
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-00-6116
Approved for public release;
distribution is unlimited.

Title:
Qviz: A Framework for Querying and Visualizing
Data

Author(s): T. Alan Keahey, Patrick McCormick, James Ahrens
and Katarzyna Keahey

Submitted to:

http://lib-www.lanl.gov/la-pubs/00796132.pdf

Qviz: A Framework for Querying and Visualizing Data

T. Alan Keahey Patrick McCormick James Ahrens Katarzyna Keahey

Advanced Computing Group

Los Alamos National Laboratory

Los Alamos, NM 87545

ABSTRACT

Qviz is a lightweight, modular,and easy to use parallel system for interactive analytical query processing and visual
presentation of large datasets. Qviz allows queries of arbitrary complexity to be easily constructed using a specialized
scripting language. Visual presentation of the results is also easily achieved via simple scripted and interactive
commands to our query-speci�c visualization tools. This paper describes our initial experiences with the Qviz
system for querying and visualizing scienti�c datasets, showing how Qviz has been used in two di�erent applications:
ocean modeling and linear accelerator simulations.

Keywords: data visualization, analytical queries, parallel processing, multivariate visualization

1. INTRODUCTION

Visualization is often a key element to allowing scientists or other users to understand large and complex datasets,
along with their associated systems and processes. E�ective understanding of a complex dataset comes about from
gaining the ability to ask and answer questions about it, to generate and verify hypotheses. In the process of
generating these hypotheses, the user may wish to test for a set of conditions having a complexity that would be
diÆcult to identify visually in a traditional visualization environment. This may become particularly apparent when
dealing with multivariate datasets, where the complexity of the visual representation increases signi�cantly with
each new attribute that is being considered. There have been a large number of tools described in the visualization
literature for providing visual representations that allow the scientist to answer quantitative questions about the
dataset, these include color-maps, slices, isosurfaces and other techniques. Such tools can be thought of as providing
post-visualization query capabilities, in that they allow the scientist to infer speci�c numeric values at points of interest
through inspection of the �nal visual image. A complementary technique is to provide pre-visualization queries, which
allow scientists explicitly designate some portion of the data for special treatment before any visualization actually
takes place. While we see the pre and post visualization queries to be complementary, it is worth pointing out
some of the inherent di�erences between the two methods. Post-visualization queries can be enabled through the
use of intuitive, well-understood mechanisms for embedding additional information within a visual representation.
The ability to decipher a color-map is universal within the scienti�c community. However post-visualization queries
will by their very nature be tightly bound to the visual representation of a dataset, and for some instances (such
as multivariate data) where the visual representation is incomplete this may pose some problems. Add to this
the diÆculties that may arise through occlusion or interaction artifacts, and it is clear that in some cases a post-
visualization query will result in incomplete or even incorrect results being inferred by the viewer. In contrast to
these issues, we note that pre-visualization queries are not inherently bound to any speci�c visual representation
of the dataset, but can rather be expressed in any other representation (graphical, logical, etc) that we choose.
This freedom of representation comes with the potential cognitive expense of a decoupling between query and visual
representations.

This paper will describe our preliminary experiences with the development and application of the Qviz framework
for interactive querying and visualization of datasets. Qviz has been designed from the ground up to provide a light-
weight, parallel, modular and extensible environment for the generation and visualization of queries on scienti�c
datasets. Our goal is to provide both pre and post visualization queries in a synchronized fashion. We have placed a
strong emphasis on ease of use with the system, both in terms of interactivity and learning curve, so as to facilitate
its use as a tool for interactive exploration of datasets by scientists. At the most basic level, we are developing Qviz
to provide quantitative tools for the analysis of datasets. At a higher level of abstraction, these quantitative tools

Email: fkeahey, pat, ahrens, kateg@lanl.gov

can also be manipulated to provide additional functionalities such as feature detection, comparative visualization,
multivariate data capabilities, and a general focusing mechanism. In creating the Qviz framework, we are attempting
to address all of these design considerations in a single, intuitive environment that promotes the \query paradigm"
as a �rst class interaction technique for scienti�c datasets. In contrast to existing full-featured visualization packages
however, our focus is solely on methods for expressing queries and viewing their results. The extensibility of our
framework allows the inclusion of additional visualization packages where additional functionality is desired.

2. THE QVIZ FRAMEWORK

The Qviz framework consists of a set of discrete components that can be interconnected in a variety of ways. Each
component corresponds to a particular stage in our query-visualization process: data speci�cation and preprocessing,
query speci�cation, query retrieval, and visual presentation. The Query Registry is responsible for dynamically
assembling these components according to run-time con�guration scripts and user input. In the following four
subsections we will brie
y describe each of these components. Following that, we will discuss some of the di�erent
ways in which these components can be assembled.

2.1. Data Speci�cation and Preprocessing

This stage involves a short script that de�nes any number of datasets to be read into memory. For each dataset
speci�ed, we de�ne the type of the data (currently scalar and vector �elds are fully de�ned for regular grids),
a symbolic name and one or more �lenames containing the data for that dataset. In addition, Qviz can compute
elementary mathematical expressions on datasets such as addition, multiplication or normalizing. As each expression
is evaluated, the result is stored as another dataset having its own symbolic reference which can in turn be referenced
by later expressions. This nesting of expressions allows expressions of arbitrary length and complexity. The script
fragment below shows the de�nition of two scalar �elds for temperature and salinity, and a 2D vector �eld for
ow.
Then we derive a �eld for the square of the temperatures, and normalize the salinity to between 0 and 255. An
optional DUMP
ag can be speci�ed for each dataset to indicate to the preprocessor that it should be saved to a �le
after it has been loaded and/or computed for later processing.

DATADIR ../../data/1280x896/

DATA SCALAR temp T.k2

DATA SCALAR salinity S.k2

DATA VECTOR uvflow u.k2 v.k2

DATA SCALAR temp^2 EXPR temp * temp

DATA SCALAR salNorm EXPR salinity || 255

This preprocessing facility is similar to the derived �elds for CFD described in,1 and the compute modules of IBM
Data Explorer2 (which also provides comparison operators). In contrast to the rich set of operations described
in those works, our intent with this system is simply to provide elementary facilities for the types of basic data
manipulation that we frequently encounter when processing data for subsequent visualizations. However, as new
data operations are required it is a relatively simple matter to extend our system to provide them. We expect that
as we encounter more applications, our library of data operations will grow to accommodate their needs.

2.2. Query Speci�cation

Now that we have de�ned the datasets to use as inputs, the next stage involves the speci�cation of queries to perform
on those datasets. Out scripting language for specifying these queries is similar to that used in the data processing
stage, although the inherent complexity of the types of queries that we want to express is much greater than the
relatively simple data preprocessing operations.

A query con�guration script is composed of any number of Named Queries. A single Named Query is composed
of a tag providing a symbolic name for the query, a Query Expression, and an optional return type. The simple
example below shows a single named query called tempQ which speci�es �nding all areas in the dataset temp where
the value is less than or equal to 2:0. More complex queries will be shown in the detailed explanation of query
expressions and return types below.

QUERY tempQ VALUE temp <= 2.0 END

A Query Expression is composed of a type speci�er, a dataset on which to perform the query, an optional
negation operator, a query operator, and one or more parameters. We have currently implemented three type
speci�cations: value types query the actual values contained in the dataset, index types extract regions of the
dataset based on their index locations, and macro types provide references to the results of previously de�ned
queries. The dataset speci�cation is a tag referring to either a dataset de�ned in the data con�guration script, or
to a previously de�ned query (thus allowing queries on queries). Examples of allowable query operators are the
standard comparisons (<;>=;=), range, isovoxel (similar to an isosurfacing operation), and vector magnitude and
angle operators. Additional operators can be easily added to the framework by compiling a new method that performs
the operator into the framework, and updating the parser to provide a pointer to that method when the operator is
encountered. A Query Expression can either be a single query, or any number of single queries connected by logical
boolean operators. Such Accumulation Queries are evaluated left to right, if a more complex order of operations
is required then the user can use the macro facility to specify any arbitrary order of operation. While the boolean
combinations provided within an Accumulation Query are somewhat limited expressively, they can o�er signi�cant
performance advantages over the use of macros for many of the standard types of queries that are encountered. This
will be discussed in more detail in the following section on Query Retrieval.

The following script fragments show some examples of typical queries that can be constructed. The second Named
Query combines a macro reference to the �rst query with a value query to �nd all areas where the temperature is
between 5.0 and 6.5, where the salinity is greater than 0.036. The �nal Named Query combines the preceeding three
queries to �nd all regions where the vector angle is between 0.1 and 1.6 radians, the vector magnitude is between 80
and 90, and the indices for the region are between rows 500 and 600 and between columns 200 and 300.

QUERY tempRangeQ VALUE temp [] 5.0 6.5 END

QUERY salTempQ MACRO tempRangeQ & VALUE salinity > 0.036 END

QUERY uvAngQ VALUE uvflow // 0.1 1.6 END

QUERY uvMagQ VALUE uvflow || 80.0 90.0 END

QUERY Index INDEX temp [] 0 0 500 600 200 300 END

QUERY uvAngMagQ MACRO uvMagQ & MACRO uvQ & MACRO Ind END

For the optional return type speci�cation, Qviz currently provides three ways in which the result of a query can
be encoded: boolean, pass-through, and bitwise. The default boolean result type creates a mask containing only true
or false values. In contrast, the bitwise and pass-through return types allow us to embed the query result within
the existing data. The pass-through return type passes through the value that is being queried everywhere that
the query condition is met, and a runtime-designated NULL value everywhere else. The bitwise return type always
passes through the value being queried, after �rst encoding the pass/fail status of the query condition in a query

bit. Subsequent queries in an accumulation query perform boolean operations on the speci�c query bit, rather than
passing through the later values that are being queried. This type of bit-twiddling to encode the information can only
be performed if the data is of an integral or enumerative type, and will not work with
oating point data. Multiple
query bits can be speci�ed when using the query macro mechanism. The result of this return type is a slightly lower
resolution dataset (in terms of range of the data values, not spatial resolution), in which the distribution of the query
condition(s) can be viewed in-situ with a dataset via manipulation of color-maps and texture lookup tables.

A few simple script fragments below illustrate the syntax. As with the dataset con�guration scripts, an optional
DUMP keyword can be used to tell the Query Registry to save the results of a query to �le after the computation is
�nished.

QUERY tempQ VALUE temp [] 0.6 6.5 BOOLEAN 255 END

QUERY salinityQ VALUE salinity > 0.036 PASSTHRU 0 END

QUERY densityQ VALUE density < 100 BITWISE 0 END

In addition to the scripting interface, Qviz also provides a simple GUI interface for displaying the current set of
queries stored by the Query Registry. This Query Controller also allows the user to interactively manipulate the
parameters of the queries to better re�ne them through an iterative exploratory process.

Figure 1. The Query Controller for manipulating query and visualization parameters. The bottom section of the
window shows 4 di�erent queries (labelled topoQ, tempQ, salQ, ind). The top section of the window shows the visual
representation (type and RGBA values) to apply to the named query results. These are the queries and parameters
for the 2D ocean example described in Section 3.2 and illustrated in Figure 3.

2.3. Query Retrieval Engine

After the data and query con�gurations are de�ned, an update mechanism is invoked to perform the actual queries.
This update mechanism is the computational core of the query visualization process, and there are a number of
eÆciency and correctness issues that need to be considered in its design. The update mechanism is also invoked as
the user interactively manipulates the individual parameters of speci�c queries. The update needs to account for
dependencies created in the con�guration of the data and query speci�cations. The use of primitive data expressions
and query macros entails that it will traverse the macro dependency graph to update all queries and data expressions
that are dependent on the current dataset or query and it's descendents. Since Qviz currently stores its data and
query expression macros in a linked list representation, we can achieve this dependency update through a modi�ed
left to right traversal of the list.

Processing queries lends itself naturally to both data and task parallelism. So far we have introduced data
parallel processing in our implementation taking direct advantage of shared memory for synchronization and data
storage. Since most query processing is embarasssingly parallel, the speedup is directly proportional to the number of
processors at our disposal which makes a big di�erence in interactivity even for relatively small number of processors.
For example execution of a comparison query on our linear accelerator dataset of 5123 cells, running on 64 processors of
an SGI Origin2000, results in the near-interactive update time of 2 seconds per query. We are currently investigating
ways in which this update machanism can be improved by the introduction of task parallelism and analysis of the
dependency graph for dynamic scheduling.

The Accumulation Queries mentioned in the previous subsection do not have the same expressive power as we can
get by combining query macros (in particular, order of operations can only be left to right), however they represent
a class of queries that can be computed more eÆciently than when using the more general macro mechanism. When
a Named Query is de�ned, space is always allocated for the storage of the result, thus as complex expressions are
developed the storage increases proportionally. In contrast, Accumulation Queries use a single storage area in memory
into which the entire expression is computed. This not only decreases memory usage, but also increases data locality
for increased eÆciency. Despite their expressive limitations, Accumulation Queries are actually expressive enough to
account for a great deal of the types of queries that are typically encountered.

2.4. Visual Presentation

The �nal stage of our query visualization process involves the visual presentation of the query results to the user.
Up until this stage, all of the processing has been independent of the method that is used for displaying the results.
Although the type of visualization that is used will necessarily be somewhat dependent on the types of data and
queries (2D vs. 3D, vector vs. scalar, etc...), we have designed the Qviz framework to keep these as independent as

possible. By keeping our query and visualization stages modular, we make it easier to plug in di�erent visualization
routines to look at the query results in di�erent ways. While it is important that the visualization tools used should
mesh e�ectively with the query results, we do not want to tie ourselves to any �xed set of visualization methods.
Qviz provides a number of tools for visualizing query results, however it is also easy to export the query results to
other visualization packages. The Qviz scripting language provides a simple and direct means for specifying how the
built-in visualization tools should be used to show the results of a set of queries.

One of our major design principles in developing visualization tools for the query visualization task is that where
possible we should present the query results in-situ, so that the user can see both the data and the query results
simultaneously. Two fundamental methods by which this can be achieved are masking and layering. Both of these
methods are similar in that they use a query result to alter the visual appearance of a given dataset, deciding which
one to use is dependent on how you want to interpret the query results. For masking the query result is used as
a boolean mask to fully clip out regions that do not meet the query condition. This can be helpful in reducing
the complexity of the visualization, and allowing the user to focus on regions of interest. Similar techniques have
been used for clipping geometry3 and thresholding.4 Layering provides a modi�cation to the masking concept by
rendering the query results as semi-transparent layers on top of the underlying data. This allows us to highlight
regions of interest where the query condition has been met, or to dim or subdue the regions that do not meet the
query condition. By rendering each query result as a layer with a di�erent color, we can also use layering to show
the results of multiple queries simultaneously. This layering provides a basis for an elementary type of multivariate
visualization.

Another major principle for the design of the visualization tools for query visualization is to provide the visual
analogy of logical combinations of data and queries. While previous sections have described facilities for logically
combining query results via logical connectives, we also wish to develop methods for combining these results visually.
Layering is an example of a means of visually combining queries in a way that conveys more information than could
normally be obtained through simple boolean combinations of queries. By rendering di�erent queries as translucent
layers, the user can instantly detect both the unions and intersections of these queries simultaneously.

Qviz provides built-in tools for visualizing both 2D and 3D query results. The 2D visualization tools make exten-
sive use of masking and layering to show the results of multiple queries. Masking in 3D is a relatively straightforward
operation, however layering of query results provides a greater challenge due to issues of occlusion and transparency.
Qviz provides a texture memory-based volume visualization tool for visualizing query results. With used in con-
junction with the bit-wise or pass-through return types, it is possible to produce fairly sophisticated results where
regions of the data matching the query (or queries) can be made more or less transparent by the user. This provides
an in-situ representation in 3D where results of complex queries can be seen in place with the original dataset.
Modi�cations to the transparency can be performed interactively by the user with very rapid response rates through
simple manipulation of the texture lookup table. Earlier work on the general task of viewing multiple values in a
volume by slicing and sub-setting includes.5

Although we would prefer be able to visualize our query results in-situ wherever possible, there will also be
occasions where the complexity of the queries or dimensionality of the dataset is so high as to require alternative
visualization methods. Towards that end, Qviz allows multiple views of datasets and query results. Any number of
windows can be created, each having its own view of particular attributes of the data or query results.

The script fragment below shows how a few di�erent visualization e�ects can be speci�ed, in general a viz
speci�cation script consists of any number of viz speci�cations, each composed of: the VIZ keyword, the symbolic
name of a dataset or query results, the desired visual representation, and optional parameters specifying the RGBA
components to use in the visual representation. The order in which the lines are scripted determines the order of
layering (if any) for the visual representation of the results.

VIZ uflow DATA

VIZ topoQ MASK 0.0 0.0 0.0 1.0

VIZ salQ MASK 0.8 0.1 0.8 0.5

VIZ tempQ MASK 0.8 0.1 0.1 0.5

In the script above, the �rst line indicates that the dataset \u
ow" should be rendered using the default or current
colormap. The second line indicates that the results of the \topoQ" query should be rendered as an opaque back

mask on top of the \u
ow" data, the third and fourth lines specify that the salQ and tempQ query results should be
rendered as semi-transparent layers on top of the previous layers. In addition to the DATA and MASK keywords,
the BITWISE and PASSTHRU keywords can be used to indicate to the visualization tool that these special types
of rendering should be performed.

2.5. Con�guring the Query Registry

There are a number of useful ways in which the components of the Qviz framework can be assembled. At the heart
of this con�gurability is a formal grammar which describes di�erent con�gurations and states of the framework.
This grammar de�nes a scripting language that is used to: specify data �les and operations for creating derived
�elds, specify queries (inputs, types, parameters and results), specify visualization tools and parameters, and allow

exible run-time con�guration incorporating some or all of the components. Additionally, the grammar provides a
formal reference model on which to base implementation, and also provides a full description of the data and query
computation on which to perform dependency analysis, optimizations, and parallelization.

The use of the Qviz components can be specialized in two ways: programmers can compile their own custom
con�gurations of the framework, or users can create con�guration scripts at run-time for con�guring and manipulating
di�erent combinations of precompiled component functionality. The parameters can also be manipulated interactively
by the user at run time. At any point during this manipulation, the current state of the framework can be saved to a
script �le for later use. Our standard con�guration of Qviz makes use of all the stages of the framework, several other
scripted con�gurations provide useful results however. The data �eld and derived �eld de�ninitions can be used as
a standalone data processor for
exible batch manipulation of data �les. Although somewhat pedestrian in nature,
this facility actually is quite valuable, as typically a great deal of time is spent \prepping" data before we can use
it in our visualization tools and much of that preparation can now be automated. The query engine can be hooked
up to the data speci�cation and output the results in batch mode for further analysis and/or visualization by other
tools. Finally the visualization tools can be hooked up directly to the data speci�cations to provide a \query-less
visualization tool. Thus while interactive query visualization of large datasets was our primary motivation in the
construction of this framework, we have also found many other ways in which the framework can be used.

3. APPLICATIONS

3.1. Linear Accelerator Simulation

Particle accelerators play an increasingly important role in basic and applied science. A main goal in the computer
simulation of particle beam dynamics is to understand the beam's evolution as it propagates along the accelerator.
A key feature within the beam is the halo which is responsible for beam loss (radioactivity) when particles strike the
beam pipe. Understanding the behavior of the halo is a major issue for next-generation, high-current, accelerators.

High-resolution particle beam simulations use hundreds of millions to billions of particles to model the details
of a beam. These particles may be mapped into a density volume as described in.6 Figure 2 shows several images
of a 5123 density volume from a phase space representation of the beam. The phase space representation can be
described as a combination of the particle locations and momenta, and is described more fully in.6 The sequence
of images shows a series of increasingly re�ned density queries for removing the denser core of the beam, until only
the di�use halo region with very small density remains. In each image, we have used a spatial query to remove one
end of the \shell" formed by the beam, thus allowing us an unobstructed view into the interior.

Figure 2. Phase space representation of a linear accelerator beam. The sequence illustrates removing increasing
amounts of material from the core of the beam via density queries until only the outer halo remains.

3.2. Finding Features in Ocean Models

This section examines the output from a 992� 1280� 128 cell ocean simulation of the North Atlantic. There are
many regions of interest in this dataset, however we will focus primarily on the area where the warm water of
the Mediterranean Sea mixes with the colder waters of the Atlantic. Ocean modelers are particularly interested in
examining how their model behaves in the region where the relatively warm, salty sea water spills into the lower
ocean regions. There are 5 primary properties that are being modeled in this simulation: temperature, salinity, and

ow velocity in u; v and w. An additional �eld contains information about the topography of the ocean
oor.

We extracted the top horizontal slice from the ocean model and performed some simple queries on it to obtain
the result shown in Figure 3, which has the following features: a grey-scale color mapping is used to render the
magnitude of
ow velocity, an opaque black overlay is used to mask out the null regions in the model that are above
water, a transparent blue overlay is used to indicate where the temperature is between 10 and 20 degrees (C), and
a transparent yellow overlay is used to indicate where salinity is greater than 0:036. The intersection of these two
regions will thus have magenta shading. From the patterns of temperature and salinity that we observe, we spatially
select a rectangular region of interest (shown as a green overlay). We will extract the 3D volume associated with
this region of interest for further study.

Figure 3. Top level view of a North Atlantic ocean simulation. Flow velocity is shown in grey-scale. The results of
temperature and salinity queries are shown as blue and yellow overlays respectively. The green rectangular overlay
marks the region selected for further study. (The grey-scale section in Africa is space \borrowed" from that null land
region to represent the Gulf of Mexico.)

This example shows in 2D how multiple query results can be visually combined to show where the query conditions
have been satis�ed. Qviz allows the user to easily de�ne and modify the way in which these layering operations take
place. By changing a couple of lines in the script we can modify the above query to instead provide a grey-scale
rendering of the temperature �eld with a transparent overlay showing where the
ow velocity is within a certain
range. Any number of these queries can be de�ned and shown as layers, and the user can interactively modify the
parameters of the query as well as the opacity of the individual layers.

Figure 4 shows two views of the extracted data rendered with a texture-based volume renderer. In the �rst view
we have further re�ned the temperature query to < 15 (C). In that view we can see that the temperature/salinity
queries are satis�ed in two primary ocean regions, near the surface, and down at a lower depth. In addition there
is a narrow stream spilling out of the Mediterranean into the lower of the two ocean regions. However, our view of

that
ow is somewhat occluded by the upper region, to correct this a spatial depth query was used to remove the
top region, with the result shown in the second image of Figure 4. The upper and lower regions matching the query
are independent of each other; the top region is the result of warming and evaporation by the sun, and the lower
region is the result of water transport from the Mediterranean.

Figure 4. Volume rendered views showing the result of a temperature/salinity query to extract the body of water
spilling out of the mouth of the Mediterranean. In the �rst image the lower body of interest is occluded by a higher
ocean region also matching the query, in the second image we use a spatial query to remove the upper layer to get a
clear view of the lower one.

Figure 5 shows a more detailed view of the spill region at the mouth of the Mediterranean. The query results
have been exported to the Visualization Tookit (VTK7) where vector glyphs are used to show the
ow. A query
based on temperature, salinity and vector magnitude was used to isolate the region of interest. The image shows the
spill of water out of the sea into deeper layers of the ocean, as well as an upper return current
owing back into the
Mediterranean.

Figure 5. Detailed view of the vector
ow �eld around the Straits of Gibraltar, �ltered by a temperature, salinity
and
ow magnitude query. The dark blue arrows in the upper layer show water
owing into the Mediterranean,
while the light blue arrows at a lower level show the salty water spilling out of the sea into a deeper pool. The view
on the right provides a closer view of the speci�c
ow vectors in the channel.

3.3. Other Applications

The preceding examples have illustrated several di�erent types of query results that can be derived from Qviz. There
are many more ways in which Qviz has been, and will be, used to glean insights from datasets. One particular area
where the query facilities of Qviz will prove useful is in comparative visualization,8 particularly in comparing the
results obtained from di�erent simulation models, or for comparing a simulation model to observational data. Our
preprocessing facility allows di�erences between datasets to be easily computed, and the visual layering of results
provides a simple but e�ective mechanism for relating those di�erences to the underlying models. Another area in
which Qviz can be directly applied is as an analyzer for time series datasets, computing the di�erence between time
steps to determine regions of variability. Qviz can also be used as a multivariate visualization tool, any number
of views can be created to simultaneously show any number of variables, in a scatter-plot-type fashion.9 We look
forward to discovering further ways in which the analytical and visualization tools of Qviz can be used to extract
meaningful information from scienti�c and other datasets.

4. CONCLUSIONS AND FURTHER WORK

Qviz is a lightweight package that o�ers signi�cant advantages in terms of ease of use, data-parallelism for interactive
response rates, modularity, extensibility and power of expressiveness. We have demonstrated a number of real-world
applications to which Qviz has been applied. These examples illustrate some of the ways in which Qviz can be used
to extract and present interesting aspects of scienti�c datasets, both as a stand-alone tool and in conjunction with
other visualization packages. We have enjoyed working with the application scientists as they used Qviz to isolate
features of the data, and we have received very positive feedback from them as they gain new insights into their data.

Our experiments with data parallelism are encouraging, we hope however that by integrating task and data
parallelism and introducing macro dependency analysis, we will be able to leverage cache reuse to a much higher
extent and thereby achieve more signi�cant speedups. We are also working towards a more complete and formal
description of the query visualization process. We will be integrating Qviz with our future high-performance volume
rendering system to provide better presentation of large 3D queries, in addition our simple GUI for manipulating
queries could use some improvement.

5. ACKNOWLEDGEMENTS

We would like to thank the members of the Advanced Computing Group's ocean modelling team at Los Alamos
National Lab for providing for providing data and feedback on this system, particularly Matthew Maltrud and Bob
Malone. We would also like to thank Ji Qiang and Robert Ryne of the Accelerator Physics group at Los Alamos for
their collaboration on the particle accelerator application.

REFERENCES

1. C. Henze, \Feature detection in linked derived spaces," in Proceedings of IEEE Visualization, 1998.

2. G. Abram and L. Treinish, \An extended data-
ow architecture for data analysis and visualization," in Proceedings
of IEEE Visualization, 1995.

3. W. E. Lorensen, \Geometric clipping using boolean textures," in Proceedings of IEEE Visualization, 1993.

4. A. Pang and N. Alper, \Mix & match: A construction kit for visualization," in Proceedings of IEEE Visualization,
1994.

5. T. A. Foley and D. A. Lane, \Multi-valued volumetric visualization," in Proceedings of IEEE Visualization, 1991.

6. P. S. McCormick, J. Qiang, and R. D. Ryne, \Visualizing high-resolution accelerator physics," IEEE Computer

Graphics and Applications , Sept. 1999.

7. W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit: An Object-Oriented Approach to 3D

Graphics, Prentice Hall, 1997.

8. A. Pang and A. Freeman, \Methods for comparing 3D surface attributes," in SPIE Visual Data Exploration and

Analysis, 1996.

9. J. LeBlanc, M. O. Ward, and N. Wittels, \Exploring n-dimensional databases," in Proceedings of IEEE Visual-

ization, 1990.

	Qviz: A Framework for Querying and Visualizing Data
	ABSTRACT
	1. INTRODUCTION
	2. THE QVIZ FRAMEWORK
	2.1. Data Speci cation and Preprocessing
	2.2. Query Speci cation
	2.3. Query Retrieval Engine
	2.4. Visual Presentation
	2.5. Con guring the Query Registry

	3. APPLICATIONS
	3.1. Linear Accelerator Simulation
	3.2. Finding Features in Ocean Models
	3.3. Other Applications

	4. CONCLUSIONS AND FURTHER WORK
	5. ACKNOWLEDGEMENTS
	REFERENCES

