awik - = -(y-l)--az . 
aek= j i i 

(3 .30) 

d. The 8 derivatives of pi, Eq. (2 .35), are the following. 

-= 
axk 

d2Wij 
(vj: -v:‘)- 

J aykazi 
) (3 .32) 

(3 .33) 

The next three derivatives differ in sign depending on whether k = i or k = j, 

because the vz term is positive and the VT term is negative. 
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aPi 
- = 
aVi=j 

’ (3 .34) 

alji 
- = 
avz=j 

’ (3 .35) 

aPi 
- = 
avi=j 

. (3 .36) 

The derivative with respect to density also differs depending on whether k = i or 

k =j, because pi is in the numerator and Pj is in the denominator of Eq. (2 .35). 

aPi - = apk =i 
aOi - = 
apk= j 

awik 
-I()=&- +(vf 

i 
. (3 .38) 

The derivative with respect to energy is zero for both k = i and k = j, because ek 

does not appear in Eq. (2 .35). 

(3 .39) 

e. The remaining set of Jacobian derivatives consists of the 8 derivatives of pi , 

Eq. (2 .36). For brevity, let Avi = (vf - VT ) , and similarly for the y and z components. 

itIf+ 8 c- x a2w.. a2w.. 
-= 
axk j mjPiPj 

Avti &+ Av! 
a2Wij 

~+Av?----- (3 .40) 
k I ’ axkayi ’ axkazi 

ilki 
-= c 
aYk j 

as. -L= l? 
azk 

c- 
a2w.. a’w.. 

j mjPiPj 
Av”- lJ +Av?- 

a2Wij 
’ azkaxi 

lJ -&I!.----- 
’ azkayi ’ ikkazi 

. 
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The next three derivatives differ in sign depending on whether k = i or k = j, 

because the VT term is positive and the vJ term is negative. 

= c ’ ’ av”, =i 
(3 .43) 

j a&j 

ati 
= 

ih’, =i 
c pi i3Wij 

mjpipj ayi 1 I 7 
j a&j ’ 

(3 .44) 

-= c ’ 
(3 .45) 

j 

Because the pressure is a function of the density and the energy, the next two deriv- 

atives use the perfect gas law, Eq. (2 .37). When this is done, pi cancels and so the deriv- 

ative with respect to Pk=i is zero but with respect to Pk=j is non-zero. It iS the opposite for 

the derivative with respect to kk. 

aii - = 0, 
aPk=i 

(3 .46) 

at, (Y - l)ei 
apk=j = -mk pk 

x awij aw, ilWij 
Avti ax. +AviyF +a~$;~ > (3 .47) 

1 i i 

hi 

aek=i 
= (,q)+‘~ Av;$+Av,:~+Av;~ , (3 .48) 

j i Yi 1 

(3 .49) 

B.2. The Second-Order Derivatives of the B-Spline WV 

The implicit version of the SPH code requires 1st and 2nd-order derivatives of W+ 

Eq. (2.28), with respect to the three spatial dependent variables. The first-order deriva- 
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tives were described in Chapter II, Section D. 

A study of the second-order derivatives shows that there are six basic forms needed, 

and the others can be found from them with just a sign change. The six basic forms are: 

a2Wij i12Wij d2Wij a2Wij d2Wij a2Wij 

i3xiaxi ’ i3xiayi ’ f3xiazi ’ h$Yi ’ ayidzi ’ az,az,* 
(3 .50) 

The relationship between these six and the others is shown below (the first-order deriva- 

tives are also included from Chapter II Section D for completeness). 

WY = Wji 9 (3 .51) 

dWGlaxi = -i3W&hj, (3 .52) 

dWgfdyi = -i3Wvlayj, (3 .53) 

aWilazi = -aW+zj, (3 .54) 

a2Wy/axiaxi = d2Wv/dxjdxj = -i32Wilaxiaxj, 

l12WY/ayidyi = a2Wti/ayjayj = -d2Wildyi3yj, 

a2Wq/aziazi = d2Wg/3zjdzj = -a2Wti/13zidzj, 

(3 .55) 

(3 .56) 

(3 .57) 

a2WG/axiilyi = a2Wti/dxjdyj = -a2WGlaxidyj = -a2W+hjayi, (3 .58) 

a2wq/axiazi = a2Wg/dxjdzj = -a2We/axidzj = -i12Wvfaxjazi, (3 5% 

a2wi/ayiazi = a2wi/dyjazj = -a2Wj/ayiazj = -a2W++3zi. (3-W 

Because the cubic B-splines of WV form a continuous function out to the second deriva- 

tive, the order in which the partials are taken does not make a difference. 

The six second-order derivatives for both Wag,and W bij follow. The derivative of 

Wa+ is a special case when i =j, because the derivative of AX = Xi - Xj with respect to Xi is 

zero, not one. A useful notation for the derivative of AX is dAX/dxi = (1 - 6~). 
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~ = ~~~~ + (rU-4h)(l -S,)J, 

d2Wbij -=- 
axiaxi 

for (0 4 ui < l), (3 .61) 

) for (1 I uij < 2), (3 .62) 

~ = ~~~~+(~ij-~h)(l-,ij~}, for (0 < uij < l), (3 .63) 

) for (1 I uij < 2), (3 .64) 

for (0 2 uij < l), (3 .65) 

) for (1 I uij < 2), (3 .66) 

a2Waij 9 CAxAy -=-- 
axiayi 4 h3Gj ’ 

for (1 4 uv < 2), (3 .67) 

1+(2-Uij)~ ) 
ij 

for (1 I uij < 2), (3 .68) 

a2Waij 9 CAxAz - = -- 
axiazi 4 h3cj ’ 

for (0 4 ug < l), (3 .69) 

- = 3 =(2-uij) a2Wbij 
axiazi 4 h2$ 

for (1 < uij < 2), (3 .70) 

a2Waij 9 CAyAz - =-- for (0 2 uij < l), (3 .71) 

. for (1 4 uti < 2). (3 .72) 



Initial Jacobian Matrix for the 1D 3-Particle Problem 
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Fig. III. 1. This is a simple 12 x 12 Jacobian spot matrix for a 1D 3-particle 
problem, showing a dot wherever there is a non-zero element. Down the left side are 
indicated the time-derivative equations (note the dot over each variable) of which the 
partial derivatives are taken. The partial derivatives for each dependent variable are 
indicated across the top of the matrix. The two horizontal and two vertical bars are 
placed in the matrix to show how each particle contributes a 4 x 4 block of elements 
along the diagonal of the matrix and two 4 x 4 off-diagonal blocks for each neighbor 
with which it interacts. Particles 0 and 2 are not interacting, so their off-diagonal 
blocks are filled with zeros. The off-diagonal blocks are symmetric about the diagonal, 
but the matrix itself is non-symmetric. 
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C. Lower and Upper (LU) Decomposition 

The implicit SPH method leads to (D+1)2 equations per particle, and thus for N 

particles, there are (D+1)2N simultaneous equations to be solved. In 3D there are 8N 

equations and 8N dependent variables. Methods that actually manipulate the matrix are 

known as direct methods. The Lower and Upper (LU) decomposition method with 

back-substitution is a direct method. It decomposes a matrix A into an upper and a lower 

triangular matrix. The problem then becomes Ax = LUx = b, and by setting y = Ux, the 

problem is split into two parts. First solve Ly = b to find the vector y by forward substitu- 

tion. Then solve Ux = y for the vector x using back-substitution. 

The LU decomposition method has the advantage over Gaussian elimination in 

that the vector b is not altered in the process. For Gaussian elimination each row manipu- 

lation alters the vector b by scaling its elements and adding them or swapping them 

around. Once A has been decomposed into the matrices L and U, however, a sequence of 

different vectors b could be run for a variety of conditions. Both methods perform about 

the same number of operations, and so they take about the same amount of time to run, but 

LU can be used over again with different bs. Both of these methods, however, require 

fewer operations than the Gauss-Jordan elimination technique (see Press et al. [66], Sec- 

tions 2.1 to 2.3). 

The LU decomposition coding used in the implicit code was modified from that 

developed by Press et al. [66] which was used in conjunction with a fourth-order Rosen- 

brock method, found in Section 16.6 of the same reference. Rosenbrock methods are a 

generalized implicit Runge-Kutta technique and are also known as Kaps-Rentrop meth- 
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ods. Rosenbrock developed the theory [70] and Kaps and Rentrop [40] were the first to 

implement the technique as a practical code. The Rosenbrock method as implemented 

reuses the LU factorization by making four different estimates of the solution, with each 

subsequent estimate modified by the previous ones, and then the four estimates are aver- 

aged together appropriately to obtain fourth-order accuracy. Following an example in 

Press et al. [66], the LU decomposition method, with back-substitution coupled with the 

Rosenbrock method, has been implemented in the implicit code and is working, but its run 

time and memory usage are not very competitive with the explicit code. 

D. The Numerical Jacobian 

Each term in the Jacobian can be approximated numerically by using the definition 

of a derivative. To use a numerical Jacobian instead of the analytic technique, described 

in Section B of this chapter, a number of significant advantages are realized. By approxi- 

mating the derivatives using existing software packages in the SPHINX code, all the exist- 

ing physics packages become available to the new implicit code automatically, as well as 

any new ones to be added in the future. This advantage also automatically includes any 

new kernel routines or neighbor-search routines. There is a new moving least-squares 

(MLS) package being added by Dilts [22], [23] for calculating the interpolants more 

exactly than the standard SPH approach. This package is also automatically available to 

the new implicit time-stepping code. In addition, the coding for the numerical Jacobian is 

much simpler to implement and hence easier to debug than the analytic Jacobian because 

it is making use of existing code that has been independently and previously tested. 
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The SPH equations (2 .3 1) to (2.36) are of the general form given by dY/dt = f(Y), 

where f(Y) represents the right-hand sides and is a vector function of the state vector Y. 

The state vector contains all the dependent variables (position, velocity, density, and inter- 

nal energy) for each of the particles. The right-hand side f(Y) is evaluated, at the “cur- 

rent” time, to obtain the rate of change for each of the dependent variables (velocity, 

acceleration, and the time derivatives of density dpldt and energy deldt). The Jacobian 

matrix involves the derivative of f(Y) with respect to each of the elements Y, of the state 

vector Y. The numerical approximation for the Jacobian derivatives is given by: 

f(Y)-f(Y +&Yk) 
3 

k 
(3 .73) 

where E is a small perturbation weighted by the kth element of Y. The bold notation Yk 

represents a vector of zeros except for the one element Yk in the kth position. In the defi- 

nition of a derivative, E in the limit should go to zero; on the computer, however, it is a 

small number, chosen mainly by consideration of the precision being used on the 

computer. For instance, in double precision, which carries digits out to fifteen places, 

E = 10m7 works well. Weighted by Yk, E perturbs the sixth digit of each value, one at a 

time, in the state vector Y, irrespective of the magnitude of the value. That is, some of the 

values in the vector Y, such as the energy, are going to be very large, and others, such as 

position, can be near zero. So weighting E by Yk perturbs each value by the same percent- 

age. For single precision computations with eight digits of accuracy, E = lop4 would 

probably be a good choice, since that would perturb the fourth to the last digit of each 

value in the vector Y. 

The existing explicit SPHINX code has the function As(Y), which calculates the 
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right-hand sides of the SPH equations. To form the numerical derivative, rhs(Y) is first 

run using the unperturbed values of Y, and all the resulting time derivatives for each parti- 

cle are stored in a vector function f,. Then one element in the state vector Y is perturbed 

by EYE, and rhs(Y+&Yk) is run again. Differencing the values of the vector f, with those 

of the perturbed f(Y+&Yk), and dividing by &Yk, gives one column of the Jacobian matrix. 

Then the perturbed element of Y is set back to its original value, the next element of Y is 

perturbed, and the differencing is done all over again. Each repetition of this process cal- 

culates another column of the Jacobian. 

In this fashion the numerical Jacobian matrix of the implicit code is built up during 

each time-step, and this approach now replaces the analytically derived Jacobian equations 

of Section B of this chapter. The next step is to find the solution to the inverse problem. 

E. Iterative Solvers 

Since the LU decomposition method is very time consuming, it has been replaced 

by iterative solvers. Iterative solvers are algorithms that solve a linear system Ax = b by 

starting with a guess to the solution and then iterating on it until a desired accuracy has 

been reached without actually inverting the matrix. The iterative methods can signifi- 

cantly shorten the computational time over directly inverting the matrix if they converge 

quickly. Convergence can be accelerated by a judicious choice of a preconditioner 

matrix. Iterative methods also have another advantage over direct methods in that a direct 

method cannot be stopped part way through and have any useful results. Direct methods 

have to be run to completion each time, where iterative solvers can usually be stopped 
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after a few iterations and the result is an approximate solution, which can be useful, 

depending on the accuracy desired. 

If x and b are vectors and A is a non-singular matrix to be inverted, the general 

problem is of the form x = A-’ b, where A and b are given and x is the unknown. Instead 

of inverting A, the iterative methods solve Ax - b = 0 approximately, by guessing at a 

solution, x,, and then iterating on x until a vector of residual errors R is near zero, where 

R - Ax-b G 0. (3 .74) 

In other words, the intercepts, or zero crossings, of each of the equations in the linear sys- 

tem is being sought. 

E.l. Stationary Methods 

The earliest iterative solvers, for solving Ax = b, are referred to as stationary meth- 

ods [7], [41]. These are iterative methods that can be written in the form xk+l = Mx, + C, 

where M and c are modifications to A and b, and do not depend on the previous iteration 

count k. The most popular methods are the Jacobi, the Gauss-Seidel, and the Successive 

Overrelaxation methods. These methods are based on splitting the matrix A into parts: 

A-D+E+F, (3 .75) 

where, using a modified notation of Saad [71], D is the diagonal of A, and E and F are the 

two triangular parts of A below and above the diagonal. Equation (3 .75) is not an LU 

decomposition but a simple splitting of the matrix. These methods are usually not as effi- 

cient as the Krylov methods but can serve as preconditioners in the Krylov methods. 

The Jacobi method makes use of the fact that it is trivial to invert the diagonal and 
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uses an iterative equation of the form: 

xk+l = D-l {b - (E + F)xk}, (3 .76) 

So, starting with an initial guess of x,, then x1 can be obtained using (3 .76). Then, using 

x1 as the next guess, x2 is obtained, and so on until the desired accuracy is reached. The 

matrix D-l (E + F) is known as the iteration matrix and remains unchanged with each iter- 

ation, hence the term stationary. 

The Gauss-Seidel method is based on the fact that the triangular matrix (D+E) is 

straightforward to invert; it is simply a back-substitution process. This method uses an 

iteration equation of the form: 

JQ+~ = (D+E)-1 {b - Fxk}, (3 .77) 

The Successive Overrelaxation (SOR) method splits the matrix A differently. If 

Eq, (3 .75) is multiplied by an extrapolation factor pi), and then the diagonal D is added and 

subtracted, to give the following splitting of A: 

aA = (D+coE) + [OF - (1-o)D], 

then the iteration equation is given by: 

x~+~ = (D+oE)-’ {cob - [oF - (1-o)D]xk}, (3 .79) 

The value of o is 0 < ci) < 2. If o is outside this region, this method goes unstable, and if 

o = 1, the method just reduces to the Gauss-Seidel method. For the region 0 < o < 1, it 

should be called underrelaxation, but traditionally the whole span of zero to two is referred 

to as overrelaxation. The choice of o can have a significant effect on the rate of conver- 
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gence and hence shorten the number of iterations, but the optimal value is not easy to find 

and varies with the problem. One method is to vary o slightly and see if it improves the 

rate of convergence. This variation can be done by dithering o while the code is running 

or by making several runs with different values of cu. Once an optimal ci) has been deter- 

mined, then it is best to leave it constant to make the code run economically. 

Each of the above methods has an iteration matrix that remains unchanged with 

each iteration and is, therefore, called a stationary method. For an excellent discussion of 

the above methods see Strang [81], or Golub & Van Loan [32]. 

E.2. Non-Stationary Methods 

In the 1950s the Conjugate Gradient (CG) method and related methods referred to 

as non-stationary methods were developed (See Barrett et al. [7], Golub & Van Loan [32], 

Kelley [41], Saad [71], and Strang [Sl]). “Non-stationary” means that with each iteration 

the information for doing the computation changes. These methods have no iteration 

matrix but rather are based on the orthogonalization of the residual vectors and a minimi- 

zation of the residual at each iteration. The early methods, such as the CG method, could 

only be guaranteed to converge if A was a symmetric positive-definite matrix. 

Lanczos had proposed a biorthogonal method to handle non-symmetric matrices in 

his 1950s papers [45] and [47], but the idea lay unused for over twenty years. In 1986 a 

method known as the Generalized Minimal Residual (GMRES) method was introduced 

that could handle non-symmetric matrices. Since then, a number of methods for handling 

non-symmetric matrices have been developed. For several texts books on the subject see 

Barrett et al. [7], Cullum & Willoughby [19], Golub & Van Loan [32], Kelley [41], Saad 
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[71], and Zlatev [97]. Some of the more successful iterative methods for non-symmetric 

matrices are: 

(GMRES) - Generalized Minimal Residual, 

(BiCGSTAB) - BiConjugate Gradient Stabilized, 

W-W - Conjugate Gradient Squared, 

(QMR) - Quasi-Minimal Residual. 

These methods can be real ‘race horses’ compared to the direct method of LU 

decomposition, but they can also be unpredictable. Usually one or more will converge in 

much less time than that required by the LU decomposition method. One technique that 

has been used to try to assure convergence by Barrett [8] is to run several of the methods in 

parallel, and when one converges, computation on that time-step is stopped, and the code 

moves on to the next time-step. 

The non-stationary iterative methods for solving R - Ax - b g 0, are based on 

generating a sequence of orthogonal residual vectors Ri that are also the gradients of qua- 

dratic functions, which, when minimized, lead to a solution x of the linear system. Since 

the residual vectors are orthogonal, it follows that they are linearly independent. These 

methods are also known as Krylov methods because the residuals are projections onto vec- 

tors of a Krylov subspace, which is defined as a span or a set of vectors: Kk = {R, , AR, 

, A2R,, . . . , AkMIRo}. The y o f 11 ow one of four orthogonalization procedures put forth by 

Gram-Schmidt [8 11, Householder [38], Lanczos [45], or Arnoldi [6]. Projection is analo- 

gous to finding the projection of a vector onto a plane, except that it is an N-Vector pro- 

jected onto an N-space, or Krylov space. 
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E.3. Symmetric Positive-Definite Matrices 

The Conjugate Gradient (CG) method typifies the fundamentals of the non-stationary 

iterative methods, and the others are generally variations pf this one. The CG method 

requires that the matrix A be symmetric and positive-definite for a minimum of Eq. (3 .80) 

below to exist. Orthogonalization is done using the Lanczos method for symmetric matrices. 

Following Kelley [41], Chapter 2, the Lanczos method reduces a real symmetric 

matrix A to a tridiagonal matrix T, and the columns form an orthonormal basis for the pro- 

jection of b onto the Krylov subspace. The residual vectors are each made orthogonal to 

the previous residuals and to the Krylov subspace. It is then very straightforward to factor 

the tridiagonal matrix into a triangular and diagonal matrix T= LDLT. For a tridiagonal 

matrix, the triangular matrix L consists of only the main diagonal and the first subdiagonal 

below it. The problem, .then, is reduced to solving LDLTx = b, which is done in three 

steps. First, find y from Ly = b, which is simple since L has only two diagonals. The 

second step is to solve for z from Dz = y, which is even easier since D is just a diagonal 

matrix. Third, solve for x from LTx = z. 

The minimization is accomplished by taking the gradient of the polynomial: 

t)(x) = (l/2) xT A x - xT b. (3 .80) 

If the vectors x and b and the matrix A are all multiplied out, the result is a polynomial. 

Setting the gradient of the polynomial to zero yields the linear system being solved and the 

extremum of Eq. (3 .80), 

VW4 = Ax-b = 0. (3 .Sl) 
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Thus, minimizing $(x) is the same as finding the solution to the linear system. The mini- 

mum of Eq. (3 .80) can be found by the Least Squares procedure. 

E.4. Non-Symmetric Matrices 

If A is non-symmetric, one way to handle that is to multiply A by its transpose AT, 

because the product AAT or ATA is symmetric and positive-definite, assuming A is 

non-singular. Using the first product leads to a method called the Conjugate Gradient on 

the Normal Equations (CGNE), where x is redefined as x = ATy, and then two problems 

are solved. First (AAT)y = b is solved for y using the CG method, and then x = ATy is 

computed. The second product, ATA, leads to the method called the Conjugate Gradient 

on the Normal equations Residual (CGNR) where both sides of the linear system are mul- 

tiplied from the left by the transpose of A, that is, (ATA)x = ATb, and the equation is 

solved using the CG method. Both of these methods, however, converge rather slowly. 

Also, the transpose has to be generated. 

More efficient techniques have now been developed to solve R E Ax - b G 0, 

when A is non-symmetric, and they have taken two major branches, one based on Arnoldi 

orthogonalization and the other on non-symmetric Lanczos biorthogonalization. The 

Arnoldi process is used in the GMRES iterative technique and was introduced by Saad & 

Schultz [72]. The Lanczos biorthogonalization process has led to the iterative techniques 

BiCG, BiCGSTAB, CGS, and QMR. The Arnoldi process is the easier of the two to ana- 

lyze, so GMRES has been more extensively studied than the others. A good comparison 

of the various methods is found in the book by Barrett et al. [7]. The general conclusion 

they reached is that GMRES is the more robust in that it will converge eventually, but it 
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uses up a lot of memory. The others may converge much faster and use less memory, but 

it is possible they might not converge. 

ES. Arnoldi Orthogonalization for Non-symmetric Matrices 

The Arnoldi process [6] uses the Gram-Schmidt orthogonalization method coupled 

with ideas of Hestenes and Stiefel [35] and allows the solution for non-symmetric matri- 

ces. Instead of reducing A to a tridiagonal matrix T, it is reduced to Hessenberg form, in 

which the elements of the matrix are all zero below the first subdiagonal. (A tridiagonal 

matrix is also in Hessenberg form, but it is the result of starting from a symmetric matrix.) 

The Generalized Minimal Residual (GMRES) is a method for handling non-sym- 

metric matrices, and is based on the Arnoldi procedure. For GMRES the Gram-Schmidt 

orthogonalization is commonly used, although the Householder method is also used. The 

Gram-Schmidt method, however, is better for parallelization, [7] p. 2 1. 

The main problem with this technique is that the entire sequence of orthogonal 

vectors for each iteration needs to be saved, which can require a large amount of memory. 

Because the solution is not formed for each iteration, the residual can be minimized with- 

out it. Restarting the procedure, by forming the approximate solution and starting over 

after some number of iterations m, can alleviate this problem. It can be difficult, however, 

to decide what value of m to use. The GMRES method may be somewhat slower and use 

more memory than the following methods, but it is commonly used because it is consid- 

ered to converge more reliably. 
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E.6. Lanczos Biorthogonalization for Non-symmetric Matrices 

Lanczos proposed a method for handling non-symmetric matrices that uses two 

orthogonal bases and two Krylov subspaces, one for a sequence on A and the other on AT. 

The two sequences are made mutually orthogonal, instead of orthogonalizing each 

sequence. The resulting method is called Bi-orthogonal Conjugate Gradient (BiCG) (also 

known as BCG in some texts), but this method proved to have unreliable convergence. 

More stable convergence can be obtained, however, by using a different update on the AT 

sequence, and this method is called Bi-Conjugate Gradient STABilized (BiCGSTAB). 

The Conjugate Gradient Squared (CGS) method is a modification such that the 

sequence for the transpose AT does need to be found, and therefore it can converge about 

twice as fast as BiCG. It was put forth by Sonneveld in 1989 [75]. Some claim in the lit- 

erature that this method is more likely to have convergence problems than BiCG. 

The Quasi-Minimal Residual (QMR) algorithm was introduced by Freund and 

Nachtigal [26] in 1991, and uses a “look ahead” technique to stabilize the BiCG method. 

It also converges more smoothly. 

For the implicit version of the SPHINX code, the GMRES, the CGS, and the 

BiCGSTAB methods have been written and tested and are working. These Krylov solvers 

have been compared to the versions in the commercial code MATLAB, which is an excel- 

lent code for matrix manipulation. The CGS method has converged a little faster than the 

GMRES and BiCGSTAB methods for the SPH matrices tried to date. For the type of 

matrices generated from the implicit code, the CGS method has proven to be very reliable 

and hence has become the one most used for this dissertation. 
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F. The Newton-Raphson Iteration 

The Krylov solvers solve the linear problem, but in general the equations are non- 

linear, and there are several approaches to solving the nonlinear problem. The New- 

ton-Raphson iteration method for solving nonlinear problems is used in the implicit version 

of the code. In lD, for example, this method works by iterating on the residual until its 

intercept at zero is reached within a given tolerance by extending the tangent of the curve at 

a point and then taking the intercept of the tangent line as a new estimate to the intercept of 

the curve. Extending it to multiple dimensions is similar. The iterations are done within 

one time-step to improve the accuracy of the nonlinear problem. This process converges 

quadratically, so it can usually be stopped in just a few iterations. The book by C. T. Kelly 

[41] discusses iterative methods for both linear and nonlinear systems of equations. 

The residual is defined as: R(Y) = dY/dt - f(Y) E 0, which is the approximation 

of Eq. (3 .7). For the current problem it represents the SPH equations (2 .31) to (2.36) 

where Y is the state vector of dependent variables and f(Y) is a vector function represent- 

ing all of the right-hand sides of the SPH equations for each particle. 

The Newton-Raphson iteration is given by: 

Yj+l E Yj - [R’(Yj)I- 1 R(Yj), (3 .82) 

where, for the implicit code R’(Yj) = aR(Yj) / 3Y = J, which is the Jacobian matrix of 

the residuals R(Y). The subscript j indicates the sequence of estimates for the vector of 

dependent variables Y. The iteration equation (3 .82) is derived from the Taylor expan- 

sion of R(Y) = 0, 

R(Y) = R(Y,) + (Y1 - Y,) R’(Y,) + . . . = 0. (3 .83) 
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Keeping the two terms shown, Eq. (3 .83) can be solved for Y1 and obtain: 

Y1 z Y, - [R’(Y,)]-’ R(Y,). (3 .84) 

Given a first guess Y,, then a new estimate can be calculated Yt, which can then be put 

back in and another estimate Y2 can be found, and in most cases each iteration will be a 

better solution to R(Y) = 0. Iterating in this fashion is best represented by Eq. (3 .82). 

This technique is used within the code to find the step dY, so that Y of Eq. (3 .82) is substi- 

tuted if for dY of Eq. (3 .l 1). 

Occasionally an estimate is on the wrong side of, or too close to, a minimum or a 

maximum, and the tangent line takes the next estimate way out of range or off to infinity. 

Other conditions can cause the residuals to oscillate between two points and not converge. 

Techniques exist that correct for that within the Newton iteration. One method, known as 

a line-search [41] [66], tests the residuals from one Newton iteration to the next to make 

sure they are monotonically decreasing. If the residuals increase, all the elements of the 

vector dY are cut by some fraction, usually l/2. The residuals are then recalculated and 

compared to the residuals of the previous Newton iteration to see if it is smaller. If not, 

dY is cut in half again, and the line-search iterates like this until the residual is smaller. 

The idea is simple. It is using the fact that dY is the direction to go, sometimes called the 

Newton-direction, but it is just going too far. In cutting dY in half again and again, it is 

moving dY back toward the previous estimate, but maintaining the Newton-direction. It 

is doing nothing to the time-step size, or the final solution. It is just iterating within a 

Newton iteration to improve the next estimate. One to five iterations of the line-search is 

usually sufficient. 
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G. Sparse Storage and Computations 

One of the main problems with implicit computations is the storage of the very 

large matrix within the computer memory. This problem can be ameliorated since each 

particle has only a few neighbors, and hence a major portion of the matrix is composed of 

zeros. So to conserve on memory, only the non-zero elements of the matrix need to be 

stored. This method can allow for more particles, and hence higher resolution, to be used 

in a given problem. The most straightforward method of storing a matrix is to store each 

non-zero element along with its m and n indices in correlated vectors. This method of 

storage is not the most efficient, but it is the easiest for the user to read, and the order in 

which the elements are stored can be completely random as long as each element is corre- 

lated with its indices. This method is used in the present sparse implicit code with the 

diagonal elements being stored at the beginning of the matrix, so that the time-step can be 

reduced if the Krylov solver fails to converge, or so that the diagonal can be used in a 

Jacobi preconditioner. Multiplication of a matrix in this form by a vector of the appropri- 

ate length is very simple because the code just steps down through the vectors, the sums of 

the products can be added in any order, and the indices will direct the addition of each 

product to the appropriate element in the resultant vector. 

One can also take advantage of the sparseness of the matrix in another way by elim- 

inating computations where zeros are known to occur, hence saving time. In the SPHINX 

code each particle has a list or neighbors, so only the off-diagonal blocks due to neighbors 

need to be calculated. All other off-diagonal blocks are known to be filled with zeros. The 

Jacobian function of the code has been written such that it calculates only the non-zero 
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blocks due to neighbors and none of the zeros of the blocks where there are no neighbors. 

More time can be saved by using a right-hand-side (RHS) function that calculates 

the function for just one particle instead of all of the particles as the existing SPHINX 

code does. This function allows the implicit code to calculate the RHS for just the neigh- 

bors of each particle instead of all the particles for each particle. In forming the Jacobian, 

the RHS function has to be called for each column of the matrix, and so calculating the 

RHS of just the neighbors saves time because the rest of the summation terms are zero. 

There was one unexpected problem in switching from the full matrix to the sparse 

storage, and that is, there is a difference in the Jacobian between including the continuity 

equation and replacing it with a summation method. It turns out that the summation 

method generates extra non-zero elements in the Jacobian which arise from the neighbors 

of the neighbors, but only in the columns for the derivatives with respect to velocity. 

Hence, there is currently a sparse version of the code for use with the continuity equation, 

and a full matrix version for use with the summation method. Modifying the sparse ver- 

sion of the code to handle these extra matrix elements, so that one code can handle both 

density methods, has been left as a future task. 

H. Preconditioners 

The convergence rate of the Krylov solvers has been found to be greatest if the 

eigenvalues of the Jacobian matrix are clustered near one. (The collection of eigenvalues 

of a matrix is referred to as the spectrum of the matrix.) Most matrices, however, do not 

have such nice spectral properties, but many can be transformed into a matrix with better 
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spectral properties. This transformation is referred to as preconditioning the matrix. 

The transformation is accomplished by finding a matrix M, which is easy to invert 

and is approximately the coefficient matrix A, of the equation Ax = b, or finding a matrix 

that approximates A-’ directly. In either case, the basic idea is that from MelAx = M-lb 

the product matrix M-lA would be approximately the unit matrix, which has the desired 

eigenvalues or spectral properties. 

Preconditioning the matrix can be very effective in helping the Krylov solver to 

converge, but it is a trade-off. The preconditioner uses computer time and memory, so it 

must be simple and cheap to operate. The savings comes when it can reduce the number 

of Krylov iterations significantly, that is, improve the convergence rate. 

The simplest and easiest preconditioners to implement are those that use the Jaco- 

bian matrix itself in various disassembled forms. These include use of the iterative meth- 

ods, described in Section E. 1 of this chapter, such as the Jacobi (J), the Gauss-Seidel (GS), 

and the Symmetric Successive Over-relaxation (SSOR) iterative methods. They are typi- 

cally used multipass (see Goulb & Van Loan [32]). The single pass Jacobi uses just the 

diagonal of the matrix. The multipass Jacobi has been implemented in the three Krylov 

solvers CGS, BiCGSTAB, and GMRES and has been tried as a I-, 2-, 3-, and 4-pass pre- 

conditioner. From the results of several test cases, the 2-pass Jacobi preconditioner was 

found to be the most effective in minimizing the number of Krylov iterations. Because of 

the success of the 2-pass Jacobi, the SSOR has not been implemented but has been recom- 

mended as being better than the Jacobi preconditioner. It would require different storage 

of the Jacobian matrix and reprogramming the matrix-vector multiply. 
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I. A Time-step Method for the Implicit Code 

A time-step method has been added that allows for time-steps larger than explicit 

time-steps. The largest time-step allowed is based on the idea that no two particles should 

be allowed to hit during one time-step. The minimum time, dT, for any two particles to 

collide is found based on current values, and this time can then be cut in half or a quarter 

or whatever fraction is found to be appropriate for a given problem. If r is the distance 

between particles i and j, and v, is the relative velocity between them, then dT = r/vr So a 

search through all particles and their neighbors for a minimum dT uses both r and vr for 

each pair, and a fraction of dT is used as the maximum allowed time-step. It has been 

implemented such that it does not matter if the relative velocity of the pair is toward or 

away from each other. 

The relative velocity is found by using the dot product of the difference vector 

dv = Vi -vj of the two particles i and j with a unit vector r/M. That is, v, = dw(r/lrl); or 

v, = abs((dx*dv, + dy*dv, + dz*dv,)/r); where r = d(dx*dx + dy*dy + dz*dz); and vr and 

r = Irl are both scalar, and both use the positive root so that dT is positive. 

There are other limits placed on the time-step size. The explicit code ramps the 

initial time-steps up to its own computed time-step, and any portion of this ramp can be 

used by the implicit code. In addition to that, the implicit code has its own ramp which is 

a steadily increasing multiplier, dtmult, of the explicit time-step, and it will continue to 

increase until it reaches either a maximum, dtmultmax, or dT times a fraction, whichever 

is smaller. Currently the fraction of dT, the rate of increase of dtmult, and dtmultmax are 

arbitrarily chosen by the user. If either the Krylov solver or the Newton-Raphson itera- 

tions fail to converge, then dtmult is reduced by some fraction, which is also user deter- 
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mined. Then ramping-up of dtmult starts again, so this ramping might be used at any 

point during the calculation not just for the initial time steps. There may be a rational way 

of deciding what the user determined values should be, but to date it has been trial and 

error, and it may need to be adjusted for various problems. 

Since the implicit code uses the explicit time-step as a basis, it is using the same 

considerations in choosing the time-step as the explicit code. These depend on the phys- 

ics of the particular problem being run, and they might include such things as material 

strength, viscosity, or the Courant time-step. 

Another approach to determining the time-step may be to base the time-step on dT 

only, except for an initial ramp-up. The increasing dtmult might be replaced by varying 

the fraction that multiplies dT. The fraction might be ramped up to some value similarly 

to dtmult. The implicit time-step would then be independent of the explicit time-step. 

J. A Matrix-Free Method 

Within the iterative solvers there are typically one or two occurrences of a 

matrix-vector multiply that yields another vector, and this is the only place in the iterative 

techniques where the matrix is actually needed. This product can be replaced with a Tay- 

lor expansion, which is just a summation of vector operations. The product of the Jaco- 

bian matrix J and the vector v can be replaced by the difference of the residual R(Y) and 

the perturbed residual, which is perturbed by E weighted by the vector v: 

4 = JevzR(Y+EV)-R(Y) - 
& 

7 

where the residual is defined as: R(Y) = dY/dt - f(Y) = 0. 
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Following an example by Knoll et al. [43] to illustrate the concept behind this 

matrix-free method, consider the product of a two-by-two Jacobian matrix J = aR(Y,> / aY 

and a 2-vector v, which yields a new 2-vector: 

J.v = 

aR, aR, 
ay,ay, a 
aR, aR, 
ay,3y, 

v1 - l - .v2 i[q + v2[gj 
4q+v2[$) * 

(3 .87) 

Multiplying and dividing both elements of the new vector by a scalar perturbation E and 

then adding and subtracting the respective error for each element to the numerators, leaves 

it unchanged in value. 

Jov = 

35 ah 
“1 ay, L-1 q + EV2 ay, 

& = 
3R2 

EV1 ay, 
3R2 L-1 q +&9 ay, 

& 

Then, recognizing that the first three terms of each numerator are the zeroth and first-order 

terms of a Taylor expansion of a function of two variables, Eq. (3 .88) can be rewritten 

approximately as: 

r R,(Y, + 9,Y2 + &v2) - R,V,,Y 
J.v= & 

+ q,Y2 + &v2) - 
E 

or back to vector notation: 

J.voR(Y+Ev)-R(Y) 
7 

& 

(3 .89) 

(3 .90) 
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and similarly for function of three or more variables. A prescription for the scalar pertur- 

bation is given by: 

(3 .91) 

where N is the dimension of the Jacobian, and b is a constant determined by machine 

round-off. For single precision they recommend b = 10W5. 

This method has been attempted in the three Krylov solvers of the implicit code, 

but has worked for only a few of the test cases, when the single-pass Jacobi preconditioner 

is used. It was initially hoped that the single-pass Jacobi, which is just the diagonal of the 

Jacobian, could be used routinely, but it does not work as well as the 2-pass Jacobi, which 

requires the complete Jacobian matrix, and that defeats the purpose of going to matrix-free 

methods. For matrix-free to work well, a more memory-efficient preconditioner will 

need to be developed. The preconditioner is itself a matrix, and so for the matrix-free 

method to be advantageous, the preconditioner should use significantly less memory than 

the Jacobian matrix. One idea is to use just the diagonal blocks along the diagonal of the 

Jacobian for the preconditioner. An algorithm for inverting each block, taking advantage 

of the known zeros, has been developed, but has not been programmed or tested. Since 

using the diagonal blocks as the preconditioner is an unknown approach, it has been put 

off as a future task. Elimination of the huge Jacobian matrix would allow larger problems 

to be run because more memory would be available. In running some of the problems 

that the explicit code runs easily, the implicit code, to date, can only run if the number of 

particles is reduced; otherwise it will not fit in the memory of the same computer. 
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K. The Theta Parameter 

The results of Section A of this chapter can be modified by introducing a parame- 

ter theta, (0), that adjusts the degree of implicitness or explicitness by rewriting Eq. (3 .8) 

as an average of the current and next time-steps, and then doing the Taylor expansion of 

Eq. (3 .9). This is a standard technique found in many texts such as Oran & Boris [64], 

Section 4-2, for instance. Assuming 0 is a fraction between zero and one, then the follow- 

ing equation can switch continuously between fully implicit and fully explicit. That is, 

when 0 = 0, it is fully explicit; when 8 = 1, it is fully implicit; and in between it is 

semi-implicit. Making the fractional parts of Y, and Y,+l add to 1, Eq. (3 .S) becomes: 

Y n+l = Y, + At [(I - qf(Y,) + 8 f(Y,+l)] . (3 .92) 

Then by expanding f(Y,+,) in a Taylor series, keeping only the first two terms, and 

collecting the Y,+r terms, as in Eqs. (3 .8) through (3 .l l), only a slight change occurs; a 0 

is introduced in the Jacobian. 

Y n+l = Y, + At (1 - e) f(Y,) + At 0 [f(Y,) + af/axlX l (Y,+r - Y,)] ) (3 .93) ” 

Y n+l = Y, + [UAt - 0 aflaY]-l . Y’, . (3 .94) 

Comparing to Eq. (3 .lO) the Jacobian is J = [I/At - 8 df/aY]. Using a value for 0 

between 0.55 and 0.75 has been found to improve the agreement between the explicit and 

implicit codes. 

With the introduction of 8, the other equations are also found to be affected. 

Expanding the residual or error equation R(Y) = dY/dt - f(Y) = 0, Eq. (3 .86), in terms of 

the 8 parameter one obtains: 

R(Y) = &+I - &>/At - [(I - e)f(Y,) + 8 f(Y,+l)] G o, (3 .95) 
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from which the Jacobian of Eq. (3 .94) can be derived in another way, by taking the deriv- 

ative of R(Y) with respect to Y,+l: 

J = R’(Y) = aR(Y)/aY,+, = [r/At - 0 aflaY]. (3 .96) 

This also demonstrates that J as used jn this dissertation is the Jacobian of the residual 

function R(Y). 

The 0 version of the Newton-Raphson iteration of Eq. (3 .82), along with Eqs. 

(3 .95) and (3 .96), then becomes: 

yj+l = yj,,, - d+l -YS;)/At- [(l-0)f(Yl;) +8f(Y;+1)] 
n+l 

[I/A~ - 0 af(Yi +1 )/ay; +1] * 
(3 .97) 

The matrix-free method of Eq. (3 .85) requires the residual be perturbed by EV: 

R(Y+m) = (Y,+l + EV -&)/At - [(l - 0)f(Y,) + 8 f(Yn+I+Ev)] E 0, (3 .98) 

so by subtracting Eqs. (3 .95) and (3 .98) and dividing by E, a 0 version is obtained: 

q = J.VG R(Y+m)-R(Y)_v-~ f(Y,+, +EV)-f(Yn+d 
-At 

(3 .99) 
E E 

These relations have all been fully implemented into the full-matrix, the sparse-matrix, 

and the matrix-free versions of the implicit code. 
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Chapter IV 

Test Cases 

A. Introduction 

The next step in developing the new implicit code is to test it for accuracy and 

speed. To check out the accuracy, the results of the new code can be compared to analytic 

solutions or to experimental results, or if neither of those exist, then they can be compared 

to the results of other codes. The implicit code has been compared to all three types of 

results for several different fluid problems, and compares very well. The code has been 

tested using ID, 2D, and 3D cases. To test the speed of the new code, it has been com- 

pared to the SPHINX code, and a regime has been found for which the implicit code can 

perform the computation faster than the explicit code, as is discussed in Section G of this 

chapter. 

The fluid problems to be discussed in this chapter include a three-particle problem, 

a rarefaction problem, a shock-tube problem, a Rayleigh-Taylor instability, a breaking 

dam problem, and a single gas-jet problem. In brief, for the three-particle and the single 

gas-jet problems, both the implicit and explicit codes agree very well with each other. For 

the rarefaction and shock-tube problems there are analytic solutions, and both codes agree 

very well with each other and with the analytic solutions. For the Rayleigh-Taylor insta- 

bility the two codes agree well with each other but only agree with the analytic solution 

for the first e-folding time. For the breaking dam problem there is experimental data to 

compare to, and both codes agree well with the data. 
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B. A Three-Particle Problem 

The three-particle test problem is useful because the Jacobian matrix is small 

enough to be calculated by hand using the equations developed in Chapter III. The matrix 

is 12 x 12 for the 1D problem, 18 x 18 for the 2D problem, and 24 x 24 for the 3D prob- 

lem. Both the analytic and numerical Jacobian algorithms generated matrix elements that 

were in excellent agreement with the hand calculations for 1D and 3D. 2D was not calcu- 

lated by hand, but most of the elements would be the similar. These matrices are also eas- 

ily handled by the commercial software packages Mathematics and Matlab. There are 

also Krylov solvers available for Matlab, so that one can compare step-by-step the results 

of the Krylov solvers of the new implicit code to those for Matlab. This process was done 

for the three solvers incorporated in the implicit code, CGS, BiCGSTAB, and GMRES. 

This test problem consists of three particles in a row and was run in one and three 

dimensions. In 1D (shown in Fig. IV. 1) the particles were set up 1 cm apart with zero ini- 

tial velocity, an initial temperature of 300 OK, and a density of 2.7 g/cc. The perfect-gas 

model was used for the Equation of State (EOS), with a ratio of specific heats of y = 1.4 

and an average molecular weight of. l-t = 1.0. Initially the smoothing length h was set 

equal to the particle separation, and was allowed to vary. That means that each end parti- 

cle had only the middle particle as a neighbor, and the middle particle had both end parti- 

cles as neighbors. The density method used was the continuity equation. 

Because of the pressure between the particles, the two outer particles accelerate 

out in opposite directions symmetrically with each time-step, and the middle one remains 

stationary. The density associated with each particle decreases as they move apart until 

their smoothing lengths no longer overlap, at which point the densities remain constant as 
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Fig. IV. 1. A plot of the 3-particle problem in one dimension with variable h 
shows a comparison of the explicit and implicit cases at four different times. The 
explicit code was run using the Runge-Kutta time-stepping method. The lines drawn 
between particles connect particles of the same time and case. 

the particles continue to separate at constant speed. The density for the middle particle 

decreases most because there are terms in the summations contributed by two neighbors, 

whereas each end particle has contributions from only one neighbor. Both the explicit 

and implicit codes agree fairly well for 0 = 1.0, and 0.5, and very well for 8 = 0.75 for 

change in density and distance traveled per time-step. The theta parameter is discussed in 
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Chapter III Section K and varies the amount of implicitness in the code. 

Figure IV. 1 shows a comparison of the explicit code using the Runge-Kutta time- 

step routine versus the implicit code using the same time-steps for both, and shows how 

the density changes with time. These results were run using the full matrix. Theta was 

set to 0.75. The particles are shown connected by lines that are at the same time and same 

case. They start out at the top of the plot at t = 0.0 psec with all the particles at the same 

density for both cases. Then at t = 4.6, 9.1, and 20.0 psec they form a V because the den- 

sity of the middle particle has dropped faster than that of the end particles. 

One problem encountered in doing the three-particle problem is when to recalcu- 

late the variable smoothing-length h within the code. There is a function in the code 

called rhs which calculates all the right-hand-sides of all the equations for each of the par- 

ticles. The problem is when to recalculate h relative to the rhs function. For the sparse 

matrix version of the implicit code, the rhs function needs to be performed before h is 

changed. For the matrix-free method it has to be the other way around, because if it is 

not, then spurious derivatives are generated in the Jacobian matrix. For the full-matrix 

version, similar results are obtained with either arrangement; however, to obtain the best 

agreement with h changed before rhs is recalculated for the explicit code, 0 needs to be 

changed from 0 = 0.75 to 0 = 0.55. 

The three-particle problem was also run in 3D, and the row of particles was ori- 

ented along each of the three axes X, y, and z, in three separate cases. This was done to 

verify that the code obtained identical results in each of the three directions, which it did. 

This was the sole purpose of doing the 3D three-particle problem. 
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C. A Rarefaction Problem 

The rarefaction test problem models a 1D gas, bounded on the left, expanding into 

a vacuum to the right, causing a rarefaction wave to move backward into the gas. The gas 

is hydrogen, modeled as a perfect-gas, with a ratio of specific heats of y = 1.4 and an aver- 

age molecular weight of lt= 1 .O, and it is initially contained in a cylinder 1 cm in length. 

The radius of the cylinder is unnecessary here because this is a ID computation. Initially 

the hydrogen is at rest at a temperature of 300 OK. 

This problem has an analytic solution in the form of density versus X, (see Vol. I, 

Chapter 1, Section 10 of Zel’dovich & Raizer [96]): 

2 p = p, 1 _ (y- 1)v (2y)‘(y- l) (x-x*> 
2c 1 , 

where 
v=(y-l)c+ C t 1 * (4 .I> 

The density is denoted by p, where p0 is the initial density, the speed of sound by c; y is the 

ratio of specific heats, and x and t are space and time variables respectively. 

The gas is modeled by 97 particles set up in a row along the x-axis, with an initial 

density of 1 .O g/cc along a distance of lcm. As the particles move out into the vacuum on 

the right hand side they drop in density to approximately 0.0 g/cc. The smoothing length 

h is allowed to vary, and is initially set to 1.5 times the distance between particles. Figure 

IV. 2 show the implicit result (solid curve) of the rarefaction problem as compared with the 

analytic solution (dashed curve), using explicit time-steps. 

This test problem runs correctly for both the explicit and implicit codes when the 

summation method, Eq. (2 .24), is used instead of the continuity equation. When using 

the continuity equation, however, both codes give a result that “hooks up” in density as a 

function of X, which is physically incorrect. This problem is not well understood, but is 
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inherent in the explicit code and is not a function of the time-stepping method used. 
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Fig. IV. 2. This plot shows both the Implicit (solid) and analytic (dashed) solu- 
tions. Shown here are the lines connecting the particles. The particles are initially 
placed along the x-axis between x = -1 .O and 0.0 cm, all at the same density of 1 .O g/cc. 
By 2 its they have expanded out to 1.0 cm. The explicit solution is essentially the same 
as the implicit solution, so the solid curve could represent either. 

The smoothing lengths are calculated differently when the continuity equation is 

used, and the first particles to move out into the vacuum soon become detached from the 

others, and from then on their densities cannot change. The “hook” is generated as they 
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drift on out with a constant density, whereas the ones behind them continue to drop in den- 

sity because they still have overlapping h’s and are interacting with each other. Running 

this problem with the continuity equation can still be used, however, to compare the two 

codes for consistency, and they do agree well in that they both produce similar density 

profiles for either density method. 

Another aspect of this disagreement between the use of the summation method or 

the continuity equation to calculate the density became apparent when the sparse storage 

was implemented in the implicit code. The full-matrix version of the code agrees with the 

explicit code for both density methods, but this is not true for the version with sparse stor- 

age. It was found that the summation method, unexpectedly, generates extra elements in 

the velocity columns of the Jacobian (the derivatives with respect to velocity) due to the 

neighbors of neighbors. Some of the values of the neighbor particles are changed when the 

summation density method is used. This change, in turn, causes their neighbors to contrib- 

ute elements of the Jacobian. When the density method is set to the continuity equation, 

for either the implicit or explicit codes, the values of the neighbors are unchanged, so that 

only the neighbors contribute the Jacobian elements. The extra elements of the Jacobian, 

generated by the summation method, may be what is needed to make the continuity equa- 

tion handle the rarefaction problem correctly, instead of “hooking up” as discussed above. 

As a result, the version of the implicit code that uses sparse storage is now 

restricted to problems that use the continuity equation. Although there is probably a way 

to make it handle either density method, it has not been pursued any further at this time. 

Currently, if the summation method is needed, then the full-matrix version will be used, so 
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that the extra terms it generates are not lost. The full-matrix version gives the same result 

as the explicit code for either density method but is very wasteful of memory and time. 

D. A Shock-Tube Problem 

The shock-tube problem is ID with 2 different gases, of two different densities and 

pressures within a tube, initially separated by an interface at x = 0.4 cm. The densities are 

1.0 g/cc on the left, and 4.0 g/cc on the right, and the density method used is the summa- 

tion method. The gas on the left is at the higher pressure. Both gases are treated as a per- 

fect-gas, and the temperature is initially 300 OK. The tube is closed off at either end, at 

x = -0.3 cm and x = 1.1 cm. At t = 0, a boundary separating the gases disappears, a shock 

wave moves from the interface into the less dense gas, and a rarefaction wave moves in the 

opposite direction into the denser gas. The smoothing length h was allowed to vary, and it 

was initially set to 1.5 times the distance between the particles. The example is run to 

t = 2 psec, and neither wave reaches the end of the tube. If allowed to run long enough, 

the waves will reflect off the ends of the tube and come back and interact with each other. 

The results can be compared to analytic results (See Zel’dovich & Raizer Vol. I, 

1967 [96]) and are displayed in Fig. IV 3 as density versus X. At 2 ysec, the implicit solu- 

tion is shown as the solid curve, and the analytic solution as the dashed curve. The shock 

wave has moved to the right into the less dense gas, which is the lower vertical step to the 

right. The rarefaction wave has moved into the more dense gas to the left, is the left-most 

step, and has a slope to it. The interface is at the middle vertical step. 

Agreement with the analytic solution is fairly good except at most of the corners, 

69 



where diffusion has rounded them off. Setting 0 = 0.75, as in the rarefaction problem, 

yields the best agreement between the implicit and explicit codes; in fact, they are almost 

indistinguishable. However, the implicit code was run with the explicit time-steps. Also, 

no nonlinear corrections were made because the Newton-Raphson method was turned off. 

Shock-Tube Problem, Time = 2 ps, 
Implicit Solution vs. Analytic 
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Fig. IV. 3. The implicit (solid) and the analytic (dashed) solutions are shown 
with lines connecting the particles. The shock wave is the right-most step, the middle 
step is the interface, and the left-most step is the rarefaction wave. The implicit solu- 
tion was run with explicit code time-steps and a multiplier of one. Newton-Raphson 
corrections were not used for this problem. The value of Theta was 0.75. 
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E. A Rayleigh-Taylor Instability 

This example is a 2D problem with a heavy fluid, of density pH , sitting initially on 

top of a less dense fluid, of density pL , both under the influence of a gravitational acceler- 

ation g. Both fluids are assumed to be incompressible. If the interface between the two 

fluids is flat, in principle it could remain in this state of unstable equilibrium indefinitely. 

However, any perturbation on the interface will grow exponentially, and in two or three e- 

folding times go nonlinear, forming the well known “bubble and spike” situation. Then as 

the spike drops through the less dense gas, depending on the relative densities of the two 

fluids, the spike can turn into an upside down “mushroom” shape due to sheering, which is 

also known as the Kelvin-Helmholtz instability. Eventually the system will reach a stable 

equilibrium with the heavy fluid on the bottom. The early portion of the problem, before 

it goes nonlinear, is known as the linear Rayleigh-Taylor problem, [13], [ 141, [31], [37], 

and this is the only portion to be considered in this section. 

During the time when the linear Rayleigh-Taylor instability dominates, the pertur- 

bation grows exponentially with time t as eYt, where the growth rate y is given by 

y=Un:/VgAl , 1’2 h is the wave length of the perturbation, and A is the Atwood number: 

A = (pH--pL)/(pH+pL). The exponential solution holds if all the appropriate fluid parame- 

ters are initially perturbed together, such as interface position, velocity, and energy. The 

initial perturbations should also fall off appropriately in moving away from the interface. 

A simpler problem to set up on the computer is to perturb either the position or the 

velocity of the interface, but not both. If only one interface quantity is perturbed, an ana- 

lytic solution can be found by reworking the boundary conditions. The general solution 
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for the time dependence of the linear Rayleigh-Taylor problem is the sum of exponentials 

(see Choi [ 14]), 

v(t) = BeYt+Ce-yt = Bl cosh(y t) + C, sinh(y t), (4 2) 

where B, C, Br, and C1 are arbitrary constants determined by the boundary conditions 

(Note: B1 = B+C and C1 = B-C). The energy equation has not been included. 

If, at t = 0, the interface has a spatial perturbation, y = y0 , but is stationary, i. e., 

dyldt = v0 = 0, then the velocity and spatial perturbations will have the following form: 

VW = Y y. sinhh 4, and y(t) = ~0 coshh’tl, (4.3) 

where the spatial solution is found by integrating the velocity solution with respect to time, 

and the boundaries are assumed to be at infinity. If, however, the interface is initially flat, 

y0 = 0, but its velocity is perturbed, then the solution is of the following form: 

v(t) = v. cosh[y t], and y(t) = (v, / y) sinh[y t]. (4.4) 

Eqn. (4 .3) is the problem considered in this section. 

The question arose: what effect do the finite boundaries have on the solutions, 

since the Eqs. (4 .3) and (4 .4) are for an infinite medium ? Extending the derivations in 

Hoffman [37] and Choi [ 141, by putting boundaries at y = a, the perturbation velocities are 

found to have the following spatial dependence (see Appendix for derivation): 

v(y)=v,(e+-e-2kueb) for 0 < y < a, and (4.5) 

v(y)=v,(eb-e-2kue-ky) for -a<y<O, (4.6) 
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where k = 2n; / h, and the growth rate becomes 

? = k gA[( 1 - e-2ku)l( 1 + em2&)]. 

Note: for a = 00 the velocities reduce to v0 e -kyfory>Oandv,e k Y for y < 0, which is the 

usual spatial dependence for the linear Rayleigh-Taylor problem with infinite bound- 

aries. Also, note that the velocities go to zero at the boundaries where y = a, and the 

velocities are matched, or equal, on either side of the interface where y = 0. 

It can be seen from Eqs. (4 .5) to (4.7) that the velocities and the growth rate are 

affected insignificantly by finite boundaries if they are more than h away from the interface. 

If a = h and since k = 27~ / h then e-2ku = ee4’ = 3.5e-6, which is small compared to one. 

Since the particles should not be allowed to collide (i.e., come within some frac- 

tion of the their smoothing lengths) or pass through each other within a time-step, the 

time-stepping routine imposes an upper limit on how large the time-step can be in prob- 

lems such as the Rayleigh-Taylor problem where the fluid is being confined or com- 

pressed. The fraction multiplying dT is chosen arbitrarily, and for this example has been 

increased to l/2, whereas other problems have been run at l/4 to l/7. There may be an 

analytic way to determine what this fraction should be ideally for each example, but this 

issue has not been pursued. 

Figure IV. 4 shows an example where the densities were pH = 0.05 g/cc and 

pL = 0.01 g/cc, so that the Atwood number was A = 2/3. Initially each fluid was a 2x2 cm 

square of particles, with a perturbed interface between them at y = 0. The perturbation 

had a wave length of h = 2 cm, and an amplitude of 0.2 cm from crest to trough. The 
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gravitational acceleration was g = -10,000 cm/sec2 in the y-direction. The growth rate 

was, therefore, y= 144.7 set-‘, and the e-folding time was t = (1 / y) = 6.9 x low3 sec. 

The EOS was a perfect-gas model for both fluids, with y = 1.4 (this is a different y from the 

growth rate, see Eqn. (2 .37)). A pressure gradient was applied to balance the gravita- 

tional force, and matched at the interface. This gradient was actually accomplished by 

putting in an energy gradient, since energy is one of the dependent variables, and pressure 

is not. Density variations were calculated using the continuity density method. 

Rayleigh Taylor Problem 
Initial Setup, t = 0.0 t = 0.01 set 
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Fig. IV. 4. These plots are an example of a Rayleigh-Taylor problem with the 
heavy gas on top of a light one. Only half of the problem was calculated, from x = 
100 to 101 cm, and then was reflected about the x = 100 cm axis. Shown on the left is 
the initial setup with a sine wave perturbation of 0.2 cm. The computation at 0.01 set 
shows the heavy fluid moving down in the middle. 

Because of the symmetry of the problem about a vertical axis, only the right half of 

the problem was calculated, and then the result was reflected about the left edge of the 
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result to show one full wave length. There were 326 particles used in the half problem, or 

163 in each fluid. The smoothing length was held constant, and was set initially to 1.0, or 

the distance between particles. Because of the perturbation, each column of particles ini- 

tially had a slightly different smoothing length, because the spacing was slightly different 

from column to column and the density had to be constant throughout each fluid, but once 

set, all h’s were held constant during the run. 

The plots in Fig. IV. 5 compare the analytic solutions to the implicit and explicit 

codes. The curve labeled a in both parts is the exponential analytic solution. The slope 

of this curve at t = 0 is non-zero, whereas the curves b and c have an initial slope of zero. 

To fit the curve a, the initial conditions would have to include a perturbation in velocity, 

position, and energy, but not density because the fluid is assumed incompressible. 

The purpose of curve c in Fig. IV. 5 is to show that the code results are following a 

cash solution at early times, as opposed to an exponential, even though it is not the correct 

y. The y that fits the implicit code in the early part of curve c, part (A), is a factor of 1.75 

larger than that for curve b, and a factor of 1.65 for the explicit code, curve c, part (B). 

The departure of the code results from the cash function at later times is due to all 

the particles “locking up”. That is, they drop into a hexagonal close-packed arrangement, 

and then the interface and the particles simply oscillate up and down instead of dropping on 

through as expected. Both the implicit and explicit codes behave the same in this respect. 

This problem appears to be one of resolution,, because explicit cases have been run with 

increasing number of particles, and a run with 5000 particles in the half-problem finally 

dropped through, but still bounced up slightly once. The implicit code has only recently 
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been able to handle 5000 particles, and it will take more work to make this problem run at 

this resolution. Hopefully the matrix-free method will help this problem, but that will 

require finding a preconditioner that uses less memory than the sparse matrix does. 

Rayleigh-Taylor Problem for One e-folding Time, 
ComDarison of Codes to Analytic Solutions 
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Fig. IV. 5. These plots show the change in the amplitude of the interface as a 

function of time for a case of 326 particles. The dots indicate the implicit run in part 
(A), and the explicit run in part (B). In both parts, the curves labeled a and b are, 
respectively, the exponential and cash solutions for y = 144.7, and curve c is a cash 
solution fitted to the code results at early times. In part (A), y needed to be a factor of 
1.75 larger for curve c, and 1.65 larger in part (B). 

The “locking up” of the particles does not appear to be a function of the size of the 
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perturbation. For this setup, the particles lock up at about 10v2 set, independent of the 

perturbation. Smaller perturbations were tried because it is noted in Hoffman [37] that 

the growth rate of a sinusoidal perturbation will decrease as the perturbation approaches 

approximately 10% of the wave length h, so perturbations of 0.1 and 0.02 cm were tried. 

It was hoped that, by starting with smaller perturbations, the interface would still drop to 

about the same depth. However, the hexagonal pattern appeared in about one e-folding 

time in all cases, and oscillations would start around two e-folding times. These other 

cases are not illustrated here because the interface tended to become somewhat irregular 

and not remain as sinusoidal as the perturbation of 0.2 cm did, making it difficult to ana- 

lyze the interface. 

The reason given in Hoffman [37] for the slowing growth rate is that higher har- 

monics are beginning to grow, and the problem is moving into the nonlinear regime. It 

may be that the hexagonal pattern of particles does not allow the higher harmonics to grow 

correctly. Possibly the higher resolution, i. e., increased number of particles, prevents the 

particles from becoming organized so quickly throughout the problem, so that the explicit 

code, with 5000 particles, was finally able to drop through. 

Figure IV. 6 shows that the explicit code with increased resolution approaches the 

cash analytic solution. Curves a, b, and c are the same curves as seen in Fig. IV. 5, part 

(b), where a and b are the analytic exponential and cash solutions for y= 144.7 set-‘, and 

c is a cash fit to the results with 326 particles, which was off by a factor of 1.65. Curve d 

is a cash fit to the results with 6000 particles, and the y for d is only off by a factor of 1.2 

The Rayleigh-Taylor theory assumes the fluids are incompressible. The theory for 
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SPH assumes compressibility, so to approach incompressibility, the sound speed must be 

kept much higher than any of the velocities dominant in the problem. For this example, 

only low-velocity flows are present, and the sound speed is relatively high. Therefore, the 

implicit code should be able to take very large time-steps in this type of problem compared 

to the explicit code. The explicit code will be required to take such tiny time-steps to 

remain stable, because of the Courant condition, that it will take a very long time to run 

the Rayleigh-Taylor problem out to a few e-folding times. So the implicit code would be 

expected to have overall lower total run-times. This has not been the case, however. 

Comparison of Explicit Code to Cosh for 6000 Particles 

3 0.5. -s .?d 

Time (set) 
Fig. IV. 6. This graph shows improved agreement, curve d, between the explicit 

code and the analytic cash solution for 6000 particles. Curves a & b are the exponential 
and cash analytic solutions, and curve c is the cash fit for 326 particles, see Fig. IV. 5,(B). 

When larger time-steps are attempted, larger than five to ten times the explicit 

time-step, a number of problems appear. In some cases hot particles appear and cause 

explosions among the particles, or particles escape through the reflecting boundaries, or 

the interface becomes irregular. In some cases the Newton-Raphson nonlinear correc- 

tions seem to make things less stable, so that for this problem it appears to be better to turn 
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it off for the Rayleigh-Taylor problem. The regime being analyzed is linear, so nonlinear 

corrections should not be needed. 

F. Breaking Dam problem 

This example, referred to by some as the breaking dam, is also under the influence 

of gravitational acceleration, but it starts from a non-equilibrium situation. A column of 

water, initially at rest, is modeled as it collapses and flows out horizontally along a rigid 

channel. For this calculation the implicit code will be compared to the explicit SPHINX 

code, the experimental data of Martin and Moyce [53], and the calculational results of 

Monaghan [61]. 

In comparing the implicit and explicit codes, the problem is considered to be 2D, 

and consists of a block of water in the left half of a box, behind a barrier located in the 

middle, and at time t = 0, the barrier disappears (see the first frame of Fig. IV. 7). The 

setup includes reflecting boundaries on four sides (a solid boundary, in the SPHINX code, 

is modeled by placing mirror-image particles across the boundary from the real particles 

that are close to the boundary, so the real particles “see” themselves, and hence repulse 

themselves at the boundary). The boundaries are located at the top and bottom at y = 200 

and -100 cm, and the left and right side at x - - 0 and 1000 cm. Within the box, the water 

initially occupies the left side from x = 0 to 500 cm and y = 100 to -100 cm. The water is 

initially at rest and has a pressure gradient to balance the forces of gravitation, which is in 

the negative y-direction. On the right side of the water the pressure is zero, so the water 

will begin to flow to the right, and start dropping due to gravity, forming a wave or surge 

front. It then flows across the bottom of the box, hitting the right side and splashing up. 
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Breaking Dam Problem 
Implicit vs. Explicit Solutions 

I- I I-l 
8o ~*c**.4+4+**~*++~~~~* 

r++++r+**+*++++*+++** 

- ~*c**~***c**+**~*~*+~ 0.0 set 

O- 
+*,srs*.+**s+*****~** 
++*4,.1*+C4*Clt*f+*+~ 

_ rr‘*r**+*crL*lr****** 
-8o r~,.*rt*tCI*~~+l+**-* 

.++.C,+t*+c++*+t*c+r* 

80 - ++ -CC*+*****.** *1 
r+**4+*Cr*4*tk*q*.*_ 0.2 set 
r+++~rr+****r+**, 

0 -+++*** l +**rr*,,,~ --tie. 
+,c;-,>2 ‘****~**C++++**~~~I 

- +*+~~c+.*+crc+~*~ Sk 
-80 - 

~~44+,*+*-CCC+~~C~~*LkC~~ 
..++**+*CCCCce-~+---- 

80 - 
** * .* l . ++ + 0.4 set 

* ++.* 
** *+ *+ ** l r +* &&a. * 

0 -- l + *+ ++ c. SW c +- 

*. -* ++ c* - **-Lhcc I- 
+* ++. cc. ,,,-y-c-,*- 

. -* -* -+ +w a-6 k*. 

++ -* .+ ++ cc a. 

-80 - 
+- +.: “F”,T- ^,‘r--- I *. c+ *+ -+ rc s-* c a-6 c'"-"c, 

+, ++ ++ r+ et +-c r+--.i.io-+--F-~=~- d- 

3 
2% 

80- 0.6 set 
h 

80 - 0.8 set 
1' - 

80 - Explicit calculation 0.8 set 

I I I I I I I I 

0 x (cm) 500 1000 

Fig. IV. 7. The top frame shows the initial configuration for the implicit and 
explicit runs. The middle four frames show a sequence of an implicit calculation. The last 
frame is the explicit end result for comparison with the last implicit frame at 0.8 seconds. 
The vectors indicate the direction and relative magnitude of the particle velocities. 
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The density was set to 1.0, and the EOS model used was a water model developed 

and installed in SPHINX by Maxwell Labs (see Rice [68], and Pritchett [67]). This EOS 

model does not have any input constraints such as y, the ratio of specific heats, or l-t, the 

average molecular weight. The continuity equation was the method used to calculate the 

density. The gravitational acceleration was set to g = -10,000 cm/sec2. The particle 

smoothing lengths were not allowed to change during the run and were initially set to 1.0, 

which means they were set equal to the initial distance between the particles. 

The example shown in Fig IV. 7 was modeled with 168 particles, and was run out 

to a total time of 0.8 sec. The time-step multiplier for the implicit code was about 5 times 

over the explicit time-step. However, it took 12.6 hours to run, whereas the explicit code 

ran the same problem in only 0.553 hours, or a factor of 23 times faster. The implicit code 

took 1589 time-steps and the explicit code took 7855 time-steps. 

A comparison of the last two frames, which are the last frames from the implicit 

and explicit runs, show very similar qualitative results. The lead particle, however, 

obtained a somewhat higher peak velocity just prior to hitting the right wall. It reached a 

maximum speed of 1950 cm/set for the implicit run and 1680 cm/set for the explicit code. 

This example can be compared to the experimental data of Martin and Moyce [53]. 

They performed a series of laboratory experiments with different shaped, water-filled, 

transparent containers with a film barrier on one side that they would burn away electri- 

cally. When the barrier was destroyed, the column of water would begin to collapse and 

flow along a horizontal transparent channel. They then recorded photographically the 

time evolution of the surge front and the descending level of water in the container. 
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Since most fluids obey scaling laws, the results of Martin and Moyce are reported 

in a scaled and unitless format. They define: 

n2 = the ratio of the column height to the base, which for a square is 1, 

a = a characteristic dimension for the base, 

Z = the surge front position, 

q = the column height. 

Their scaling formulas, which are unitless, are: 

Z = z/a, the scaled surge front position, 

H = q/an2, the scaled column height, and 

T = nt(g/a)*‘2, the scaled time. 

To compare with their results, a somewhat different setup was run. For this the 

block of water was a 200-by-200 cm square of particles. The bottom boundary was 

extended out to x = 2000 cm, so the particles would not reach the right hand boundary in 

the total time of 0.8 sec. Hence, for the case presented here: n = 1, a = 200, and T = t 

(50)‘n, where g = -10,000 crn/sec2. 

Monaghan [61] did a comparison of his SPH code with the results of Martin and 

Moyce, and got “satisfactory” agreement with the experimental results, after noting the 

experimental timing error and that there was probably drag between the fluid and the bot- 

tom plate. Figure IV. 8 shows a comparison of the implicit code, the explicit code, the 

experimental results of Martin and Moyce, and the results of Monaghan. It is a plot of 

surge front position versus time. The triangles mark the experimental result, the squares 

and stars indicate the explicit and implicit code results respectively, and the diamonds 

mark Monaghan’s code results. Monaghan’s results are above the experimental results 
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implying that the experimental result may have viscosity between the bottom plate and the 

fluid. The implicit and the explicit SPHINX results are below the experimental results, so 

they may have more viscosity, and SPHINX does have a default artificial viscosity. which 

was not adjusted. 

Breaking Dam Problem 
Surge Front Distance vs. Time, Experiment and Codes 

0.2 0.4 0.6 0.8 
Time (set) 

Fig. IV. 8. This plot shows a comparison between the experimental and three dif- 
ferent code results. The triangles mark experimental results of Martin & Moyce, the 
diamonds are code results of Monaghan, and the stars and boxes mark the results of the 
implicit and explicit codes respectively, which are nearly coincident at early times, and 
slowly diverge at later times. (See text for details.) 

Fig IV 9 shows curves for the column height versus time of the implicit, explicit, 

experimental, and Monaghan’s results, using the same symbols as in Fig IV 8. The earli- 

est point of the explicit result is higher than the other curves because the top row of parti- 

cles actually moved upward in the first few time-steps and then started to fall. The 
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implicit code did not do this, but at later times does not agree as well with the experiment 

as the explicit code. 

Breaking Dam Problem 
Column Height vs. Time, Experiment and Codes 

I 
0.2 0.4 0.6 0.8 

Time (set) 
Fig. IV. 9. This plot shows a comparison between the experimental and three dif- 

ferent code results. The triangles mark experimental results of Martin & Moyce, the 
diamonds are code results of Monaghan, and the stars and boxes mark the results of the 
implicit and explicit codes respectively. The diamonds are nearly coincident with the 
experimental data, triangles, at early times. (See text for details.) 

There was no great effort to get the results shown here. A few different EOSs 

were tried in the explicit code, but only the default viscosity was used. The agreement 

between the implicit and explicit codes is good, and it is assumed that as more physics is 

turned on or adjusted in the explicit code, that better agreement between the explicit code 

and experiment will be achieved, and that the implicit code will follow since it uses the 
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same physics packages. Most of the effort was put into trying to get the implicit code to 

run faster and handle larger numbers of particles, so as to be competitive with the explicit 

code in some regime. 

Attempts to increase the time-step multiplier have been tried. Implicit cases that 

were run to 0.2 seconds with multipliers of 5 and 10 took 127.4 and 82.42 minutes of wall 

clock time respectively. The explicit code, running the same problem, took 7.672 min- 

utes, or factors of 17 and 11 times faster, respectively, than the implicit code. So it 

appears that, to match the speed of the explicit code, a time-step multiplier of at least 20 

will have to be attained. To run the problem beyond 0.2 seconds with a multiplier of 10 or 

greater has led to more spectacular but unphysical particle motions. 

G. A Single Jet of Gas 

The single jet of gas problem is 2D and consists of a 1 x 1 square centimeter packet 

of gas with an initial bulk velocity of l.Oe+7 cm/set in the y-direction and a temperature 

of 11600 OK, and using a perfect-gas EOS. The problem is run out to 1 psec. The gas is 

free to expand from the internal pressure as it translates along the y-axis. This is a com- 

parison of the explicit and implicit codes only. 

The purpose of this exercise was to find a region where the implicit code could 

excel over the explicit code in total run-time. This was finally achieved in this test case, 

by going to some extreme and unphysical input values. Also, this problem can be run in 

just a few minutes, so the many parameters of the implicit code could be optimized fairly 

quickly. The increase in speed was achieved by relaxing the tolerances for both the Kry- 
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lov solver and the Newton-Raphson iterations, and increasing the size of the perturbation 

in the numerical derivatives. These changes not only improved the speed of the implicit 

code, but also improved the accuracy and robustness of the code. However, with these 

improvements no effort has been made to go back to rework the previous test cases. 

One region where the implicit code can excel is when the gas is incompressible, or 

nearly so. This implies high sound-speeds, hence short Courant time-steps. The sound 

speed c is given by c = (y~/p)“~, and can be raised by increasing y (the ratio of specific 

heats, y = cP / cv) in the perfect-gas EOS model. It can also be achieved by decreasing the 

density or increasing the temperature (temperature, or internal energy, appears in the pres- 

sure). It is, however, desirable to keep the temperature and particle velocities low while 

increasing the sound-speed so that the particles do not fly apart too fast; therefore, only y 

was varied. So basically one wants to find a region where the explicit code is bogged 

down by very tiny Courant time-steps but does not affect that of the implicit code. 

The implicit set of cases was run using the CGS Krylov solver (tolerance: Ktol = 

1 .O e-3), the Newton-Raphson iterations (tolerance: Ntol = 1 .O e-2), with the line-search 

on, and 0 = 1.0. Also the implicit time-steps were calculated so that no two particles were 

allowed to collide within one time-step. The gas had an initial density of 0.006 gm/cc and 

was modeled with 400 particles in a square array (see Fig. IV. 10, frame (a.)). The cases 

also had the continuity equation turned on for the density method, and the smoothing 

length was allowed to vary. 

The values of y were chosen to be y = 10,20,30, 100, le3, le4, le5, and le6. At 

the value of y = le5 the implicit code performed the calculation faster than the explicit 
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code, with the explicit code taking 7.0 minutes of cpu time, and the implicit code taking 

4.4 cpu minutes. For y = le6 the explicit code took 88 minutes, and the implicit code took 

5.3 minutes (both wall-clock times). 

Single Jet of Gas, y= 10.0, 30.0, l.e4 Time = 1 ps, 
Implicit vs. Explicit Solutions 

-[,1, 122j 

: ok , , , , , , , , , , , , , ~ io[ , ,I, “;-;-‘i”“;r; ,+, , 1 
888 

11 

10 

I 

Cd.1 

t,, 
-1 0 1 x (cm) -I 0 1 

Fig. IV. 10. This figure is a comparison of the implicit (black dots) and explicit 
(gray dots) codes for the results of the test case of the single jet of gas, for different val- 
ues of gamma y. Frame (a.) is the initial setup at t = 0.0 p.s. The remaining frames are 
at the time t = 1.0 l.ts, after having translated to the j = 11 cm position and expanded. 
They were run with different values of gamma, (b.) y = 10.0, (c.) y = 30.0, (d.) y = 1 .e4. 
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The results agree fairly well between the implicit and explicit codes for all values 

of y, and are illustrated in Fig. IV. 10 for y= 10.0, 30.0, and le4. The accuracy is even 

better yet if theta is set to 0.74. As y increases, there is less and less expansion of the jet 

during the 1 psec, and for y= le4 and greater there is very little difference between the 

final plots (see frame (d) of Fig, IV.10). 

For y = le4 and greater, the plot for the final problem-time of 1 psec has hardly 

changed from the initial setup. The final plot is still a square, slightly expanded. The 

sides are only slightly bowed out, and the particle at the center of the right edge of the jet 

has only moved from x = 0.475 cm to 0.497389 cm for the y= le4 case. 

The implicit code took from 32 to 35 time-steps for the different cases, but the 

explicit code took from 101 to 20,248, that is: 

gamma 10 le3 le4 le5 le6 

Sound speed 3.11e6 3.11e7 9.82e7 3.11e8 9.82e8 
Number of Time-steps 101 232 996 3818 20,248 
R-K cpu run-time 0.45 0.49 1.5 7.0 88.2(wall-clock) 

So the sound-speed needs to be in the range of about le8 or greater to significantly bog 

down the explicit code. 

These are unphysical values for gamma, but since the sound-speed is 

c = sqrt(g p/d), there may be physical regimes where the ratio of pressure and density can 

give similar results. But this is at least a first step. 

Precision (as opposed to accuracy) of the code can be demonstrated by the symme- 

try of this problem. That is, a plot of Fig. IV. 10 can be reflected about its axes of symme- 
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tryatx=Ocm,andthey= 1 lcm line, and superimposed on itself. The particles, ideally, 

should remain unchanged in shape. But if they do not lie on top of each other, making 

some particles appear elongated, then there is lack of symmetry and hence a lack of preci- 

sion. With the tolerance for the Krylov solver set to 1.0 e-3, the final result of this case 

Implicit & Explicit Time-Step Size vs. Time 
for Three Values of y 

I I I I I I I I I I I I I I I I I I I I- 

Three Implicit Curves Three Implicit Curves 

-L.-_- -----7------------ _---.-_______C___ __________ 
Explicit with y = 1 .e5 /-- i 

Explicit with y = 1 .e4 
_____-*----- -yy+ _----_--- ---------5 ________----- ---- 

Explicit with y = 1 .e4 
\ __---_--- ---------*--- ________----- ---- _____-,----- 

-L.-_- --_--_------------_---.- ___-_ - --___ 
Explicit with y = 1 .e5 /-- 

-- -CT-__ ----__ 
ExplicitwithY= l.e6~m-s-“--w~----- 

o..o 2.ox1o-7 4.ox1o-7 
Time (set) 

6.0~10.~ 8.0~10-~ 10T6 

Fig. IV. 11. These are log plots of the time-step size versus time for both the implicit 
and explicit code for y = l.Oe4, l.Oe5, and l.Oe6. The three implicit curves are essen- 
tially the same so have not been distinguished. The mid-time Courant numbers for the 
implicit code for these three case are approximately 63,290, 1200 respectively. 
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shows excellent symmetry between the final plot and either its reflection about x = 0.0 cm 

ory= ll.Ocm. While the reflections are not displayed in the figures, the symmetries are 

fairly evident in Fig. IV. 10. 

Figure IV 11 shows the time-step size versus time for the three cases of = 1 .Oe4, 

l.Oe5, and l.Oe6, for both the implicit and explicit codes. By dividing the maximum 

implicit time-step by the respective explicit time-step, an approximate Courant number 

can be obtained, and for the three cases they are 90,400, 3000 respectively. At the mid- 

time step sizes the Courant numbers are approximately 60, 290, 1200 respectively. The 

real saving in time would come if one wanted to run the y = l.Oe6 out to several seconds 

instead of a microsecond. It would take the explicit code at least a 1000 times longer to 

run this problem. At the end of the 1 psec calculation, the time-step size was still increas- 

ing for the implicit code and was still decreased for the explicit code. 

H. Comments and lessons learned 

There are many choices to be made when running the SPHINX code and most of 

them affect the solutions when running the implicit code. In addition to those choices 

there are many to be made that are unique to the implicit code, such choices as which Kry- 

lov solver to use and which preconditioner to use to solve the linear problem. The three 

Krylov solvers that were tried all seem to do equally well on the type of SPH matrices 

generated by the current implicit code, with CGS running slightly faster than the other 

two. The preconditioner used for all of the test cases is the multipass Jacobi, and two 

passes seemed to be optimal. There is also the choice of whether or not to use the New- 
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ton-Raphson iterations and the line-search to solve the nonlinear problem. 

There are also many limits and tolerances to be adjusted that affect the speed and 

accuracy. The following is a list of items and current values that can be varied to change 

the performance of the implicit code (some values are based on double precision): 

Use either CGS, BiCGSTAB, or GMRES. 

theta -> Degree of implicitness. (optimum: -.74) 

frac -> Perturbation for numerical Jacobians. 

Ktol -> Tolerance for Krylov iteration convergence. 

Ntol -> Tolerance for Newton iteration convergence. 

Kmaxiter -> Maximum Krylov iterations allowed. 

Nmaxiter -> Max Newton-Raphson (NR) iterations allowed. 

dtmultmax -> Maximum value of dt multiplier. 

slope -> Factor of increase of dtmult up to the max. 

RKsteps -> Number of explicit steps for start-up. 

dT*f -> dT: Min time for any 2 particles to hit * factor. 

dt*f : Factor of decrease of dt if Krylov or NR fail to converge. 

0.5 to 1.0 

1 .e-8 

1 .e-3 

1 .e-2 

100 

15 

15 to le5 

1.1 

1 

f=1/4 

f=3/4 

The method of optimizing the list of parameters has been to go down the list and 

vary only one at a time until the run-time is minimum, and/or the agreement with the 

explicit code is best, and/or the symmetry of the final plot is best. This method may not 

be the most systematic one to follow, since some of the parameters are linked to each 

other.% So the next step was to repeat the procedure for at least parts of the list. This pro- 

cess has been applied mainly to the three ID problems and the single-jet problem. The 

optimal set of values for the single-jet problem seems to change somewhat with the num- 

ber of particles. The more particles, the harder it is to keep the problem stable, so the tol- 

erances needed to be tightened up. It may be that the set of values for this list may change 

with each problem too. So keeping the code robust with different problems is another cri- 
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terion for choosing values for the list of variables. The most useful set of values may not 

be optimum for a particular problem, but it will allow the code to run reliably for most 

problems. 

Obtaining the minimum run-time is a matter of keeping the Krylov and Newton 

iterations to a minimum and avoiding the use of the line-search routine. Experience with 

the code has shown that the parameter with the most influence on this is the slope of the 

initial ramping up of the time-step size. If it increases too fast, the Krylov solver may not 

converge, which will trip the routine that reduces the time-step by some factor. Even if 

the Krylov solver is converging very well, the Newton iterations may not converge, which 

will also trip the routine that reduces the time-step. Allowing too many iterations is 

wasteful of time if either the Krylov or Newton iterations are not converging, but stopping 

too soon, if it is close to convergence, will also waste time because it will go to a smaller 

time-step and start the time-step process all over again. Varying the tolerance for the Kry- 

lov solver does not have much effect on the accuracy of the problem. It has more effect 

on the speed. It is better to get an approximate solution from the Krylov or linear solver, 

and let the Newton iterations or nonlinear solver maintain the accuracy. Typically, when 

the calculations are going smoothly, there should be l-to-3 Krylov iterations within each 

of l- to-3 Newton iterations. The other parameters that affect the speed of the code are 

RKsteps, Ktol, dtmultmax, dT*f, dt*f, Kmaxiter, and Nmaxiter. 

Accuracy and precision are both influenced mainly by the time-step size, which is 

controlled by the slope or the ramp-up rate. The slope has been found to affect the accu- 

racy significantly, but in the opposite direction of the speed. The slope should be more 

92 



gentle to increase accuracy. Other variables that affect the accuracy are RKsteps, and 

theta. Theta is the only one that does not affect the speed significantly. The time-step 

size is controlled by the same things that control the speed of the code, so the accuracy and 

the speed are intimately interlinked. 
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Chapter V 

Application to a Fusion Problem 

A. Introduction 

The series of calculations discussed in this chapter was done in support of a newly 

proposed Magnetized Target Fusion (MTF) concept (Thio, C. F. et al., 1998 [84], [SS]) 

and the results were presented at the 1998 Innovative Confinement Concepts Workshop, at 

Princeton, NJ, April 6-9, and at ICOPS ‘98, Raleigh, NC. The results presented at ICOPS 

‘98 were done with the explicit code. In the present discussion some comparison of the 

implicit and explicit code is presented. 

It was hoped that the implicit code could be shown to model parts of the computa- 

tions of a practical problem faster than the explicit code. This has not happened yet, but 

this application has demonstrated that the two codes are in good agreement in 2D and 3D. 

A regime where the implicit code has functioned faster than the explicit code was dis- 

cussed in Chapter IV, Section G, but it came too late for this ability to be expanded into a 

practical problem. The regime was found after this dissertation was essentially written. 

. 

The new MTF concept consists of sixty or more neutral plasma jets in a spherical 

arrangement, imploding one or two small magnetized toroidal plasma targets. The 

plasma jets and targets are to consist of deuterium and tritium (D -T), and since they are in 

a neutral plasma state, they can be approximately modeled using hydrodynamic meth- 

ods. The jets, as envisioned, will merge together and form a spherically imploding piston 

or liner. Once the target ignites, the liner will supply fuel for the imploded target to burn. 

The jets are accelerated from plasma guns by a heavier ionized gas, possibly argon. The 
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heavier argon would also act as a tamper during implosion, and an absorber for x-rays to 

help protect the chamber and plasma guns from x-ray damage. Another layer of plasma 

could be introduced behind the argon, such as lithium or boron to absorb neutrons. 

Each target can be thought of as the plasma equivalent of a smoke ring confined by 

a stable toroidal magnetic field. It is well understood how to produce the plasma rings 

from specially designed plasma guns, and the toroidal configuration of the magnetic field 

in the targets is known to be stable [89]. The magnetic pressures will be weak compared 

to the hydrodynamic forces; hence, for the present calculations the target is replaced with 

a sphere or cylinder of neutral gases, and the magnetic field is ignored. 

It was hoped that the implicit code would be able to perform the calculations up to 

the time of impact of the jets with the target including the merging of the jets. This, how- 

ever, has not been demonstrated yet. The implicit code has been run on all three cases 

discussed in this chapter. 

Magnetized Target Fusion is a cross between Magnetic Fusion Energy (MFE), 

which uses a magnetically confined D -T plasma (for example the Tokamak), and Iner- 

tially Confined Fusion (ICF), in which a D -T target is imploded by laser or particle beams. 

MTF starts with a magnetized target and implodes it with any one of a number of means. 

The magnetized target is the important difference, because the magnetic fields of the target 

confine the ions and electrons, reducing the loss of energy from the target. It has been 

shown that such a target does not need as large a driver to initiate fusion as ICF requires 

[42], [50], [74]. The targets will be much larger and will require a less energetic driver. 

The explicit SPHINX code was used for all of these calculations, and a few of the 
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simpler calculations were repeated with the implicit code. The calculations are prelimi- 

nary and address only the hydrodynamic aspects of the problem. The study was mainly 

concerned with the merger of the jets and the formation of the imploding piston. Fusion 

was not considered in detail, except that the temperatures and confinement durations for 

ignition were sought within a few attempts, but no optimization was performed. 

The following assumptions were made for these calculations. The D -T plasma 

jets are considered neutral, so that no magnetic or electric fields are present. Losses due 

to radiation and thermal convection were not included. It is assumed that radiation losses 

will be insignificant up to the time of maximum compression. The argon driver plasma 

might not be neutral, so it might have electric and magnetic fields in it, and hence was not 

modeled in the present set of calculations. 

The first set of calculations considered a simple case of two jets merging at an 

angle and then accelerating a solid aluminum projectile. The next set of problems con- 

sisted of a cylindrical ring of jets aimed at the origin and a target of D -T. The third set of 

calculations modeled the 3D spherical arrangement of jets, and consisted of 60 jets in a 

soccer ball configuration, similar to the target chamber of the Omega laser fusion system 

at the University of Rochester, N.Y.. A soccer ball is covered with an arrangement of 

hexagons and pentagons, and the jets were placed at each of the sixty vertices. 

B. Neutral Plasma Jets Merging onto a Projectile 

The goals of this first set of calculations were (1) to see how the neutral plasma jets 

merge together, and (2) to find to what maximum velocity a small projectile can be acceler- 
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ated using plasma jets of different masses and velocities. The momentum was varied but 

not the energy, to see if this affected the coupling of the energy into the target. The accel- 

eration of projectiles to high velocities is of interest to the weapons community. The gas 

for the jets in this case is not D -T but a more massive gas. The problem was done with 

two jets, in 2D, using the explicit and implicit codes. The initial setup is shown in Fig. V. 1. 

hitial Setup for Two Jets Ilmpinging on a Projectile 

-0 - 
Jets 

-8 ” ” I ” ” ” ” ” ” ” 
-4 -2 2 4 

Fig. V. 1. This is the initial setup for two plasma jets impinging on an aluminum 
projectile. The jets are aimed at the origin, and the target is placed ahead of the origin. 

The initial setup consisted of two jets, 15 degrees apart, and aimed at the origin, 

which was behind a stationary aluminum projectile. As the jets move toward the projec- 

tile, they expand due to internal pressure. On the way to the projectile, the jets collide 

with each other, forming a more dense core between them, and the squeezing of the core 



produces what will be referred to here as a “super-jet”, where the particles at the leading 

edge of the core are accelerated forward toward the origin and those at the rear of the core 

are accelerated backward. In some cases the super-jets were found to cut the projectile 

into pieces. This problem can be lessened by starting the jets farther away from the pro- 

jectile thus allowing the super-jet to spread out before striking the target. ! 

The velocities v and masses m of the jets were varied so as to increase the momen- 

tum but maintain constant energy between case studies. If the mass of the jets is 

increased by a factor of four and the velocity decreased by a factor of two, the momentum 

(mv) will be doubled while the energy 1/2(mv2) is kept constant between cases. The ques- 

tion then is: can the energy of the jets be transferred more efficiently to the target by 

increasing the momentum of the jets while maintaining constant energy? 

Three cases were run: (1) with the density of the jets set to 0.006 gm/cc, and a bulk 

velocity of 100 km/set, (2) with a density of 0.024 gm/cc and a velocity of 50 km/set, and 

(3) with a density of 0.096 gm/cc and a velocity of 25 km/set. The jets were modeled as 

a perfect gas with y = 1.4, the ratio of specific heats, and lo = 1, the average molecular 

weight. The initial temperature of the jets was set to 11,600 degrees Kelvin (1 ev). Each 

jet was represented by a 1x1 cm square rectangle of particles. There were 900 particles in 

each jet and 66 in the projectile. The projectile was aluminum using a linear-u, -up mate- 

rial-strength model, and the input for aluminum included: a solid density of 2.7 gm/cc, a 

sound speed of c, = 5.376e5 crn/sec, a slope of s = 1.55, y0 = 2.1, and ~1 = 0.0. 

Preliminary computer runs showed that the distance from the leading edge of the 

jets to the projectile should be about 7 to 5 cm, so that there was not too much overall 
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expansion in transit, and the super-jets had a chance to spread out. It was necessary to 

shorten the distance for the runs with slower velocities, so that they would all have about 

the same transit time; otherwise the expansion would become too great. 

An inward velocity can be added to each particle in a jet, as a function of its dis- 

tance from the axis of the jet, to counter the expansion due to the internal pressure, which 

would approximately model the inward focusing that a slight taper inside the plasma gun 

might impart to the jet. It was found by trial and error that the best range of focusing 

velocities was for the inward component of the velocity at the edge of the jet to be an order 

of magnitude less than the bulk velocity. This feature was used only in this two-jet prob- 

lem, where the emphasis was on getting the most particles to strike the projectile. It was 

not used in the implosion calculations because there the jets will confine each other. 

The first case, with the density of 0.006 gm/cc and the velocities of 100 km/set, 

was set up with the Al projectile positioned -1.0 cm from the origin and the leading edge 

of the jet started at a position of -6.5 cm from the origin, so that the jets were located 5.5 

cm from the projectile. A focusing velocity, of 10 km/set, was added to the jets. 

The jets first started to merge when they were about 3.4 cm from the projectile at 

time t = 0.202 psec, and the pressure, temperature, and density between the jets began to 

increase. The two jets formed a butterfly shaped pattern (see Fig. V.2) with a denser core 

between the jets and less dense wings out to the sides. Then at time t = 0.460 psec the jets 

first impacted the projectile. At the time of impact the wing pattern was about the same 

width as the projectile, so that most of the jet particles contributed to the impact. The 

final velocity of the projectile was about 5.9 km/set as obtained with the explicit code. 
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Comparison of the Implicit and Explicit Codes 
at t = 4.5 psec, for Two Jets Merging 

(b) 

Fil ;. v. 2 This is a comparison of the implicit (a) and explicit (b) codes for two merged 
jets at 4.5 43 ;6 and 4.5227 psec respectively. Both codes had 1866 particles. An overlay 
of the two ‘P Ilots shows that the particle positions, in general, are in very good agreement. 
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This case was also run using the implicit code. An overlay of the two plots of Fig. 

V. 2 would show that the particle positions are in very good agreement except for a few 

particles at the leading and trailing edges. Unfortunately the implicit code stopped run- 

ning at the point of impact, so there is no comparis’on for the projectile motions. 

The jets were initially displaced relative to each other in the y-direction by half a 

smoothing length, which is why the results are not exactly symmetric. This small dis- 

placement was made to see if there would be a mixing of particles. If they were left com- 

pletely symmetrical, one jet would be the mirror of the other, and there would be no 

mixing. Even with the offset there was very little mixing except within the super-jets. 

The second case, with the density of 0.024 gm/cc, was set up with the projectile 

positioned as before, but the jets were set only 5.0 cm from the projectile, to accommodate 

the slower velocities. Since the jet velocities were reduced by a factor of two, to 50 km/ 

set, the focusing velocities had to be reduced by the same factor of two so that they were 

still an order of magnitude less than the jet velocities. 

The jets first interacted at about t = 0.15 psec when they were about 5.2 cm from 

the projectile. At about t = 0.7 psec the jets impacted the projectile. At the time of 

impact the denser core between the jets had expanded to engulf the wings, but the width of 

the jets was about the same as the projectile, so that again most of the particles contributed 

to the impact. The projectile was separated into several chunks and several individual 

particles. The final velocities ranged from 3.7 to 7.9 km/set for the individual particles 

whereas the main chunks had velocities of 5.3,5.9, and 7.1 km/set. 

The third case, with the density of 0.096 gm/cc and a velocity of 25 km/set, was 
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set up with the projectile also at -1 .O cm from the origin, and a 5.0 cm separation between 

the jets and the projectile. For this case the jets were moving too slowly for the focusing 

to be of any use, because the reduced focusing velocity in x was quickly overwhelmed by 

the pressure within expanding jets. The wings expanded too fast to be of much use, so the 

distance was chosen to adjust the core width to fit the projectile. 

The jets started to interact at about 0.25 psec at a distance of about 5.2 cm from the 

projectile. For this case the core had expanded to a little more than the width of the pro- 

jectile and the wings had expanded quite a bit more so that they missed the projectile. In 

this case, approximately half of the particles hit the projectile, so the momentum was inef- 

ficiently transferred to the projectile. The projectile was cut in two, and a few individual 

particles were scattered around. The velocity of the bulk of the particles was roughly 4.5 

km/set. Variations on this case could be tried in which the focusing velocity could be 

increased or the distance between the jets and the projectile could be decreased. 

Drawing a conclusion from this, it appears that there are other aspects to consider 

when trying to go to higher momentums. The higher momentums seem to cut the projec- 

tile up. Also the slower velocities allow the jets to expand more in transit to the projectile 

making it more difficult to get all of each jet to hit the projectile, and an added focusing 

velocity has less effect on keeping the jet together because it is more quickly overwhelmed 

by the pressure. It appears that the high velocity of the lower momentum case helped 

more by getting the jets to the projectile before they had a chance to expand. So there is a 

trade off between the higher velocities and the higher momentum and distances. 
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C. The 2D Ring of Jets 

This set of calculations was performed to learn how uniform an imploding plasma 

piston ring can be made and how long it can confine the target particles. It was also 

learned what densities and temperatures could be achieved, from a hydrodynamic stand- 

point, for the implosion of a given target. The initial setup is shown in Fig. V. 3. 

Initial Setup for the 2D 24Jet MTF Problem 

Fig. V. 3. This is the initial setup for the 24-jet case in 2D. The jets are about LU 
cm from the target. Only one quadrant was calculated and then reflected around into the 
other three quadrants. 

103 



These calculations were done in 2D, and considered 24 jets in a ring positioned at 

every 15 degrees, and 20 cm from the origin. Each jet was 1 cm in radius and 3.8 cm in 

length The jets are assumed to exit the plasma guns at an initial velocity of 5~10~ cm/set 

with a density of 10m5 gm/cc, and all aimed at the origin. They were each given an initial 

temperature of 11,600 OK (or 1 ev). The target was modeled as a cylinder of radius lcm, 

and given an initial temperature of 23,200 OK. The case discussed here used the perfect 

gas EOS. The total number of particles used was 12,322, with 2,016 per jet, and 226 in 

the quarter target for runs using the explicit code. 

Because of the symmetry of the problem, only one quadrant of the problem was 

run with reflecting boundaries along the x- and y-axes. Taking advantage of the symme- 

try allows one to save on memory and computational time or to increase the resolution. 

When the jets start merging with each other, they form the super-jets as discussed 

in the previous section on two-jets. An earlier attempt had only 12 jets positioned at every 

30 degrees and closer to the target, but that did not allow the super-jets to spread out into a 

uniform front before hitting the target, and the super-jets tended to cut the target up. So 

the jets were moved back to 20 cm from the target and the number of jets increased to 24. 

This arrangement allowed the super-jets to merge farther away from the target and form a 

more uniform front by the time they reached the target. 

Figure V. 4 shows the system at maximum compression. The initial contact of the 

super-jets with the target caused some fluting on the target surface. But the growth of the 

fluting ceased when the main part of the jets arrived, and then all the target particles were 

swept up and compressed. The fluting caused the filigree pattern around the compressed 
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target in Fig. V. 4. The jets have merged together to form an imploding cylindrical piston 

(this is also referred to as a liner in some literature) that is the uniform circular region 

around the target. The bulk of the jet particles are still streaming in and are stagnating in 

the piston, which is confining the target. Each particle of Fig. V. 4 has a velocity vector 

attached to it, hence the radial lines on the jet particles that are still imploding. 

Maximum Compression for a 2D 24-Jet Case, t = 0.406 ps 

Fig. V. 4. This figure shows the 24-jet case at maximum compression. The target is the 
irregularly shaped pattern in the middle, of radius -0.3 cm. The piston is forming around 
the target uniformly and is the circular region around it. The jets are still streaming in and 
have a velocity vector attached to each particle, hence the radial rays. 
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The uniformity of density and shape of the piston met expectations. Most of the 

particles in the piston, from time t = 0.4 psec to t = 0.45 psec, fall within a density range of 

0.0002 gm/cc and 0.002 gmkc. The pressure for most of the piston particles is in a range 

of about 2ell to 2e12 dynes/cm The temperature was within a range of 6e6 to 5e7 OK. 

The trailing edge of the jets impacted the piston at about t = 0.45 psec. 

The target diameter, except for a few target particles, reached a minimum at t = 

0.406 psec with a diameter of about 0.3 cm, stayed there until about t = 0.45 psec, and was 

under 0.4cm until about 0.47 psec. At this point it started to expand more rapidly but was 

still within a diameter of 0.6cm at t = 0.5 psec. The duration of tight confinement of the 

target was about 70 nsec. The target material was compressed by a factor of about 37 

times. Most of the target particles fell within a temperature band of 6e7 to 2e8 OK, and 

the pressure was between about 5ell to l.le12 dynes/cm2 during maximum compression. 

The following results were obtained from a calculation around the maximum 

compression of the target. 

Piston narticles: 
Max temperature T = 1.18e8 OK at t’ = 0.408009 psec. 
Max pressure P = 1.07e13 at t = 0.412022 psec. 
Max density D = 0.00589 gm/cc at t = 0.412022 psec. 

Target narticles: 
Max temperature T = 3.15e8 OK at t = 0.408009 psec. 
Max pressure P = 2.02e12 at t = 0.408009 psec. 
Max density D = 0.000502 gmkc at t = 0.406022 psec. 

A few implicit runs were made repeating the explicit case discussed above to see 

how the implicit code would compare. It was hoped that the implicit code could compute 
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the early portion of the problem where the jets are running in and merging. However, the 

explicit code does this portion so quickly that it is difficult to beat it. The implicit code 

was run with 1,101 particles, 180 per jet, and 21 in the quarter target. It was run to a point 

close to where the particles first contacted the target. The implicit code’s best wall clock 

time was about 28 minutes, whereas the explicit code took about a minute. An overlay of 

the results shows that agreement between the two codes is very good. If the implicit code 

is run through maximum compression of the target, it runs best at about the same time-step 

size as the explicit code. Both codes compress the target to about the same size and they 

both produce about the same size piston. 

D. The 3D Sphere of 60 jets 

For the 3D case, 60 D -T neutral-plasma jets, placed in a soccer ball arrangement 

of hexagons and pentagons, were all aimed at the origin, where a spherical D -T target was 

positioned (see Fig. V.5). The jets then formed a spherically imploding piston. The sides 

of the pentagons and hexagons are all equal length, and the distances from all vertices to 

the origin are equal. Therefore the angle between any two adjacent jets, on one edge of 

either a pentagon or hexagon, are all equal, because they all form equal triangles with the 

origin. However, the angle between the two jets across a pentagon or hexagon is different. 

Therefore, once the jets have merged, looking along a normal to the center of a pentagon 

or hexagon toward the origin, one will see a decrease in density of the spherical piston, as 

opposed to looking radially through one of the vertices. This, however, does not appear to 

affect the confinement of the target significantly for the duration of maximum implosion. 
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The Initial Setup for the 3D 60-Jet MTF Concept 

Fig. V. 5. The 60 cylindrical jets are arranged in a soccer ball pattern about a 
jherical target in the center. The jets are shaded according to their object number to 
:lp them show up against each other. 

Initially the jets were made the same size as that used in the 24-jet case, lcm in 

radius, but they started interacting only after they got fairly close to the target. So the jets 

were made wider, 1.5 cm in radius, so that they would start to interact farther away from 

the target. The super-jetting would, therefore, have time to spread out before striking the 

target. In three dimensions, the super-jets became sheets, interacting at different angles. 

108 



The sheets formed perpendicular to the sides of the hexagons and pentagons. The sheets 

interacted when they reached the center of a pentagon or a hexagon. 

The total number of particles was 43,368, with 720 in each jet, and 168 in the tar- 

get, using the explicit SPHINX code. All jets were modeled, i.e., no reflecting boundaries 

were used. The vertex positions were taken from a table generated for the Omega laser 

fusion target chamber. There is a plane of symmetry, but it does not coincide with either 

the x-y, x-z, or y-z plane. Since time was limited, it was simpler just to model all 60 jets 

rather than rotate all the vertex positions to an appropriate position to make the plane of 

symmetry coincide with one of the principal planes. 

The initial conditions for the 60 cylindrical jets and a spherical target are specified 

in the following: 

3D Case, 60-Jet Soccer Ball Pattern Imploding a Target Initial Conditions 

(43,368 particles total: explicit code) 
( 5,768 particles total: implicit code) 
D -T Jets =- 

60 Jets in a soccer ball pattern, 20 cm from the Target. 
Temperature: 11600 OK (1 ev). 
Density: 2.0e-5 gmkc. 
Velocity: 5.0e7 cmlsec. 
Dimension: Cylinder, 1.7cm radius x 3.8cm length. 
EOS: Perfect Gas. 

g -T Target 

Temperature: 23200 OK (2 ev). 
Density: 1.5e-5 gm/cc. 
Dimension: Sphere, 2.5 cm radius. 
EOS: Perfect Gas. 

The results of the explicit code at t = 0.4 psec are illustrated in Fig. V. 6. The par- 
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titles shown in the figure are near maximum compression, however, only jet particles in a 

slab 0.25 cm on either side of the y-z plane are shown. The target particles have been 

removed from the plot to help illustrate the formation of the piston. The jets are coming 

from various angles, so the slab takes a slice through only a few of the jets and at different 

angles. 

Maximum Compression for the 3D 60-Jet Case, t = 0.4 ps 

Fig. V. 6. This figure shows only jet particles from a 0.5 cm thick slab. The tar- 
get particles have been removed to show the formation of the piston more clearly. 

At maximum compression the target was heated to a temperature of 4.2x 1 Ox ‘K, and 
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compressed to a peak density of 0.0002 gm/cc and an average density of 0.00013 gm/cc 

for a duration of about 50 nsec. The piston reached an average density of 0.00065 grn/cc 

for a duration of about 70 nsec, and a peak density of 0.0023 gm/cc. The results are sum- 

marized in Table V. 1. 

The following table shows a comparison of the 2D 24-jet case, the 3D 60-jet case, 

and the desired results. 

Table 1: Comparison, at Maximum Compression, of SPHINX Calculations vs. 
Desired, t=0.4 ps. 

I Desired I 2D, 24 jets 3D, 60 jets 

Target 

Temperature 10 kev 10 kev 10 kev 

Density 1 0.001 gm/cc 1 0.0003 gm/cc 1 0.0005 gm/cc 

Confinement 100 nsec 50 nsec 50 nsec 

Diameter 1 l.Ocm 0.3 cm 1.2 cm 

Piston 

Temperature - 

Density - 

2.4 kev 

0.002 gmlcc 

3.0 kev 

0.0006 gmkc 

Confinement 100 nsec 70 nsec 70 nsec 

This 3D problem was tried using the implicit code with the number of particles 

significantly reduced. There were a total of 5,768 particles, with 96 per jet, and 8 in the 

target. This case did run for a few time-steps, and all 60 jets were propagated toward the 

target properly, but before the jets started to interact, the allocation for memory was 

exceeded. The allocation could have been increased, but it was apparent that the implicit 

code was not going to do the problem any faster than the explicit code. However, this run 
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did demonstrate that the 3D aspects of the implicit code are working correctly, and it was 

able to handle nearly 6,000 particles. 

E. Conclusions of the MTF study 

The results of this study have shown that a fairly uniform spherical piston can be 

formed from an array of neutral plasma jets that start merging from some distance out 

from the target. When the jets first encounter each other, “super-jets” squirt out from 

between them. By varying the distance from the target, the super-jets are allowed to 

spread out and form a more uniform front before impacting the target. If the super-jets 

form too close to the target, they are found to cut up the target and not compress it as uni- 

formly as desired. 

Since this work has shown that a spherical piston might be formed from neutral 

plasma jets, and that conditions near D-T fusion can be reached, it would be very interest- 

ing to pursue this with an optimization study. One would want to look at varying the ini- 

tial conditions such as the distance between the target and the jets; the densities, 

temperatures, and dimensions of the jets and the target; and the velocities and number of 

jets. Additional physics could be included in the explicit code, such as radiation losses 

and magneto-hydrodynamic capabilities. 
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Chapter VI 

Conclusions 

An implicit Smooth Particle Hydrodynamic code has been written, and has been 

demonstrated to give good agreement with analytic solutions, the explicit code, and exper- 

imental data for the various test cases tried. It has recently been demonstrated that for one 

case it can perform the calculations faster than the explicit code with Courant numbers of 

over 3,000, albeit a very unphysical problem (see Chapter IV, section G). This one case, 

however, does prove that it can be done, and it is a first step in expanding the code’s capa- 

bilities to practical problems. In another case the code handled nearly 6,000 particles 

This study is probing the boundaries of a new aspect of the field of SPH, and hence 

it may or may not be found to be a useful region for SPH to operate. The existing SPHINX 

code is typically used for high-velocity impact studies. An implicit code is best used for 

low-velocity, incompressible fluid problems. The new implicit code will need some 

changes to improve on the explicit code, but further work may yet make it useful for SPH. 

The capabilities of the new implicit code, which is lD, 2D, or 3D, include a choice 

of three Krylov solvers along with a multi-pass Jacobi preconditioner to solve the linear 

system. It also uses Newton-Raphson iteration methods with a line-search to solve the 

nonlinear problem. 

The code uses sparse storage and sparse computations to minimize the amount of 

memory and time used. It also makes use of a new right-hand-side function in the 

SPHINX code, written just for these sparse matrices. Also, the Jacobian matrix is calcu- 
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lated numerically, as opposed to analytically, which allows the new code to take advantage 

of almost all of the existing physics that is already in the SPHINX code. 

Five distinctly different versions of the code exist, and each newer version has 

shown a marked improvement in performance over the older ones. The first one uses LU 

Decomposition, a fourth-order Rosenbrock solver, and analytic derivatives for the Jaco- 

bian matrix, and stores the full matrix. It was very slow and cumbersome to use. The 

next version uses numerical derivatives, Krylov solvers, and Newton-Raphson iterations, 

but still calculates and stores the full Jacobian matrix. As a result it uses large amounts of 

memory, and performs many unnecessary calculations of zero. However, because of this 

factor it does catch some unexpected matrix elements that the summation density method 

generates. The sparse versions of the code will need to be modified to handle the summa- 

tion method and are currently restricted to using the continuity equation. 

The two sparse versions of the code are very similar, and both store only the non- 

zero elements of the Jacobian and do not calculate the portions of the matrix that are 

known to be zero, that is, the portions where there is no neighbor relation between parti- 

cles. The difference is in the right-hand-side function, the function that calculates the 

time derivatives for each equation. One uses a function that calculates the rhs for all the 

particles, and the other uses a function that calculates the rhs for only one particle at a 

time. The latter one saves on calculations because for each particle the rhs function only 

has to be calculated for its neighbors, not all particles. This version is the most efficient 

of the five. 

The fifth version, which was attempted but temporarily set aside, uses a matrix- 
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free technique. It worked for only the simplest problems. It was probably attempted pre- 

maturely, because it needs a very good preconditioner. The diagonal-block precondi- 

tioner will, hopefully, allow the matrix-free method to work reliably. The equations for 

this preconditioner have been worked out in what appears to be an efficient arrangement, 

but it would have to be programed and tested, and is being left for future work. 

The following are several other ideas to improve the implicit code. 

1. Set numbers in the Jacobian matrix that are near zero to zero. There would 
then be fewer elements and perhaps faster convergence, and less memory 
required. 

2. Add damping for greater stability. That is, do not let dY change by more than 
some fixed percent of Y. 

3. Parallelize the code to run on a multiprocessor computer. 

4. Optimize settings of the limits and tolerances for a more general set problems. 
There is some indication that the values for the limits and tolerances need to be 
changed for different problems, and they are interrelated. 

5. Currently the effort has been to try to avoid cutting the time step size at all, 
which means cutting it in half, but perhaps a smaller decrease in the time-step 
size would permit a smaller limits on the Newton and Krylov iterations. 

6. Explore the possibility that other SPH hydro-forms of the fluid equations might 
perform better in the implicit code than those being used. 

The implicit code may prove useful when used in conjunction with the MLS fea- 

tures being added to SPHINX because MLS is more computationally intensive than stan- 

dard SPH, as was mentioned in Chapter I Section B. It may help speed up MLS in parts 

of problems where things are changing very slowly. 

There have been a number of unexplained features encountered in the SPHINX 

code, which, if understood, may help both the implicit and explicit codes. One is the 

unexplained escaping of particles through the reflecting boundaries. This escape can hap- 
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pen even when the time-step multiplier is just one. And it has been observed to happen 

for the explicit code too, but it appears to be a problem only at low velocities. For this 

reason, the single-jet test case was studied to get away from all reflecting boundaries. 

This may be an indication of a fundamental problem in the SPH code. 

Another problem noted is the occurrence of unexpected elements in the Jacobian 

when the summation method is used to calculate the density. It is not understood why the 

explicit code cannot do the rarefaction and shock-tube problems when using the continuity 

equation. These extra elements in the Jacobian for the summation method may lead to an 

understanding of why use of the continuity equation does not give the right answer. 

Another problem is: when the smoothing length h is allowed to vary, should h be 

computed before the right-hand-side is computed, or after? If before, it seems to keep h 

from varying, and if after, h is not consistent with the time derivatives of the rhs() function. 

The matrix-free method seems to work only if h is consistent with the time derivatives of 

the right-hand-side computations, but then h does not vary. Where to do the computations 

for new h’s has not been resolved in either the implicit or the explicit code. 

The goals of this research have been reached. An implicit code has been written, 

and it has been shown that it can run a test case with Courant numbers on the order of 

3000. It has been shown in several test cases that the accuracy and precision of the code is 

very good. With more improvements it promises to become a useful working code that 

can be included as another time-step package for the production code SPHINX. 
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Appendix 

A Rayleigh-Taylor problem with finite boundaries 

A derivation of the Rayleigh-Taylor problem with finite boundaries at z = a can be 

found by starting with the general solution to the equation derived in Hoffman [37], for 

which he started with the fluid equations and applied perturbation theory and Fourier 

transformed them and obtained his Eq. (A-27): 

&,$) = k2po$ --$$‘]* 
If p. is considered to be constant, Eq. (A .l) reduces to: 

d”V - = k2v, 
dZ2 

(A .I> 

(A 3 

for which the general solution is a sum of exponentials. 

v(z) = AekZ+B emkz. (A .3) 

The velocity is to vanish at both boundaries and be continuous at the interface. 

Therefore at z = +a, v(a) = 0. That is 

v(a) = A1eka+B1e-ka=O or A1=-B,eY2ka, 

thus v(z>O) = B1 (e-kz-e-2ka eke). 

Similarly for z = -a, ~(-a) = 0, and 

~(--a) = A2 e -ka+B2eku=0 or B2=-A2e -2ka , 

thus v(z<O) = A2 (ekz-e-2ku eekz). 

(A .4) 

(A .5) 

(A 4 

(A .7) 

At the interface the velocities are to be continuous, thus for z = 0 
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B, (1-e-2ku)=A2(1-e-2ka), (A .8> 

or Br = A2 = v, , which is the initial velocity of the interface. Therefore, for the Rayleigh- 

Taylor problem with finite boundaries at z = a Eq. (A .3) becomes: 

-kz - e 
-2ka kz 

v(z) = 
v,(e e ),z>O 

kz v,(e -e -2kae-kz ),z<O 

(A .9> 

The growth rate of the Rayleigh-Taylor problem with finite boundaries can be 

derived by integrating Eq. (A .l) over a small region of z from --E to E that includes the 

interface, and then letting E go to zero. It is assumed that the densities above and below 

the interface are each constant within their respective regions, so that p(z>O) = pahove and 

P(Z<O) = Pbd”W * Integrating the left hand side of Eq. (A .l) and using the derivatives of the 

results of Eq. (A .9) with respect to z, one obtains: 

I, = ~&(po~)d~ = 

-E 

po$iEE = -kvo(pabove + pbelow)(e-ke + e-2kueke) ,(A J-8 

which, in the limit as E goes to zero, becomes 

11 = -kVo(Pabove + Pbelow)(l + e-2ka) (A .ll) 

The integral of the first term of the right hand side of Eq. (A .l) can be split into 

integrals above and below the interface: 

E E 0 

I, = I k2povdz = ~k2pubovevdz + I k2pbelowvdz (A .12) 
/ 

-E 0 -& 

E 0 

I, = I 
k2P,bovcvo(e-kz - e-2kaekz)dz + j k2pbclowvo(ekz - e-2kae-kz)dz (A .13) 

0 -E 
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-2kul kz 
- e ie 

0 
-2ku 1 -kz 

-e -ke )I 1 XA .14) 
-& 

I, = k2vo ~pubove{(evkE- 1) + e-2ka(eke- l)} , (A .15) 

+ i pbelow{ ( 1 - ewke) + e-2ku( 1 - eke)}] 

which, in the limit as E  goes to zero, becomes 

I, = 0. (A .16) 

Integrating the last term of the right hand side can be done using integration by 

parts, and the remaining integral being split up into parts above and below the interface. 

1 
3 

-E 

(A .17) 

E 0 

I3 = -k2” 
Y 

povl:E + f &boveaV + j PbelowaV ’ (A .18) 
0 -& 1 

I, = -k2 $ [ pabovevo( evke - e-2kaekE) - pbelowvo( ekE - e-2kae-ke) , (A .19) 

+ pabovevo{ cemke - 1 > - e -2ka(ekE- l)} 

+ pbelowvo{ (1 - emkE) - e-2ku( 1 - eke)}] 

which, in the limit as E  goes to zero, becomes 

I, = -k2~vo[(pu,,,,-p,,,,,)(1 -e-2ku)]- (A .20) 

/ From 1, = 12 + 1, and Eqs. (A .l l), (A .16), and (A .20) the following is obtained: 

(P y2 = kg (pabove - Pbelow) (1 - e-2ku) 
above ’ Pbelow) (1 + e 

-2ka ’ 
) 

(A .21) 
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The new part of the result is the ratio of the exponential function. A plot of the 

function F = [( 1 - em2 k a )/( 1 + ee2 k a )] 1’2 shows that for a = h the new function F is equal 

to approximately one (F = 0.999997), hence does not affect the growth rate, and therefore 

behaves the same as for the Rayleigh-Taylor problem with infinite boundaries. Not until 

a is below about h/2 does it start to affect the growth rate, and then F = 0.998, which is still 

a small change. However, it rapidly drops to zero below h/2. 
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