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Modeling and simulation of the effects of

mesoscale structures in circulating
fluidized beds

D.Z. Zhang and W.B. VanderHeyden
Theoretical Division, Fluid Dynamics Group
T-3, B216
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

Mesoscale structures such as particle clusters have been observed both ex-
perimentally and in numerical computer simulations of circulating fluidized
beds. In numerical simulations, these structures result from nonlinearities
present in even the simplest of two-fluid models based on closure models
that account only for phase interactions at the scale of the particles. Sim-
ple particle-fluid drag closure models are one example. In many cases, the
mesoscale structures have been demonstrated to have predominant effects on
the macroscopic behavior of fluidized beds. As a result, some two-phase flows
can be computed using very simple two-phase flow averaged conservation
equations as long as enough resolution is used. Such an approach, however,
is impractical for engineering simulations of fluidized beds due to excessive
computational costs. To predict the macroscopic behavior of a fluidized bed
with reasonable computation cost, averaged equations must be developed
with more sophisticated closure relations that model the mesoscale struc-
tures. To obtain such closure models, we perform a second average over
the simple averaged equations for two-phase flows and develop insight into
closure models using data from high-resolution computer simulations. From
these data we examine the characteristics of the basic physics involved in
these terms. We suggest some tentative closure models.

1 Introduction

It has been found both experimentally and numerically, that mesoscale struc-
tures, such as, bubbles, particle clusters and streamers exist in gas-solid two
phase flows. These mesoscale structures significantly affect the dynamics of
fluidized beds. Recently, Agrawal et al. (2000) performed two-dimensional
simulations using a set of two-phase flow equations and kinetic theory to
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Figure 1: A snapshot of particle volume fraction contour on a mid-plane of
the experimental device used by Van den Moortel et al.(1998). The exper-
imental section of the device is a square duct with 20cm side, and 200cm
in height. The overall volume fraction in the device is 3%. The particle
material density is 2.4 g/cm3, and mean diameter is 120um with 20um of
standard deviation. The fluid is gas at room temperature.

model effects of particle-particle interactions. They found that the averaged
terminal velocity of the particle phase does not converge until very fine grids
are used. They also found that Reynolds stresses in the particle phase re-
sult mainly from the mesoscale interactions and the contribution from the
kinetic theory of granular materials is negligible. Furthermore, Zhang and
VanderHeyden (2000) used a set of highly simplified equations for two-phase
flow, and neglected all particle-particle interactions at the particle scale, to
simulate an experiment performed by Van den Moortel et al. (1998). When
high grid resolution was used, a mesoscale structure was observed as shown
in Figure 1, and good quantitative agreement between numerical results and
experiment were found. For instance, the comparison of the calculated mass
fluxes are compared to experimental values in Figure 2. This agreement
with data is further evidence that the macroscopic behavior of a gas-solid
fluidized bed is dominated by mesoscale interactions.

Although, these mesoscale scale structures can be captured with the fine
grid resolution used in our simulation, direct application of the equations
used to engineering practice is not realistic. To simulate 21 seconds of real
time in the small fluidized bed of Van den Moortel ef al., we used an SGI
Origin 200 machine with two processors in parallel. It took us 51 days of
wall-clock time or about 100 CPU days. For engineering applications, we
seek to derive a set of macroscopic equations that accounts for the effects of
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Figure 2: Comparison of calculated mass fluxes with the experimental val-
ues.

mesoscale interactions.

2 Phase interaction forces at difference scale

By performing an ensemble phase average of momentum equations Zhang
and VanderHeyden (2001b), found that the macroscopically averaged equa-
tions for both phases can be written as
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where p is density, 8 is volume fraction, u is the averaged velocity, R is the
Reynolds stress, f; is average drag acting on each of the particles in the flow,
f,, is the averaged mesoscale force, and ¢ is the averaged continuous stress.
Subscript d in the above quantities stands for the disperse (particle) phase

and subscript ¢ stands for the continuous phase. The mesoscale force £, is
defined as

+V- (9dudud)] =04V -0+ V- (04Ry) +04(fq+f1n) + 04048, (1)
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where o, is the stress of the continuous phase averaged on the particle scale
level. The prime denotes the fluctuation of the quantity. It is seen that
the force f,, results from the correlation of fluctuations in volume fraction
and fluctuations in stress divergence. It vanishes in a homogeneous flow.
To further understand the physical meaning of this force, let us consider a
particle cluster with a constant volume fraction fluctuation 8. Let V be the
volume of the cluster, then the integral

/ 6,V -oldv = ¢, / a'ds, (4)
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represents the interfacial force on the cluster surface. This force represents
the interaction of the cluster and the surrounding medium. In the case of
non-constant @, the force f,;, can be viewed as the averaged interfacial force
acting on the fuzzy surface of clusters. Interactions between the mesoscale
structures and the surrounding medium can be divided into a drag and an
added mass force similar to the case for a particle in a fluid. Typically, in a
gas-solid flow, gas inertia is negligible. For the case of mesoscale structures,
the surrounding medium is not pure gas but the mixture of solid and gas,
which has a much larger density than the gas. Therefore the mesoscale
added-mass force between the two phases is important. In Figure 3, based
on our high resolution simulation (Zhang and VanderHeyden, 2001a), the
force f,, is shown as a function of height in the fluidized bed.

200 P T

100 Y

f., (dn)

100t
4

L]

200 o:‘.' o

300 .

» NI INEETANE ENUNINENE AYAVANETE IVITETAVE YAVINANE ATAVENATE R
400 20 40 60 80 100 120 140 160

height (cm)

Figure 3: Mesoscale force f,, as a function of height. The superficial gas
velocity is 1.1m/s.

The mesoscale force f,,, is negative, resisting upward motion of the par-
ticle phase, in the lower half of the fluidized bed. It is positive, pushing the
particle phase upward, in the upper half of the fluidized bed. The positive
part of the force is due to the average cluster drag as a result of relative mo-
tion between the particle clusters and surrounding medium. The negative
part of the force cannot be explained by the alone. It can only be explained
by an added mass force since at the lower portion of the fluidized bed the
relative acceleration between the two phases is large compared to the upper
half. In this region the relative acceleration between the particle phase and
the gas phase is in the upward direction while the added-mass force acting
on the particle phase is downward and the mesoscale force becomes nega-
tive. In the case of a fluidized bed, the added mass part of the mesoscale
force is more important since it is difficult to distinguish cluster drag from
the ordinary drag resulting from the particle scale interactions.

The effect of the mesoscale is not only restricted to the mesoscale force.
Within a particle cluster the particle phase falls in the wake generated by the



leading part of the cluster and the relative velocity is significantly less than
the averaged the relative velocity. Therefore the drag, f;, is significantly
reduced as shown in Figure 4. If we used the averaged relative velocity
experienced by the particles to calculate the drag force, close agreement
with the numerical results are found as shown in Figure 4.
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Figure 4: Averaged particle drag force as a function of height. The solid line
is results from numerical simulation and the dashed line is calculated using
the averaged gas velocity experienced by particles v defined in eq. (7). The
dot and dash line is calculated using averaged relative velocity ug — u.. The
superficial gas velocity is 1.1m/s.

Both the mesoscale added mass and the reduction of drag contribute sig-
nificantly to the macroscopic behavior of a fluidized bed. For the mesoscale
added mass force we propose
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where py, = 03p4 + 0.p. is the density of the mixture, and C, is the added
mass coefficient. The added mass coefficient is apparently dependent on the
shape and the flow condition of the mesoscale structures.
For the drag term, we propose (White, 1974)
3

fa= _Eeccdpgh’w; (6)

where v is the relative velocity in the vertical direction.

v =(1—Cp)(udz — Uecz), (7)

and C) is relative velocity reduction coefficient.
Figures 5 and 6 illustrate the effects of the added mass coefficient C,
and coefficient of relative velocity reduction C; in a one-dimensional vertical



fluidized bed simulation. Note that these forces modifications significantly
affect the pressure gradient and volume fraction profiles.
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Figure 5: Vertical distribution of pressure gradient and averaged particle
volume fraction calculated using different added mass coefficients C,. The
relative velocity reduction coefficient C, is fixed at 0.9 in all the calculations.
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Figure 6: Vertical distribution of pressure gradient and averaged particle
volume fraction calculated using different relative velocity reduction coeffi-
cient C,. The added mass coefficient C,, is fixed at 4.0 in all the calculations

3 Conclusions

Both numerical simulation and experimental observation suggests that mesoscale
structures exist in gas-solid two-phase flow. In many cases, mesoscale inter-
actions have dominating effects on macroscopic behavior of two-phase flows.
Except for the drag term, the interactions at the particle scale do not have
a significant affect on the macroscopic flows although they control the way



energy is dissipated at the particle scale. This is similar to the role of molec-
ular viscosity in a turbulent flow. It does not affect the large scale motion
directly, although it determines the Kolmogorov eddy scale.

A set of macroscopic equations accounting for the mesoscale interactions
is derived. It is found that the most important effects of mesoscale structures
are drag reduction and mesoscale added—mass. Simple models for these
effects are proposed. Effects of these models on industrial sized fluidized
beds are investigated.
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