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Methods for Hyperbolic Systems with Sti� Relaxation

R. B. Lowrie J. E. Morel
Los Alamos National Laboratory

Abstract

Three methods are analyzed for solving a linear hyperbolic system that contains sti�
relaxation. We show that the semi-discrete discontinuous Galerkin method, with a linear
basis, is accurate when the relaxation time is unresolved (asymptotically preserving |
AP). A recently developed central method is shown to be non-AP. To discriminate be-
tween AP and non-AP methods, we argue that one must study problems that are di�usion
dominated.

1 Introduction

Hyperbolic systems with sti� relaxation terms remain a challenge for numerical methods [2,
5, 8]. Such systems can be found, for example, in combustion, multiphase 
ow, rare�ed gas
dynamics, and radiation hydrodynamics. In an e�ort to better understand the behavior of
numerical methods for these systems, this study focuses on a simple model problem [3, 2]:

@tu+ @xv = 0; (1.1a)

@tv + @xu = (ru� v)="; (1.1b)

where " � 0 and jrj < 1. The system (1.1) is in nondimensional form, so that the frozen
("!1) wavespeeds are �1. We assume that boundary and initial conditions are such that
the appropriate time and length scales are 1. For "� 1, it can be shown that away from the
initial layer, the system (1.1) reduces to an advection{di�usion equation:

@tu+ r@xu� "(1� r2)@2xu = O("2): (1.2)

The system (1.1) is the simplest we know of that presents many of the numerical diÆculties
that are shared with more complicated systems.

We seek so-called asymptotically preserving (AP) methods for (1.1), which are also some-
times referred to as `uniformly accurate.' An AP method can be de�ned roughly as follows:

De�nition 1 Let Eh be an error norm of the numerical solution that uses a mesh with

spacing h. Assume that the timestep is proportional to h. For h � 1, independent of ", an
AP method satis�es Eh = O(hp), where p > 0. In particular, it may be that h� ".

Note that standard error analyses typically apply only when h� ". But if "� 1 so that (1.2)
holds, requiring h � " is unnecessary and impractical, even with adaptive mesh re�nement.
An AP method only requires that the exact solution be resolved (h� 1).

Following [3], a useful technique to help determine whether a method is AP is to study
the small-" asymptotics of the modi�ed (or `equivalent') equation for (1.1). For " � h � 1
(the `thick' regime [4]), the methods we have studied have a modi�ed equation of the form

@tu+ r@xu� "(1� r2)@2xu = T:E:(u; "; r; h); (1.3)
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2 Lowrie & Morel

where T:E:(u; "; r; h) is the truncation error. All of the methods in this study satisfy T:E: =
O(h2), but may be non-AP as a result of O(h3) terms. We will not review the modi�ed
equation or asymptotic analyses here, as both techniques are very well known [4, 3]. To
keep this report concise, we will also omit the steps in deriving (1.3) for each method. When
appropriate, we will also mention our results for the `intermediate regime' analysis (h = O(");
h� 1; see [4]). For the `thin regime' (h� "; h� 1), standard error analyses apply, and the
methods we consider here are second-order accurate for smooth data.

This study analyzes two semi-discrete methods and one fully-discrete method. For the
semi-discrete methods, we do not analyze any particular time integrator, and demonstrate
that it is the spatial operator that dominates the asymptotic behavior. We actually prefer
fully-discrete methods, but have concentrated on semi-discrete methods because their asymp-
totic analysis is much easier. It also removes doubt regarding any particular choice of time
integrator. On the other hand, the spatial operator from a non-AP semi-discrete method,
when used with a clever choice of predictor step(s), may result in an AP method [1]. We
leave the investigation of such methods for future work.

2 Accuracy of Methods for r = 0

Methods can be eliminated from consideration by �rst studying the r = 0 case. This special
case simpli�es the analysis considerably and elucidates why certain methods fail. For r = 0,
equation (1.2) reduces to the heat equation,

@tu� "@2xu = O("2): (2.1)

The Fourier transform solution of (2.1) shows that data of wavenumber k is damped as
exp(�dt), where d is the damping rate, given by d = 4"�2k2. Let dh be the damping rate for
a particular numerical method. In order to measure the performance of a method, we de�ne

N � mesh cells

wavelength
required for

����dhd � 1

���� = 0:01: (2.2)

Following the de�nition in the Introduction, an AP method is one in which N is independent
of ". After all, if instead of discretizing (1.1) we discretize (2.1) directly, then any reasonable
method will yield an N that is independent of ".

2.1 A High-Resolution Godunov Method (HR)

In this section, we give an example of a non-AP method which was �rst analyzed in [3].
Consider a semi-discrete, high-resolution Godunov method that uses a central-di�erence slope
reconstruction [9]. A slope limiter can also be applied, but is not needed for the purposes of
this study. We use the `frozen' Riemann problem (RP) for the 
ux solver, by which we mean
that we do not account for e�ects of the source term in (1.1) when computing the interface

ux.

For "� h� 1, the modi�ed equation for the HR method reduces to

@tu� "@2xu = �
�
1

6
"h2 +

1

8
h3
�
@4xu+O("2; "h4; h5): (2.3)

Because h� ", the O(h3) term may dominate the damping, so this method is non-AP. The
damping rate for (2.3) is given by

dh = 4"�2k2 + 2�4k4h2
�
h+

4

3
"

�
: (2.4)
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A good estimate for N can be obtained by ignoring the "h2 term (such as in [3]). Using the
fact that h = 1=(kN), we obtain

N =

�
50�2

"k

�1=3

: (2.5)

Note that N increases with decreasing ", so again, the method is non-AP. Choosing k = 2
and " = 10�5 requires N = 292 cells/wavelength to resolve the damping rate to within 1%.

Increasing the spatial order of accuracy may lower the exponent in (2.5), but we suspect
that the resulting method will be non-AP. Note that we have shown previously that for steady
linear transport, the HR method with any slope reconstruction that is independent of the
source term is non-AP [8]. Another option is to replace the frozen RP by the generalized RP,
which accounts for the source term when computing the 
ux [2]. However, the generalized
RP reduces to the frozen RP as �t=" ! 0, and therefore the analysis above holds in this
limit. There are other �xes proposed in [3] which should also be considered, but are beyond
the scope of this study.

2.2 Liotta, Romano, & Russo Method (LRR)

The LRR method is a central scheme (extended Nessyahu & Tadmor) that is derived in [5].
This method uses a uniformly nonoscillatory (UNO) procedure to compute certain derivatives;
the analysis here holds for the UNO method and also any other second-order approximation.
For "� h� 1, the modi�ed equation for the LRR method reduces to

@tu� "@2xu =

�
5

24
"h2 � 3

128

h3

�

�
@4xu+O("2; "h4; h5); (2.6)

where � = �t=h and � < 1=2 for stability. Just as with the HR method, the O(h3) term
results in a non-AP method. Note that Reference [5, end of x5.1] drops O(h3) terms in their
analysis. From the modi�ed equation, a good estimate for N is

N =

�
75�2

8"�k

�1=3

: (2.7)

For k = 2, " = 10�5, and � = 1=2 we obtain N = 210 cells/wavelength, which is an
improvement over the HR method. However, because of N 's dependence on �, the LRR
method is less accurate than the HR method when � / 3=16 and "� h� 1.

2.3 Discontinuous Galerkin (DG)

In this section we analyze a semi-discrete DG method. Within each cell-j, the solution is
approximated using a linear basis:

u(x) = (1� �)u1 + �u2; � = (x� xj�1=2)=h; (2.8)

where u = (u; v)T and (u1,u2) are computed in each cell. For a linear system, DG in cell-j
can then be written as

@tu1 +
1

h

��4fj�1=2 � 2fj+1=2 + 3f(u1) + 3f(u2)
�
= s(u1); (2.9)

@tu2 +
1

h

�
4fj+1=2 + 2fj�1=2 � 3f(u1)� 3f(u2)

�
= s(u2): (2.10)



4 Lowrie & Morel

where s(u) is the source term, f(u) = (v; u)T , and the interface 
ux fj+1=2 is computed via
the frozen Riemann problem. More information on this particular DG implementation can
be found in [6, 7].

For "� h� 1, the modi�ed equation for DG reduces to

@tu� "@2xu = � 1

12
"h2@4xu+O("2; "h4); (2.11)

which yields N = 10�=
p
3 � 19 cells/wavelength, independent of ". A straightforward

analysis shows that DG also satis�es (1.2) to O("2) in the intermediate regime. Therefore,
at least through O(h4) and r = 0, semi-discrete DG is AP. A disadvantage of DG is that it
requires twice as many unknowns per cell as the other methods in this study.

2.4 Numerical Results for r = 0

In this section, we demonstrate that the truncation error estimates above are in good agree-
ment with numerical results. For the semi-discrete methods, we use a predictor{corrector
time integrator. The predictor can be written as

u
n+1=2 � u

n

�t=2
= D(un) + S(un+1=2): (2.12)

where the operator D corresponds to di�erential terms and S corresponds to the source term.
For the corrector, we used a lumped{linear DG method for the source term, which involves
solving the following coupled system:

(un+1 + u
�)=2� u

n

�t=2
= D(un+1=2) + S(u�); (2.13a)

u
n+1 � (un+1 + u

�)=2

�t=2
= D(un+1=2) + S(un+1); (2.13b)

where u
� is an intermediate state. This integrator is point-implicit, L-stable, has positive

ampli�cation for all �t=", and is second-order accurate when �t=" is small.
Table (1) shows results from the three methods analyzed above. For each method, we

Fourier transformed its modi�ed equation in order to analytically estimate the error with
respect to the exact solution of the heat equation. This estimate is denoted as LT:E:

2 (u).
Also tabulated is L2(u), which is the measured error in u from the numerical simulation with
respect to the exact solution of (1.1). The values of LT:E:

2 (u) and L2(u) are in good agreement
for all of the methods, which is a good indicator that our modi�ed equation analysis and code
implementation are correct. It also shows that the time integrator did not signi�cantly a�ect
the modi�ed equation for the semi-discrete methods. The order of accuracy is computed from
L2(u). DG shows second-order accuracy, while the other methods don't show second-order
convergence until the exact solution is over-resolved.

3 Accuracy for r 6= 0

In this section, we show that DG retains the AP property for r 6= 0. The modi�ed equation
for DG and "� h� 1 becomes

@tu+ r@xu� "(1� r2)@2xu = � 1

36
"(1� r2)(3h2@4x + 2rh3@5x)u�

1

72
r2h3@4xu +O("2; "h4; rh4):

(3.1)
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Table 1: Results for r = 0, " = 10�5, u(x; 0) = cos(2�x), v(x; 0) = 0, periodic domain, �nal
time is 1000. L2(u) is the measured error, from which the order of accuracy is computed on
successive meshes. LT:E:

2 (u) is an analytical estimate from the truncation error. Note that
the fully-damped solution u = 0 corresponds to L2(u) = 0:4765.

Method Cells/Wavelength LT:E:
2 (u) L2(u) Order

HR(� = 0:8) 10 4.765e-01 4.765e-01 |
20 4.765e-01 4.765e-01 0.00
40 4.538e-01 4.535e-01 0.07
80 1.509e-01 1.506e-01 1.59

LRR(� = 0:4) 10 4.765e-01 4.765e-01 |
20 4.765e-01 4.765e-01 0.00
40 3.619e-01 3.615e-01 0.40
80 7.763e-02 7.760e-02 2.22

DG(� = 0:3) 10 6.342e-03 6.821e-03 |
20 1.557e-03 1.587e-03 2.10
40 3.874e-04 3.887e-04 2.03
80 9.673e-05 9.653e-05 2.01

Note that (3.1) reduces to (2.11) for r = 0. Following our analysis of non-AP methods for
r = 0, a skeptic might conclude that because max(r) = 1, the boxed term may dominate
the di�usion, and therefore, DG is non-AP for r 6= 0. But the boxed term dominates only if
Pe� 1, where Pe is the Peclet number, de�ned here as

Pe =
r

"(1 � r2)
: (3.2)

If one insists on resolving the di�usion in the advection-dominated case, then certainly a �ne
mesh is required.

A more practical argument is to compare (3.1) with a second-order discretization of
(1.2). A semi-discrete discretization of (1.2), using a central-di�erence slope reconstruction,
the upwind 
ux solver, and a three-point central discretization for the di�usion term has a
modi�ed equation given by

@tu+ r@xu� "(1 � r2)@2xu =
1

12
rh2@3xu�

1

12
"(1� r2)h2@4xu�

1

8
rh3@4xu +O(h4): (3.3)

The boxed term here su�ers from the same problem as that in equation (3.1). For small
", one cannot expect that a method for (1.1) be better than can be obtained by directly
discretizing (1.2). We claim that DG also satis�es the intermediate regime analysis, so that
semi-discrete DG is AP.

The discussion above implies that convergence tests should be run at a �xed Pe. In fact,
we have found that all of the methods in this study appear second-order for very large Pe,
presumably because in this case the errors in advection dominate the convergence rate. Figure
(1) compares L2-errors from the DG and LRR methods for three values of the Peclet number.
Each plot shows results that are roughly in the thick (" = 10�5; 10�4; 10�3), intermediate (" =
0:02), and thin (" = 105) regimes. The problem's initial condition was u(x; 0) = cos(2�x),
v(x; 0) = ru(x; 0), with periodic boundary conditions. The �nal time was chosen so that the



6 Lowrie & Morel

equilibrium wave propagates 1 wavelength. The DG method shows second order accuracy,
independent of ". Both methods perform similarly in the intermediate and thin regimes, but
the LRR method generally does poorly in the thick regime. However, if Pe is large enough,
second-order accuracy is observed even in the thick regime. The results of the HR method
(not shown) are very similar to the those of LRR.

4 Summary

We have shown that semi-discrete DG is asymptotically preserving (AP) for a model problem.
To discriminate between AP and non-AP methods, we have argued that one must study
problems that have a small Peclet number. It is insuÆcient to �x the equilibriumwavespeed(s)
and vary ". In other work [6, 7], we have obtained good results for DG for nonlinear extensions,
such as for the Broadwell model of gas kinetics and problems in radiation hydrodynamics.
Following our analysis, an obvious requirement for the AP property is that T:E:(u; "; r; h) = 0
whenever " = 0 = r. The failure of non-AP methods is often the result of higher-order terms
in h. Moreover, the terms that cause failure may be traced back to the discretization and
possibly remedied (e.g., see [3]). This analysis is left for future work.
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Figure 1: DG(� = 0:3) and LRR(� = 0:4) errors for various Peclet numbers.
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