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Topological excitations and second order  transit ions in 3D O ( N )  
models 

Luis M. A. BettencourP 
Theoretical Division, MS B288 Los Alamos National Laboratory, 

N M  87545, USA 
E-mail: lmbettQlanl.gov 

I discuss several examples of critical phenomena in O ( N )  models where topological 
excitations play an important role at; criticality. I focus particular. attention on 
the O(2) model in 3D, where recent measurements of the vortex string length 
distribution in equilibrium suggest the existence of a quantitative picture of the 
critical behavior in terms of defects. The compalibility of this perspective with 
renormalization group predictions is examined. 

1 Overview 

Second order phase transitions are the class of critical phenomena best un- 
derstood theoretically, both through analytical methods and via large scale 
computational studies. The superb agreement among experiment, the renor- 
malization group predictions and lattice studies for the values of universal 
critical exponents is one of the major achievements of modern physics. 

Most of the models used to describe continuous critical phenomena have 
interesting topology in two and three spatial dimensions, where they are rel- 
evant experimentally. As a result configurations that carry quantized topo- 
logical numbers are part of their excitation spectrum, together with the more 
usual low lying hydrodynamic modes. 

The understanding of the role of topological and hydrodynamic excitations 
in these models gives us the best hints about the mechanisms by which long 
range order, present at low temperatures, is destroyed above some critical 
T = T,, since, for continuous transitions, the state of (dis)order is reached 
gradually, from small towards large spatial scales. 

In this respect hydrodynamic modes are typically inefficient. The pres- 
ence of topological excitations, (domain walls, vortices, hedgehogs, textures), 
by contrast, implies disorder of phases or flows a t  least locally. Moreover topo- 
logical excitations can arrange themselves into finite energy configurations. 
These become likely as a statistical fluctuation above a temperature T com- 
parable with their energy. The size of such configurations is also the spatial 
extent to which disorder can exist in a macroscopically ordered state. 
aPresent address: Center for Theoretical Physics, Massachusetts Institute of Technology, 
Bldg 6-308, 77 Massachusetts Avenue, Cambridge MA 02139, USA. 
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In this lecture I will discuss how topological excitations are associated 
with order-disorder transitions in scalar O ( N )  models. These models describe 
critical phenomena in many relevant materials. Examples are liquid-vapor 
transitions, Ising magnets, the superfluid transition in 4He, transitions in high 
TC superconductors and ferromagnets, to name only some of the most familiar. 

The importance of a detailed understanding of topological excitations in 
these materials is far from purely academic. Vortices, for example, promote dis- 
sipation in superfluids and superconductors. Controlling them is a an essential 
step towards rendering these materials amenable to important applications. In 
addition several recent experiments 213,4,536 have measured topological defect 
formation in condensed matter systems with the objective of learning lessons 
to be extrapolated to similar phenomena in the early Universe. 

The outline of this lecture is as follows. In section 2 I discuss two canonical 
examples: The Ising rnodel and the Kosterlitz-Thouless transition in 2 spatial 
dimensions (2D). These will illustrate the connection between the spatial oc- 
currence and distributions of topological excitations and the development of 
long range disorder as T, is reached from below. I will proceed in section 3 
to new results in 3D, which allow us to characterize the transitions exclusively 
in terms of topological excitations (vortex strings) in O(2). Some conclusions 
and outlook for the future of research in the field are provided in section 4. 

2 Canonical Examples 

There are several canonical examples illustrating the connection between topo- 
logical excitations and the onset of long range disorder that marks critical be- 
havior. Here I will discuss two 2D examples: the Ising ( N  = l) and the 0 ( 2 )  
models, which display complementary features that will later generalize to the 
more interesting 3D cases. These two examples establish how the thermal oc- 

, currence and distributions of point-like and extended topological excitations 
may lead to eventual long range disorder. 

The (nearest neighbor) Ising rnodel in 2D is a thoroughly understood sys- 
tem. On a square lattice the model is exactly solvable. It has a second order 
phase transition, below which spontaneous macroscopic magnetization appears 
in the systemb. The Hamiltonian for the Ising model can be writtm as 

where Si is the spin at point i ,  Si = f l  and the sum is over nearest neighbors. 
b7'his model is in the same universality class as a real X44 field theory. All comments made 
about critical behavior in the king model apply there too. 
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At low T then there is long range magnetic order, Le., the spins all point 
in the same direction, with exceptions limited to very small spatial extents. 
As T is increased however the thermal state of the system is characterized 
by ever increasing islands of spins opposite to those of the main cluster, see 
Fig. 1. At T = T, these domains become as large as the volume and the 
magnetization vanishes. At T > T, the system is disordered and there is no 
net magnetization, a. e .  both directions of spin are equally likely. 

In the Ising model there is an exact mapping between two kinds of degrees 
of freedom - the spins and domain walls. Domain walls are sites where the 
spin changes orientation. Knowing the location of domain walls is completely 
equivalent to  knowing the spins, but contains of course no extra information. 
A wall has a certain tension CT - its energy per unit length - clearly CT = 2 5 .  

A different perspective then is that as T is increased walls become larger 
and at T = T, they percolate the volume. We can in principle then write the 
partition function for the Ising model in terms of walls. Since walls are lines in 
2D the partition function is that of an ensemble of walks. Assuming periodic 
boundary conditions further implies that all walks are closed. 

Let us try to build the simplest statistical theory of walks. The simplest 
ensemble of walks is one in which the walks are free, ie., that being at any 
point in space they can proceed to any of its nearest neighbors (say on a 
lattice). Then the partition function is 

The energy of the wall is, as we have seen, simply proportional to its length 
E = 2Jl/u,where a is the lattice spacing. The number of configurations R(E) 
for a walk of length 1/u is: 

O(E) = N2z+(l/u)-2, (3) 

where N 2  accounts for all the possible starting points on a N x N lattice, z is 
the number of available points a t  each step, and there are two factors of (l/u)-' 
one accounting for the probability of a walk to return to the origin after 1/u 
steps (this form is valid for Z/a large) and another to remove overcounting since 
any point on the walk could have been a starting point. We obtain 

with Oeff = 2 J  - Tln(z) .  There is clearly a transition at  T, = 2J/In(z). If 
walks were free in a 2D square lattice z = 4, but it is easy to see that to 
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Figure I: Typical configurations of a 2D Ising model in thermal equilibrium. T increases 
from left to right and top to bottom, showing how domains of the subdominant phase (black) 
grow to percolate the volume at T = Tc,  IC. At T > T,, Id,  both phases are equally likely 
but spatial coherence is retained over a length E("). 

represent interfaces of spins a walk cannot take a step back so that z = 3. 
This is an excellent approximation to the exact T, which is T, = 25/ ln(2.639). 
The discrepancy between the exact Tc and our simple model results from the 
large l / a  approximation made in R(E) .  For some configurations there are in 
fact only two possible choices in order for the walk not to close after a few 
steps (e.g. a walk around a single plaquette). 

With this example we have seen that the phase transition could be de- 
scribed equally well in terms of domain walls or in terms of more elementary 
individual spins. The two descriptions are completely equivalent and contain 
exactly the same information about the system's configuration. Choosing be- 
tween them is merely a matter of computational convenience. 

Our next example is the celebrated Kosterlitz-Thouless transition 7. This 
transition occurs in several 2D systems, most notably in 4He films '. The 
transition is usually described in the context of the O ( 2 )  (or x-y) model in 2D. 
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The Hamiltonian is similar in form to (l), but the spins now take values on 
the circle Si = (cosO,sinB), 0 E {0,2n}, and 0 is the phase of the spin. This 
model is in the same universality class as a complex 

Although the preferred state of the system at low T would seemingly be 
one with all spins aligned, it turns out that the 2D case, for all T # 0, is 
special. Indeed if one had true long range order one would expect that the 
spin-spin correlator as a function of distance to be: 

model. 

( W Z ) . W Y ) )  exp [-I. - Y l / W ) I  7 (5) 

describing small disturbances 6s with a characteristic length <, over of a con- 
densate (S)2 = 1. Instead in 2D, at  low T ,  one has 

(S(Z).S(Y)) 1/l. - YI 0 1 ,  ( 6 )  
where the exponent ??(T) = T/(Pnp(T)) is T dependent. This form of the 
correlation function is typical of a system undergoing a second order transition 
a t  criticality, when < -+ 00. In this sense the behavior of the system at low T 
is a sequence of critical points characterized by different values of q(T).  

Nevertheless the system is known to have a transition at high T to a truly 
disordered state. This transition is due to vortex excitations. How does a 
vortex induce disorder ? A vortex is a spin configuration where along a closed 
path in space the phase of the field or spin B changes by a multiple of 2n. This 
number is then a quantized topological charge Q 

where I? is a closed path in space. If a vortex with winding number N exists 
within r then Q = 2nN. Vortices can be of either sign and a vortex anti-vortex 
configuration is topologically trivial. 

Because the spins wind around the center of the vortex the phase is disori- 
ented arbitrarily far from the singularity. The presence of this angular phase 
gradient makes each isolated vortex have infinite energy in the infinite volume 
limit. The energy divergence as is well known E = npln(L/a),  where L is the 
linear dimension of the container and the energy p is dependent on details of 
the model. Thus a single vortex configurations cannot occur in a large volume. 

The most likely configuration involving vortices is then a pair of vortex- 
antivortex. If the pair has a separation R it costs an energy Epair N .pln(R/a), 
and introduces phase disorder over a length of order R. Since we must have 
R small to keep the fluctuation probable this does not seem an efficient way 
of creating long-range disorder. Long range disorder, nevertheless, can come 
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about if we are able to create vortex pairs of arbitrary separations or/and if 
we can produce enough pairs that the phase is disoriented everywhere, i.e. the 
separation between two pairs is comparable to the pair size. 

To dictate which of these mechanisms is relevant we have to understand 
the thermodynamics of vortices better. If we assume, for a first rough picture, 
that each new vortex pair does not interact with those already present in 
the configuration then the number of configurations, with the same energy, is 
R(R) = N22nR. The first factor counts all the places on the lattice where we 
can place the first vortex. The remaining accounts for all positions in 2D, at  
the distance R, from the first vortex where we can place the second. Thus the 
entropy of the pair is S(n) = InO(R). The free energy of the pair then is 

F(R) = E(R)  - T S ( R )  N (np - T )  ln(R/a). (8) 

Thus from this simple argument we see that there is a temperature TKT = np 
at which vortices of any separation can be created, implying the onset of 
long range disorder. This simple picture of the transition is qualitatively cor- 
rect. However to  obtain T, accurately we must account for the fact that p is 
changed by the presence of vortices and must therefore be self-consistently de- 
termined. This is done via well known Kosterlitz-Thouless relations' that yield 
~(TKT)/TKT = 2/n, which is a universal number, confirmed by experiment *. 

Above TKT we must have long range disorder, and the system can be 
characterized by a correlation length E ,  which is a function of the free-vortex 
density. The static vortex interaction potential coincides with that for un- 
screened point charges in 2D. Then, the vortex ensemble can be studied via 
the Coulomb gas partition function. But once we adopt the Coulomb gas ver- 
sion of the critical phenomenon we have lost contact with our original degrees 
of freedom - the spins. We have in this way simplified our view of the transition 
and expressed it in terms of its essential degrees of freedom - the vortices. 

The Coulomb gas perspective of the transition in the 2D x-y model sup- 
plies us with a new paradigm for the description of phase transitions in terms 
of topological excitations: that of a transition between a conductor and an 
insulator. Below the transition there are no free vortices, since all appear in 
pairs of small separation. Thus the charged medium is made out of dipoles and 
is polarizable but not conducting. At high temperatures some of the charges 
(vortices) are free and the medium becomes a conductor. 

This picture of the behavior of the topological charges as T'T is crossed 
will prove useful in the step to 3D, where second order transitions with diverg- 
ing characteristic lengths are the norm. 
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3 The 3D 0(2) model 

In 3D O ( N )  models display second order phase transitions. Of these perhaps 
the most important is that in the O(2) (or x-y) model. This transition describes 
critical phenomena in 4He, in extreme type I1 superconductors 11, and is a 
canonical model for some of the simplest phase transitions in the early Universe, 
such as the Peccei-Quinn transition 1 2 .  

The role of vortex lines in this model has an illustrious history. Onsager '' and later Feynman l4 suggested that the phase transition in *He could be 
brought about by the proliferation of vortex lines in the superfluid. 

The advent of the renormalization group, however, allowed one to solve 
for the critical behavior of the O(2) model without any reference to vortex 
configurations at all. The renormalization group results for critical exponents 
agree with experiment to better than three decimal places. No quantitative 
picture of the transition based on vortices can rival such feat. 

Nevertheless vortex lines exist in the excitation spectrum of the theory. 
It turns out that one can actually study their behavior by sampling the O(2) 
partition function. This allows us to generate field configuration characteristic 
of the thermal state at any given T and search for vortex strings. In this 
manner we measure the statistical behavior of vortex strings as a function of 
T. As we discussed above the string population can be fully characterized by 
the probability distribution function of number of strings vs. length. 

Free strings, in analogy to domain walls in 2D, are characterized by a 
length distribution 

n( l )  = AZ-Y exp[-pa,~Z] (9) 

where y = 5/2 and 0 := acff - T ln(z). In general vortex strings are interacting, 
leading to  different values of y and a different T dependence of aetf. The actual 
value of these parameters as a function of T are shown in Fig 2. 

Fig. 2 gives a characterization of the phase transition in terms of vortex 
strings 1 7 .  Fig. 2a (top left) shows how the total densities of long string Pinf ,  
short loops ploop and the total ptot change with p = 1/T. Clearly strings are 
suppressed below T, (which was measured independently over field correlators) , 
and long strings appear a t  T = T,. Fig.2b (top right) shows n(1). Below T, 
long strings are exponentially suppressed, while above T, n(Z) becomes scale 
invariant. The parameters y and aeE(T) characterizing n(l) are shown in 
Fig. 2c and finally Fig. 2d (bottom right) shows the exponent ~l characterizing 
the scale invariant distribution of long strings (q = 1 for free long strings in 
a domain with periodic boundary conditions). Fig. 2d also shows R(1) the 
distance between two points on the string vs. its length. Small string loops 
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Figure 2: The phase transition in the 3D O(2) model in terms of vortex strings. Fig. la 
(top left) shows how the string densities p change with T .  In particular long strings pinf 
appear at T = Tc. Fig. 1 b shows the length distributions n(l). At low T long strings are 
exponentially suppressed, but above Tc n(Z) becomes scale invariant, and approaches the 
Brownian case as T + 03. Fig. IC shows how u e ~  and y behave around Tc and Fig. I d  yi 
for long strings and R(l),  the distance between 2 points on the string us. its length. This 
shows explicitly that short strings are self-seeking but long strings are essentially Brownian. 

are self-seeking but long strings emerge as approximately Brownian. Similar 
results were obtained by Nguyen and Sudbo 

A related way of approaching the transition that is particularly useful in 
the statistical sampling of the partition function is to recognize, as in Figure 1, 
that as the critical point is approached typical configurations of the system are 
characterized by large domains over which the direction of the spin is aligned 
(except for small fluctuations). These clusters grow to percolate the volume at  
T = T, 15. We see that in the boundaries between these large clusters strings 
can occur [short string loops can in principle also appear within the clusters]. 
Since the size of the clusters grows as the the critical point is approached so 
does the size of strings. At the critical point there will indeed be strings that 

and Kajantie et al. 19. 

8 



percolate the volume, as we have seen directly above. 
The description of the onset of criticality in terms of strings and in terms 

of (clusters of) spin is thus complementary. Clusters of spin are regions of local 
order delimited by local spin disorder, where macroscopic strings exist. Just 
as in the Ising case we can statistically describe the system in terms of these 
domains of order or equivalently in terms of their boundaries. Note however 
that the correspondence between strings and boundaries of phase is not an 
exact mapping (clearly there are phase boundarics where there are no strings), 
as was in the case of the Ising model. 

There are universal quantities that must coincide as given by either de- 
scription, as stressed recently by Schacltel 16. An example is the correlation 
length. Characteristic lengths can be associated of course with the size of typ- 
ical strings or the sizc of correlated spin clusters. Although this size may not 
be exactly the same its associated critical exponent must coincide in the two 
pictures. The cluster distribution size nc(l)  like the string length distribution 
is characterized by two quantities 3% and a,(?'), where uc - IT - TcIs in the 
critical region'. All field exponents can be related to yc and s, together with 
the dimensionality of space D ,  via scaling relations. 

It is then suggestive that if strings are to give a correct description of 
the transition then their exponents may coincide with those of the cluster 
distribution 16 .  With the current set of measurements 1 7 * 1 8 3 1 9  agreement of all 
exponents is not perfect: v = s(rs - l ) /d  works reasonably well, but other 
field exponents like a , y , ~  require a larger value of ys, presently out of the 
range of current measurements, including their statistical uncertainties. The 
standing disagreement may be a result of the way vortex string distributions 
are constructed and measured or it may actually signal a failure of the string 
picture to yield a fully consistent description of the transition. 

The preceding arguments work only under the condition that there is long 
range order that is gradually lost as the transition is approached from below. 
Once the disordered state is reached it becomes clear that long strings are 
possible at all temperatures, since over the volume all possible values of the 
phase is realized with equal probability. The size of the domains of different 
phases however remains a function of T .  Again the size of these domains 
determines the characteristic length in the system - this length is closely related 
to distance between long strings. This has been confirmed by dynamical cooling 
of hot field configurations 20. 

We close this section by recalling the analogy between the conductor- 
insulator transition that we explored in 2D. The analog in 3D of vortex pairs 

CBelow we refer to y in (9) as ys to avoid confusion with the field exponent y. s denotes the 
exponent of u,ff N IT - TcIs for either strings or clusters. 
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are now short vortex loops. Long string, which appears as approximately free 
walks, corresponds to nucleating a loop of arbitrary length, in analogy to cre- 
ating a pair of arbitrary separation in 2D. Indeed long string nucleation is first 
possible at T =I: T,. This suggests that there is a “dual” microscopic model 
of the phase transition in terms of interacting walks: a line version of the 
Coulomb gas, with some appropriate potential, presumably that of the inter- 
action between two static string segments. This picture has been explored in 
many instances 11, put it has been the accurate measurement of yc and s that 
permitted the construction of definite string models a t  criticality 21. 

4 Conclusions and Outlook 

In this lecture I explored the connection between topological excitations and 
critical phenomena in some O ( N )  models. 

As we have seen the understanding that second order transitions proceed 
by the occurrence of ever large correlated clusters, as T, is approached from 
below, suggests the appearance of a scale invariant topological excitation pop- 
ulation at T,. The statistical distribution of defects in the critical domain 
must reflect that of phase domains and therefore is expected to be character- 
ized by the same set of critical exponents. Then there will be a duality, valid 
in the critical domain, between the O ( N )  partition function and that of an 
interacting ensemble of defects, at least for small N .  

The question that remains is whether a statistical ensemble of defects alone 
can give the full picture of the transition. After all topological configurations 
do not describe all excitations. For example the low temperature phase of most 
O ( N )  models is characterized by hydrodynamic modes, spin or sound waves. 
Can we make up these configurations in terms of vortices ? Clearly the answer 
is no, even if we used arbitrary vortex-antivortex configurations that carry 
no topological charge, there would be remaining short distance singularities 
sufficiently close to each of the defects. 

Thus the thermodynamics of O ( N )  models must differ in general, at  least 
over small scales, from that of an ensemble of topological excitations. This 
difference may in some cases be irrelevant about the critical point. For example, 
it is conceivable that there is a system, written in terms of string degrees of 
freedom, that is in the same universality class as 0(2), but will differ by higher 
order irrelevant operators. After all vortices are not the whole description of 
the O(2) model in 2D either, but they were the relevant degrees of freedom at 
criticality. Conversely, producing a model without strings but with the same 
critical exponents, would lead us to the conclusion that defects are unessential. 

These issues now stand on a few well defined quantitative open questions, 
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which will be decided theoretically in the near future. Concurrently, we may 
also hope that the topological excitation distribution exponents may be mea- 
sured directly, see e.g. *, by experiments seeking to study topological defect 
formation and evolution. Interesting new nonperturbative phenomenology may 
also result from the quantitative characterization of topological excitation be- 
havior at high temperatures 22. 
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