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ABSTRACT

This publication addresses the issues of modding, uncertainty quantification, mode vaidation and
numerica predictability. With the increasing role of numerica smulation in science, technology aswell as
every day decison-making, assessing the predictive accuracy of computer models becomes essentidl.
Conventiona approaches such as finite dement modd updating or Bayesian inference are undenigbly
useful tools but they do not fully answer the question: How accurately does the model represent
reality? Fird, the evolution of scientific computing and consequences in terms of modeling and andysis
practices are discussed. The intimate relaionship between modeing and uncertainty is explored by
defining uncertainty as an integrate part of the nodd, not just parametric varigbility or the lack of
knowledge about the physical sysem being investigated. Examples from nuclear physics, dimate
prediction and structural dynamics are provided to illustrate issues related to uncertainty, validation and
predictability. Feature extraction or the characterization of the dynamics of interest from time series is
aso discussed. Findly, a generd framework based on response surface methodology is proposed for
the fuson of modd predictions, validation data sets and uncertainty andysis.
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UNCERTAINTY, VALIDATION AND NUMERICAL PREDICTABILITY

|. INTRODUCTION

Today’s computationd resources make it more than ever possible to modd and andyze complex
phenomena characterized by complex geometries and boundary conditions, multi-physics, nonlinear
effects and variability. An example of such resource is the U.S. Department of Energy’s Accelerated
Strategic Computing Initiative (ASCI) that has developed severa platforms able to sustain over 3 x
102 operations per second (or 3 TeraOps) by distributing computations over arays of more than
6,000 processors. The next generation of ASCI computers is expected to reach 30 TeraOps by the
year 2004 with the god of gpproaching 100 TeraOps afew years later. Examples of problems requiring
access to these multi-physics codes and massvely padld architectures include globd dimate
prediction, epidemics modeding, computationd molecular dynamics, thermo-nuclear physics and

complex engineering smulations. Reference [1] discusses the overal ASCI program and its objectives.

In addition to improving computational resources, as we know them today, groundbresking
discoveries are being made in the area of quantum computing, a field thought to be an degant but
impracticd theory only afew years ago. This technology enables scientists to store information (bits of
zeros and ones) as podtive or negative spins of dementary particles that form the building blocks of
molecules. Immediate and obvious advantages are infinitely large memory sizes and rapidity of accessto
the information bounded only by the speed of light. Moreover, the theory of quantum mechanics states
that an dementary particle may festure postive and negative spin vaues smultaneoudy. Thus, a single
particle may potentidly store two bits of information a once. dist like a “conventiond” computer
combines analog bits to perform an operation, a quantum computer would combine the spin values of its
elementary particles to add and multiply numbers or search a database. Since one particle can store two
pieces of information, two particles can access Z hits. If a very smal number of particdles can be
dabilized, say, no more than 1,000, then this quantum computer could potentialy access 2to-the-
power-10*? bits sSmultaneoudy. Assuming that the multiplication of two 256-digit numbersinvolves 10"
bits of information, this trandates into 10"® TeraOps of computing power for a single molecule!
Precticd difficulties such as veification dgorithms and the indability of this information Storage
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technology (typicaly, aparticle may randomly change its spin value as often as every 10™ seconds) are
currently being addressed at Los Alamos and other nationa [aboratories and university research centers.

Quantum computing will probably not offer any practica outcome for severd decades but it is
undeniable that unprecedented computational resources are becoming available. What will be the impact
on our modding capabilities and analyss practices?

Obvioudy, the hypothess sustaining the development of ASCI-class computing resources is that
predictive accuracy can be achieved if enough “detalls’ and “physcs’ can be included in the numericd
smulation. For example, physicigs and mecanicians are increasingly involved in the development and
implementation of condiitutive models at the microscopic and nano-scae levels based on basic physics
(or “firdt principles’) such as datigicd quantum mechanics. The intent is to capture the physics of
interest at the source rather than relying on global and somewhat arbitrary quantities generdly defined in
solid mechanics such asmodd damping ratios.

Much of the effort within ASCI-like programs is currently devoted to proving that complex
phenomena can be modeled mathematically, adequate solution procedures can be implemented and
computer systems are robust and stable enough to sustain the amount of computations requested. In
addition, scientigts are increasingly becoming concerned with the predictive accuracy of their numerical
modds. Thisemerging field is often referred to as model validation. Here, the centra questionis: How
accurately does the model represent reality? It conssts of determining the predictive qudity of
numerica smulations and assessing the degree of confidence with which modds can be andyzed
outsde of their nomind operating conditions. Caution must however be exercised to avoid the common
confusion between modd verification and modd validation. For example, consider ancient Greek
astronomy. The models devel oped by Pythagoras, Aristotle and Ptolemy between 500 BC and 300 BC
dominated Western astronomy for nearly 2,000 years. They exhibited various levels of complexity but
al shared the characteridtic that our Sun and other planets of our solar system did gravitate around the
Earth. These models were somewhat consistent with each other, they fulfilled their purpose of predicting

3
LAST UPDATED: MAY-15-2001 LA-UR-01-2492 —
UNCLASSIFIED
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with remarkable accuracy the cycles of seasons and they even matched physicd observation. Y e, they

were not accurate representation of redlity.

In this work, we conform to the U.S. Department of Energy’s definition of verification and
vaidation where, basicdly, verification consgts of verifying that equations are solved correctly while
validation congsts of verifying that the equations implemented provide an acceptable representation of
redity. This publication discusses the concepts of modding, uncertainty, model validation and
predictability in the context of large-scale numerica Smulations. The discusson is illusrated using an
engineering gpplication currently dedlt with at Los Alamos Nationd Laboratory. References [2-4] offer
additiona details regarding the particular andysis techniques and results to which the discussion refers.

I1. CONCEPTUAL VIEW OF MODELING AND UNCERTAINTY

Uncertainty is defined as the omitted or unknown part of a mathematica modd. This definition is
somewhat different from the parametric variahility or lack- of-knowledge views generdly agreed upon in
the sdentific community. It is dso implied that numericd smulaions should dways include a
representation of the uncertainty associated with a particular model. Thisis consistent with our approach
to modd validation that dates that there is no such thing as modd “vaidation” because dl that datistica

testing can assess is the degree to which amodel breaks down, not the degree to which a mode works.

2.1 Where Does Uncertainty Come From?

To illugtrate how modd order truncetion and uncertainty are related to the process of modeing a
given phenomenon, we consider the example of o dementary particles interacting with each other.
Thisis a common problem in quantum mechanics further complicated by extreme uncertainty (the well-
known Heisenberg principle states that position accuracy is bounded by momentum uncertainty, and
vice-versa) and large scaing differences (heavy particles interact with much lighter particles). Credit
must be given to Reference [5] for origindly discussng this example in the context of uncertainty
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andydss. Our system is formed of two particles, X; and x,, interacting with each other. Thefirg particle
denoted by X; is the primary degree-of-freedom of interest. Its dynamic is influenced by a secondary
particle denoted by x,. We have no red interest in predicting the behavior of x, but it isinduded in the
equations because of the interaction with the main degree- of-freedom. The equations considered are;

2 2
ﬂﬂél‘”i(hxé)XfO’ ez%“-’é(“xi)xz:o @

In the numerica application, vaues of ?, and ?, are kept constant and equd to one. The initiad
conditions of particle X; are set to one for displacement and zero for velocity. Initid conditions in both
displacement and velocity for particle x, are uncertain and vary uniformly among 13 discrete vaues { 10
b 3x10%; 7x10%; 1; 3; 7; 10™h; 3x10™%; 7x10™; 10%% 3x10%% 7x10%% 10*°}. Another important
characterigtic of the system of equations (1) is that the secondary particle is very light compared to the
primary one. The mass of the X, is chosen € = 10° times smaller than the mass of X;. Thisintroduces
ill-conditioning and convergence difficulties when, for example, Runge-Kuitta finite differences are

implemented to solve the system of partia differentid equations (1).

Fgure 1 illudrates the output when equations (1) are integrated numericaly in time. The top figure
shows the position X; and the bottom figure shows the position x,. Note the large amplitude difference.
Displacements of the lighter particle x, are approximately three orders of magnitude smdler. Asthe e-
parameter tends to zero (e ? 0), the second mass becomes smaller relative to the first one and the
response X, becomes rapidly varying. This makes it suitable for Satitica treatment, asillustrated in the
fallowing.
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Frimary and Secondary Momentum Values for System #6560
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Figure 1. Responses of the Two Degr ees-of-freedom System.
(Top: Displacement of the heavy particle X;. Bottom: Displacement of the light particle x,. Initial

conditionsare set to {1; 7} for displacements and {0O; 0.3} for velocities.)

Clearly, equation (1) for the heavy particle is analogous to asmple mechanica oscillator to which an

internd forceis added:

_112xt12 ® 122x, @) +F) =0 2

l

The internd force F4(t) might be nonlinear and possibly stochadtic. In generd, the rdationship between
the degrees-of-freedom of interest (in this case, the heavy particle X;) and tharr environment is not
exactly known. Similarly, it may be concluded from empirica observation that other variables have little

to no sgnificant influence. In any case, awidely accepted modeling practice isto gpproximate or sSmply
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omit the coupling term F4(t). Thus, uncertainty can originate from severd actions commonly taken during
modding:

(a) Selecting an inadequate model form:

If the nature of the internd force is not known precisdy, an inadegquate modd form is likdly to be
implemented. For example, a linear model Fy(t) = k X or a cubic model Fy(t) = k X might be
implemented that introduces some discrepancy between the “true’ system (1) and its mathematica
representation (2).

(b) Truncating the model order:

Secondary dynamics are generdly truncated when they are not believed to influence sgnificantly
the primary dynamics. Order truncation is a common practice in numerica modeding. Truncation in our
example would consst of redtricting the degrees-of-freedom to X; only and condensing the information
represented by the second of equations (1) into F4(t).

(c) Approximating equations:

Equations are often gpproximated for computationd efficiency, mode order truncation or because
the exact functiond relaionship is somewhat unknown. For example, the internd force F,(t) might be
defined as the expected vaue of the coupling term (x,)?X, between X; and x, given the knowledge of
the system’ s positiont momentum states (and ? =7 ,=1):

2- (Xf+Xf)

F(t) = E@GX, | X;; lejzwxl

3
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This gpproximation is justified because the rapidly varying degree-of-freedom x, can be estimated
daidicdly ingead of carying out the fully coupled resolution. The impact on computationd
requirements is sgnificant even for this smple system, as noted in Reference [5]. Typicdly, integrating in
time the coupled equations (1) requires a time step proportiona to the mass of the light particle or
2t~0(e?). In comparison, integrating equations (2-3) with the same absolute accuracy requires
?t"0O(e) a the most. Combining equations (2) and (3) effectively defines an approximated system
where the origind differentia equations (1) are solved “in average’ instead of exactly.

(d) Introducing parametric uncertainty:

In equation (2), the (unknown) term F4(t) might be replaced with arandom process. Thiswould be
alikely modding option when the functiona form of the interaction between degrees-of-freedom X; and
Xz 1S not known precisay. For example, the internd force can be estimated as a Gaussan process,
F1(t)"N (; s), whose mean 1 and standard deviation s parameters are defined as the first and second
datisticd moments, respectively, of the coupling term  (x2)?X;. Information that defines such random
processes might come from “first principles’ physics, scaling arguments and other ad-hoc reasoning,
physica experimentation or hypotheses and modeling assumptions. In any case, random processes
generaly depend on uncertain parameters. These hyper-parameters might include the mean, variance
and dructure of the covariance matrix. This is a typicd example of parametric uncertainty. A specific
model is agreed upon (probability, possibility, information-gap) and parameters of the mode become
the means by which uncertainty isintroduced.

2.2 Complete Characterization of an Uncertain System

The coupled equations (1) are first solved for dl possble combinations of initid conditions of particle
Xo. This andyds illudrates a Stuation where enough computational or experimental resources are
available to conduct a full characterization of the uncertain system. The postion and momentum of
particle x, can assume 13 discrete values each, which leads to a full factorid andysis of 13° = 169
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systems. Figure 2 illustrates the position of particle X, versustime obtained for the 10", 60", 100" and
150" systems. It can be observed that the system of equations (1) spans a wide range of dynamics.
Responses range from linear, single degree-of-freedom (top left) to linear with increasing damping (top
right) and time varying, higher-frequency harmonics (bottom left). The forth response shown (bottom
right) exhibits chaotic behavior and a component that eventudly grows ungtable. Being able these
dynamicsis an important step of modd vaidation, as discussed in section V.
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Figure 2. Four Typical Responses of the Two Degr ees-of-freedom System.
(Initial conditions for X; and its momentum are kept constant and equal to (1; 0). Initial
conditions for x, and its momentum are as follows. Top Left: IC = (10%; 10°). Top Right: IC =

(1; 3x10®). Bottom Left: 1C = (10; 7x10°). Bottom Right: IC = (10*% 10°).)

The information generated by solving the system of equations (1) for dl possible combinations of
initid conditions is summarized in Figure 3. It shows the mog probable date of each particle in the
positiortmomentum plane. The most probable sates of primary particles X; are shown on the top haf

9
LAST UPDATED: MAY-15-2001 LA-UR-01-2492 —

UNCLASSIFIED



UNCERTAINTY, VALIDATION AND NUMERICAL PREDICTABILITY

while those of secondary particles x, are shown on the bottom haf. Hence, Figure 3 illugtrates the
output variability obtained by propageting uncertain initid conditions through the forward caculation.
Properties of the joint positiontmomentum distributions can be andyzed from the output generated by
this computer experiment. Other design-of-experiment techniques are available to propagate variability
such as fractiond factorid, orthogond array or Latin Hypercube sampling. It is emphasized however
that, in generd, a complete characterization of the output space such as illugtrated with this example is
not possible due to imited knowledge of the sysem and limited computational and experimentd

resources.
State-space Plof of Most Likely Positions for All Paricles
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Figure 3. Most Probable Position-M omentum States of Particles X; and X..
(Top: Mean state values of particle X;. Bottom: Mean state values of particle x,. Note that
numerical values are plotted on different horizontal and vertical scales. Also noticeable are the

different correlation structures of the joint probability distributions of particles X; and x».)

2.3 Approximation of an Uncertain System
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The dynamics of particle X; is now represented as a single degree-of-freedom linear oscillator. The
coupling with particle x, is completely ignored and replaced by a random process. This illustrates
gtuations where the modd order is unknown or the interaction between some of the degrees-of-
freedom is not modeled correctly. Obvioudy, integrating the time response of particle X; based on a
linear oscillator representation would result into large prediction errors. However, unavailable modeling
information can advantageoudy be replaced by probabiligic information. Figure 4 pictures the most
probable position-momentum dates of the 169 systems for the full factoriad analyss. Solutions obtained
with uniform distributions are shown on the top haf and solutions obtained with norma distributions are
shown on the bottom hdf. Both results can be compared to the “true” solution shown in Figure 3 (top
half). A comparison of Figures 3 and 4 shows that the corrdation structure between postion and
momentum is lost. This is expected kecause the physics-based coupling is replaced with an arbitrary
random process. Neverthdess, the gpproximated solutions are consstent with the true solutions.
Another advantage is that the linear oscillator equation can be solved in a fraction of the time required to
integrate the coupled equations (1) because it is a decoupled as well as well-posed problem.
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Appromation of Most Probable States of Pariche 1
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Figure 4. Most Probable States of Particle X; With Coupling Approximated.
(Mean position and momentum values of X; when a random process replaces the coupling with
Xz. Top: Uniform, F(t)"U[u-2s; p+2s]. Bottom: Normal, F(t)"N(u;s). For each one of the 169
systems analyzed, the statistics are computed as u=E[(x»)?X1] and s=s[(X2)?X4].)

The two- particle example illudtrates that potentialy missing information can be replaced by adequate
datigtical treatment. Since a random process can generadly be parameterized, hyper- parameters such as
the mean, variance, covariance structure and higher-order statistics can be cdibrated to improve the
predictability of the computer smulation. An illustration of mode cdibration via Bayesan inference is
provided in section I11.

This dmple example adso illugtrates our opinion that uncertainty can never be dissociated from
modeling. Modeling congsts of formulating hypotheses and the likelihood of assumptions and modeling
rules should be included in the andyss of the numerica Smulation’s output. The process of explaining a
complex phenomenon by mathematicdl models generates uncertainty. This implicitly defines modd
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vaidation as an exercise where the consstency between modd output and redlity is assessed away from
the modd’s nomind operating ranges.

We have mentioned that missing information can be replaced by probabilistic information. Other
frameworks are avalable for quantifying and propagating uncertainty tha may offer atractive
dternaives to the theory of probability especidly in the event of extreme uncertainty. Among them, we
cite the Dempster- Shafer theory of possibility and belief [6], the theory of fuzzy sets[7], information gap
theory and convex modds of uncertainty [8]. In the remainder, uncertainty is represented by probability
densty functions. Thisis a reasonable assumption when dedling with physics or engineering gpplications
where reasonably large amounts of test data are available and the systems investigated are governed by
well-established forma theories.

I11. PREDICTABILITY IN COMPUTATIONAL SCIENCES

Currently, dl computationa sciences are, to various degrees, struggling with the notion of numerica
predictability, uncertainty quantification and mode validation. The reason is because scientists are
increasingly relying on numerica models to make predictions and replace physcd measurements. Asthe
computer models grow in size and complexity, so does the need to assesstheir validity especidly when
full-scale testing is not avalable. To illudrate these trends, two examples taken from communities other
than structural dynamics are discussed. The first example addresses globa climate prediction. The
second ore illugrates the inference from uncertain measurements of a time-varying parameter in nuclear

physics.

3.1 Climate Moddling Via L ar ge-scale Computing

The Paralel Ocean Program (POP) was developed at Los Alamos Nationa Laboratory under the
sponsorship of the U.S. Department of Energy in an attempt to bring massvely pardle computersto the
relm of climate modeling. The main purpose of these smulationsisto predict globa climate trends over
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time periods of 10-to-1,000 years [9]. Clearly, this is not something that can be achieved through
laboratory experiments. Such endeavor shares severa characterigtics of the ASCI-class smulations,
namdy, high-fiddity geometry, high-fiddity physics and lack of physica experiments.

The equations solved for acean and amospheric smulations are typicaly Navier- Stokes equations
with coupling with other phenomena such as heat flux, chemica reactions and season varying
cimaology. Multi-physics modding that ams at interfacing ocean, ice, continent and amospheric
modd's currently generates greet interest in the scientific community. Because the computational domain
can be as large as the entire planet and locd turbulent phenomena must be captured to predict globa
trends, the discretized problems are generdly very large. For example, the modes currently andyzed
feature discretization sizes typically equa to 0.28 degreesin longitude, 0.17 degreesiin latitude, up to 20
nor+uniformly spaced depth levels and rediistic bottom topography, which yields more than 200 Million
degrees-of-freedom. Ancther characteristic of climatology and oceanography is that useful physica
measurements are very difficult to come by. Because of cost and difficulty of access, measurement
dations are available with adequate density only over the land and in populated aress. This is however
margindly useful because oceans are mostly responsible for governing globa climate trends. Even when
measurements can be made over the ocean, for example, through satdllite observation, very rarely are
they avalable through the ocean’s thickness. When physcd measurements are available, modd

vaidation generdly takes the form illugtrated in Figure 5.
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SEA SURFACE HEIGHT vARIABILITY
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Figure 5. Comparison of TOPEX/Poseidon M easurement and L ANL/POP Prediction.
(The figure shows the standard deviation of variability of sea surface heights. Top: Observation
of the TOPEX/Poseidon satellite. Bottom: Prediction of the LANL/POP model. Discrepancies are
located in regions where sea surface height variability is important, therefore, reflecting the fact

that the numerical model captures mean behaviors better than extreme events.)
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Figure 5 compares the RM S variability of the sea surface height measured by the TOPEX/Posaidon
satdlite (top haf) and predicted by the LANL/POP modd (bottom half), as reported in Reference [10].
Observed pesk variability occurs in regions of strong currents such as the Gulf Stream, the Kuroshio
Current and the Antarctic Circumpolar Current. The POP modd has its maximum varigbility in the same
generd areas but amplitudes are too small by up to a factor of two. Nevertheess, the so-cdled “view-
graph norm” where images or curves are compared visudly provides little quantitative insght. For
example in Figure 5, andysts could equally argue that the numerical mode captures the main features of
interest or, to the contrary, that some important characteristics are not predicted well enough. Low-
dimensondlity is necessary because anadyss cannot visuaize nor handle the vast amounts of data
generated by large-scde smulations. Another reason is that the efficiency of multivariate daigtica
andysis rgpidly decreases with the number of variables andyzed. This leads to the notion of feature

extraction discussed in section V.
3.2 Bayesian Inference in Nuclear Physics

The second example illustrates a cdibration experiment whose purpose isto infer the vaue of atime-
vaying parameter by maximizing the satistical consstency between physicd observation and modd
output. This presentation summarizes the work originally presented in Reference [11].

When fissonable materids are assembled, the system can become criticd, that is, neutron fluxes can
grow exponentidly. The measure of this criticdlity is a parameter known as the Ross dpha. It is defined
as therate at which the neutron flux grows.

a(t) = 1 iy _ Mn(y()
y() Tt fit

(4)

In equation (4), the symbols a(t) and y(t) denote the Ross dpha parameter and the neutron flux,
repectively. To develop a numericad modd of criticdity, the vdue of a(t) must be inferred from the

mesasurement of Ross traces y(cos(2pfgt)). Because the neutron flux increases rapidly during a
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criticaity experiment, the time variable is replaced by a pseudo-time cos(2pfrt). Figure 6 illustrates the
typica amplitude growth of aneutron flux.

400

&

8

Amplitude of Neutron Flux

-1 05 0 05
Pseudo-Time

—_—

Figure 6. Amplitude Growth of a Neutron Flux During Criticality.
(The amplitude of a neutron flux is illustrated on a log-scale as a function of cos(2pfrt) where fr
denotes the Rossi frequency. The shape of the curve is characteristic of physical measurements,

however, the values shown here are numerically simulated for thisillustration.)

The inverse problem thus consgts of obtaining the value of a(t) that best reproduces the test data
{X«; y«}. A formulation among others is Bayesan inference. It has shown great success for this
particular gpplication and details about the procedure can be obtained from References [11-12]. Fird, a
parametric modd is chosen for representing the unknown function a(t). This mode trandates prior
knowledge about the Ross dpha and depends on unknown parameters that are collectively denoted by
the symbol ?. Next, the sources of uncertainty must be assessed and propagated. The main uncertainty
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for this gpplication esides in the placement of data points from measurement readings. Each point
shown in Figure 6 is typicaly associated with uncertainty in the x-direction and y-direction. Standard
deviation vaues corresponding to the placement of data x« and yx are denoted by sy and sy,
respectively. For smplicity, it is assumed that uncertainty in the placement of xx and yx points is
uncorrelated. A natura metric that expresses the “distance’ between test data and modd output is
defined by the minus-log likelihood of the observed data given the current mode!:

2 2
o &J™-x.(a)0 -y, (@9
0P,y 12)=- & ékﬁsk”v‘é‘kﬁ;’k”;
X (%] y a

k:j"“Ndala

Q)

Equation (5) assumes that the datistica digtributions are Gaussan, which is not a generd
requirement. Anther potentia source of uncertainty, not accounted for in equation (5), is the nature of
the parametric model used to represent the Ross dpha a(t). Smoothness parameters are typicaly
included in the set of hyper-parameters ? to control the prior knowledge. Prior knowledge plays the
same role as “regularization” in the Tikonov theory of ill-posed problems. Inference of the modd a(t)
and, potentidly, inference of the unknown hyper-parameters ?, is achieved according to the Bayes law
that states that the posterior distribution of the modd given the available data or P(a | Xi; Y«) isequd to
the likeihood function P(x; Y« | @) multiplied by the prior digtribution P(a):

P(a| X« Yx) = P(X Y« | @) P(a) (6)

The objective naturdly becomes to maximize the posterior digtribution, which trandates thet the
mode sought is the one that is most consstent with test observation. Smilarly, the posterior digtribution
of hyper-parameters given the data or P(? | Xk, Yk) can be maximized to infer the vaue of hyper-
parameters ? that are most consistent with test data. Any optimization solver can be implemented to
maximize the pogterior digtributions P(a | Xk; Yk) and P(? | Xk; Y«). One particularly attractive choiceis
the Markov Chain Monte Carlo (MCMC) agorithm. The MCMC method generates a random
sequence of parameters a(t) that samples the posterior distribution P(a | Xx; y«). The main advantage of
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the MCMC optimization is that sampling can be carried out independently of the distribution being
sampled. In particular the assumption of norma probability digtribution, which is encountered in many
formulations for the only purpose of dlowing tractable andytica derivations, is not required. For more
details, the reader isreferred to Reference [13] where atutoria of MCMC methods is provided. Figure
7 illudtrates three redizations of a(t) obtained through MCMC sampling of the Bayesan posterior
digtribution (6).
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Figure7. MCMC Inference of Ross Alpha a(t) From the Bayesian Posterior.
(The figure illustrates that several optimal solutions can be obtained that are statistically
consistent with physical measurements. If enough independent samples can be drawn from the

posterior distribution, basic statistics about the inferred parameter a(t) can also be estimated.)

The purpose of this example is to illustrate inverse problem solving. In the presence of uncertainty,
severa optima solutions can be obtained that remain consstent with the physica observation. Exploring
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the posterior distribution therefore becomes criticd. If enough independent samples can be drawn from
the posterior probability distribution, basic statistics about the inferred parameters—mean, variance,
covariance dructure, etc—can be edtimated. Hence, the uncertainty observed through physica
experimentation can be related to parametric variability of the modd, which is important informeation for
design and decison-making.

Bayesian inference represents one of many possible formulations among which we cite maximum
likelihood, Mahandobis hypothesis testing, Kullback-Leibner entropy and Chernov entropy. Statistical
techniques developed for hypothesis testing or group classification can generdly be gpplied to formulate
inference problems. Methods such as finite dement model updating, parameter identification and
parameter cdibration (aso referred to as parameter “tuning”) dl fal under this generad description.
However, we siress that a calibrated modd by no means congtitutes a validated modd, as commonly
accepted in the finite eement updating community. Vdidation is fundamentaly a statement about
predictability whereas cdibrated modedls are, at best, capable only to match physical measurements at

one or severa design points.

IV. ASCl ENGINEERING APPLICATIONS

Quantifying shock transmisson through complex, jointed structures has traditionaly been possible
only with experimental methods. These experiments are expensive and time-consuming and thus only a
few cases can be studied. With the advent of large scae computing capabilities, estimation of the shock
tranamission with numerical modds is becoming a tractable problem. The ASCI computing environment
is being used a Los Alamos to study, among other things, the transmisson of these shocks through
complex, jointed structures. This on-going experiment is summarized to illudrate the vaidation of
engineering goplications in structurd dynamics.

4.1 TheForward Mount Impulse Test
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The test article conssts of severa components fabricated from a variety of materids. A titanium
component designated the “mount” is shown in Figure 8 (top left). All other components are connected
to the titanium mount. The upper payload mass smulator, which is fabricated from 6061- T6 auminum,
is bolted to the three feet on the upper end of the mount. The lower payload mass smulator, which is
fabricated from carbon sted, is held ingde the mount using a tapered tape joint. The tapered tape is
fabricated from SS-304 dainless sed and is inserted through the thin, horizontal dot near the base of
the mount. Separate pieces of the tapered tape are driven in, wedging the mass smulator againgt an
inner retaining surface. All these components are pictured in Figure 8 (bottom left). The lower shell,
fabricated from 7075-T4 duminum, and then anodized, is placed over the titanium mount and itsrim Sts
on aledge just below the threaded portion of the mount. Next, a titanium retaining nut threads onto the
titanium mount bearing againgt the upper surface of the lower shell rim. A specified torque vaue is
applied. Findly, the upper shell, aso fabricated from auminum, is threaded onto the mount. As this
second specified torque is applied, the load between the retaining nut and lower shdll is somewhat
reduced.
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Figure 8. Forward Mount and Other Components of the Assembly.

(Top Left: Titanium forward mount. Bottom Left: Other components of the assembly. From left
to right, lower shell; titanium mount and bolted mass simulator; retaining nut and upper

cylindrical shell. Right: Instrumented system, explosive grid and testing fixture.)

Figure 8 (right) also shows that the test article is suspended using wire rope. This creates a pendulum
with alength of about one meter. Pendulum motion is monitored using high-speed photography and fiber
optic-based disolacement sensing. An explosive source is developed to apply an impulsive load to a
portion of the outsde surface of the test article. The source is fabricated from dirips of thin explosive
sheet materid. The explosive grips are Smultaneoudy initisted using an explosive lens. The pressure a
the surface of the tet article is moderated with a buffer material made from solid neoprene. Prior to
testing, the explosive load underwent a careful characterization to make sure that the correct impulse
was measured. Two independent investigations indicated that the measurement system provided no

more than afew percent errors.
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The test aticle is instrumented with 33 dtrain gages and 6 accelerometers. The drain gages are
atached to the indde surface of the titanium mount and have an active length of 0.8 mm to obtain
locdized effects. The sx accderometers are Endevco model 7270A-200k and they are located on
either end of both payload mass smulators. Four are oriented lateraly in the direction of the ddivered
impulse and two are oriented aong the axis of the Structure. Measured strains range up to 1.0% and
have a frequency response of 100 KHertz. Peak accelerations after low-pass filtering at 50 KHertz
range up to 10,000 g.

The comparison of strain and acceleration responses in Figure 9 (top) indicates that the shock wave
rapidly propagates through the main joint. The ringing of the mass smulators is atenuated after 5-to-6
milliseconds. The sixth acceleration response is used to define the input excitation for shock response
gpectrd (SRS) andysis. The SRS in Figure 9 (bottom) shows the peak acceleration response that
would be witnessed by a single degree-of-freedom system whose fundamentd frequency is set by the
horizontd axis. Clearly, most of the resonant dynamics occur between 10 and 30 KHertz, making it
impracticd to anayze the sysem’s response through moda superposition. The SRS edtimates the
acceleration levels that would be witnessed, for example, by an eectronic component integrated at the
location of the sixth accelerometer.
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Forward Mount Test Drata - Test 2
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Figure 9. Impulse Response of the Forward Mount Test Article.
(Top: Srain gage 1 located behind the explosive grid and accelerometer 1 located on the lower

mass simulator. Bottom: SRS of the 6" accel eration response with 2% modal damping.)
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Figure 10 compares the strain responses collected at location 1 (insde the mount, behind the
explosive grid) during two replicate tests. Only the first 400 microseconds of response after detonation
are shown. Even though such “view-graph norm” assessment should be avoided as much as possible, it
can be observed that the peak strain and low-frequency content (resonant mode a 12,000 Hertz,
aoproximately) are very dmilar. The discrepancy between the two curves is attributed to the
experiment’s varigbility. The main source of varigbility is a tolerance and assembly-positioning threshold
that is controlled during these two experiments. Other potentia sources of variability are the temperature
and humidity, total impulse gpplied, strain gage de-bounding and measurement errors. In addition to
predicting the dynamics of interest, the numerical model should aso reproduce with fiddity the variability
inferred from physical observation when enough replicate data sets are available.

Comparison of Forward Mount Test Dala -- Tesls 1 & 2
0.25 . . . T

—— Test 1 (Tight Assembly)
02- e ===- Test 3 (Loose Assembly)

-D'?M 0.115 ﬂ:z 0.25 0:3 0 35 04
Time (milli-second)
Figure 10. Comparison of Strain Responses Collected During Two Similar Tests.
(Responses of strain sensor 1 located behind the explosive grid. Solid, blue line: Response when
the assembly is closely controlled. Dashed, red line: Response with a “loose” assembly.)
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4.2 Finite Element Modeling and Analysis

An explicit finite dement modd of the test article is developed using the ParaDyn finite element code
[14]. In generd, explicit formulations are preferred for such problems because of their nonlinear nature
and the fact that numerous contact conditions must be handled. The modd has gpproximately 1.4 million
8-node hexahedra elements, 56,000 4-node shell eements, 480 contact surfaces and 1.8 million node
points. It results into 6 million degrees of freedom that include structura displacements and Lagrange
multipliers defined at the contact interfaces. The large number of contact pairsis required because each
individud surface, usudly circumferentia in nature, has to be broken into severa individud surfaces to
accommodate efficient partitioning for the parallel code. Automatic contact capabilities that are currently
under development in ParaDyn will obviate the need to bresk the contact into so many surfaces.

The computational mesh is illugtrated in Figure 11. The finite dement mode is currently run on 504
processors on the Los Alamos Blue Mountain ASCI computer. Using this number of processors results

in 1.3 CPU hours for each millisecond of smulation.

Preloading due to assembly of the threaded joints and the tape joint is accomplished in the model by
implementing an orthotropic therma  coefficient of expansion in specific layers of dements. At the Sart
of each andyss, the temperature is increased using a half-cosine time history over 0.2 milliseconds. The
dructure is then dlowed to fredy respond with no additiona input for 0.1 milliseconds before gpplying
the explosive impulse. The impulse is gpplied over the appropriate region of the test article as a pressure

time higtory.

Because the contact involves interfaces among dtainless sted, carbon sted, anodized 7075-T4
auminum, 6061-T6 duminum, and titanium, precise sdection of atic and kinetic coefficients of friction
is not possible. Some of the variables that contribute to the coefficients of friction include surface finish,

surface hardness and the presence of lubricants. Since these are not known, these coefficients of friction
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are estimated by bounds and alowed to vary between specified limits. Lacking a precise definition of
the coefficients of friction aso leads to unknown leves of preloads. Therefore, the preloads are dso
dlowed to vary between specified limits among the different runs. Based on engineering judgment, a
totd of twelve parameters are defined as having ardatively high uncertainty associated with their vaue.
These parameters consst of three component preloads (labeled p; to ps), four Satic coefficients of
friction (labded p,4 to py), four kinetic coefficients of friction (labeled pg to p11) and the magnitude of the
explosve impulse (labded pio).

'

Figure 11. Computational Mesh of the Threaded Joint and Bolts.
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(Viewed from the inside of the titanium mount, one of the upper mass simulator’s bolts and a

section of the retaining nut are visible between the assembly of upper and lower shells.)
4.3 Uncertainty Analysis

In this section, we illustrate one of the steps that would be involved in atypica validation experiment.
A parameter effect andysisis performed to determine which of the twelve input parameters p; to p;, are
most responsible for explaining the tota variability of the output. Other steps, not discussed here, would
include parametric cdibration, characterization of the modd output's probability information and
assessment of the modd’ s predictive qudity.

Based on engineering judgment and empirical observation, it is decided that four of the twelve input
parameters can take two possible vaues and the remaining eight parameters can take three possible
vaues. Thetota number of runs that would be required to build afull factorid andyssis therefore equa
to 2* x 3° = 104,976. Clearly, this andyss is impossble because it would require 8 years of
computationd time with a 3 TeraOps ASCI platform. To limit the required smulation time, a subset of
48 runs is completed from parameter samples selected using the Taguchi orthogond array technique
[15]. After these 48 runs have been completed and the appropriate features have been extracted,
datidtica response surface models (RSM) of the form

y=a,+ é. ap; + é é. Bijpipj (7)

i=1--12 i=1-12j=1--12,3 i

are fitted to the computer data for each feature of interest. RSM are developed as a subdtitute to the
large-scde, high fiddity numerica smulations [16]. Because the transmission of shock across the mount
to the payload components is the primary event of interest, errors between the predicted and measured
gatistical moments of the time history, shock response spectrum and power spectrd dendty (PSD) at
esch accderometer location are used as features. Time higtories are redricted to the first four
milliseconds following detonation and the SRS and PSD analyses are performed from 0-to-50 KHertz
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with a uniform 2% critical damping for the SRS. The first and second datisticadl moments (mean and
gstandard deviation) are investigated. Hence, a totd of 36 output features are defined (6 accelerometers
by 3 output criteria by 2 moments).

In this gpplication, satisticdl RSM are adopted to investigate if the number of input parameters can
be down-sdected from twelve to 5 or 6. Firg-order RSM that account for linear effects aly are
generdly consdered sufficient for the purpose of down-selection. For each one of the 36 features, a
linear statigtical RSM is congtructed by ignoring higher-order effects (3; in equation (7). Statistical tests
are implemented to assess the globa contribution of each parameter to the total variability observed
from the computer smulations A popular example is the R-square (R%) dtatistics that estimates
Pierson’s correlation ratio. It is defined as the retio between the variance that can be attributed to a
given effect and the tota variance of the data[17]:

A abr-yf
R2=1- 'zlmN‘mizl“'NSLaJ (8)
a (yj - 7)2

j=1Nga

The features are evauated based on whether @) the total contribution of the individua parametersis
ggnificant, eg. the feature is Sgnificantly senstive to at least one of the parameters; and b) whether the
feature is amenable to a linear RSM fit, i.e. the linear fit has a high R value. A few of the features either
ae not amenadle to linear screening or do not demondrate ggnificant sengtivity to any of the
parameters. Generdly, however, a trend is observed for features from dl sensors indicating significant
effects due to the folloning six parameters. one preload (p,), one Static coefficient of friction (ps), three
kinetic coefficients of friction (s, P10, P12) ad the impulse magnitude (p12). The R values obtained by
andyzing the standard deviation of SRS errors are pictured in Hgure 12. The Sx acceleration locations
exhibit globa sengtivity to at least one of the five parameters p1, Ps, P1o, P12 @d pa2. For location 2, the
other two preloads p, and ps are sgnificant but this linear RSV only explains 32.4% of the output
feature's total variance. Linear models that do not explain a least 50% of the totd variance are
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conddered suspect and higher-order parameter interactions should be included. This anayss

demongtrates that the parameter space can be reduced from a dimension twelve to a dimenson g,

therefore, dlowing redigtic generation of a higher-order RSM.
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Figure 12. Parameter Contributions Calculated From the Analysis of Variance (ANOVA).
(Left: ANOVA of accelerations 1-3. Right: ANOVA of accelerations 4-6. The feature analyzed is
the variance s? of the difference between predicted and measured SRS. Contributions of each

input parameter to the variance of the output feature are shown in percentage of total variance.)

When no other option is available but an extremely sparse sampling of the input space, specia care
must be brought to selecting a design matrix that avoids aliasing. Aliasing in satisicad modding refers
to contamination of main (linear) effects by secondary (higher-order) effects and is caused by a too
gparse sampling matrix. Obvioudy, any sampling matrix must provide the ability to didinguish the
variance associated with the linear effect of a varigble from the other varigbles. But it can hgppen that
linear effects (such as a;) are confounded or aiased with second order or higher effects (such as (3)).
With a Taguchi orthogond array, columns of the design matrix are not corrdated with other columns

and, in addition, are free of interaction with second-order effects.

One dfficulty of the forward mount impulse test is that shock trangmisson is highly sengtive to
contact modeling. In turn, contact forces across an interface depend on the product between coefficient
of friction and preload. Therefore, second-order effects (pip;) where p; denotes a coefficient of friction
and p; denotes a preload, respectively, play a significant role. This explains why the linear RSM rarely
account for more than 60% of the total output feature variability. Currently, the predictive quaity of the
high fiddity modd is being assessed usng Taguchi orthogond array designs capable of capturing,
without aliasing, dl quadratic interactions of the Six input parameters based on 64 or 128 runs.

V. FEATURE EXTRACTION

In this section, the notion d feature extraction is discussed. Festures are defined as small-
dimensiona quantities that extract information from physical observation or computer output. Obvioudy,
their definition is application-dependent and they should satisfy two other criteria. First, a feature must
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provide ingght regarding the physics investigated. Second, it must be sengtive to changes in the input

parameters.

In linear structura dynamics, conventiond features are resonant frequencies, moda damping ratios
and mode shape vectors. Neverthdess, their application is restricted to stationary and periodic signas
generated from the response of linear systems. Because non-linearity is increesingly investigated,
attempts are made to generdize the notion of modal superposition to nonlinear dynamics, for example,
usng the wavelet transform and the proper orthogona decomposition. Success is documented in
Reference [18] (waveet transform) and Reference [19] (KarhunenLoéve transform), among others.
However, these andysis techniques remain based on the assumption of linearity and their application to
non-dtationary data sets or nonlinear systems is necessarily limited. Our opinion is that tools commonly
used in other scientific communities (eg. physics, datistical sciences and pattern recognition) are not
exploited to ther full potentid.

The gpplicability of non-conventiond featuresisfird illustrated using an Earthquake example that has
recently been publicized and widdy distributed over the Internet [20]. On February 28, 2001, a
magnitude 6.8 Earthquake located thirty miles below the surface and a few miles away from Olympia,
Washington, moved the ground for 30-to-40 seconds. The recorded Earthquake waveform is shown in
Figure 13. A sand-tracing pendulum located in the vicinity produced the patterns depicted in Figure 14.
The smooth curves seen to the outside of the Earthquake “rose” are what is normally observed when
someone sets the pendulum in motion to make atracing. The pattern produced when the pendulum was
started prior to the Earthquake is Hill visble. It was then overwritten by another pattern resulting from
ground motion. Clearly, the difference between these two patterns indicates different dynamics more so

than a direct comparison between, for example, time series or shock response spectra.
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Figure 13. Typical Earthquake Record.
(Record collected during a magnitude 6.8 Earthquake in Washington State that occurred in
February 2001 near Olympia, Washington.)

Figure 14. Patter ns Recor ded by a Sand-tracing Pendulum During the Earthquake.

(Left: Sand-tracing pendulum. Right: Patterns produced by the pendulum. A steady-state
periodic signal produces the circle-like pattern seen on the outside. The transient Earthquake

signal produces the twisted pattern at the center.)

The mathematical transformation implemented by the pendulum is very similar to the Sate-space
representation of a symmetric dot pattern transform. Its efficiency for characterizing complex dynamics
is further illustrated with the two-particle interaction model. Congider the four sgnds y(t) shown in
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Figure 2. They can be transformed into z(t) = a(t)e"™ where j? = -1 and the amplitude a(t) and phase

f (t) components are defined as.

a(t) — (y(t)'-ymln) ’ f (t):7+7(y(t +t)' ymin) (9)

max min ( max ymin)

The symmetric dot pattern method transforms the correlation between vaues y(t) and y(t+t)
digant of atime shift t into polar coordinates. This transformation is used in the fidd of speech
recognition to express visudly, in an easy-to-understand figure, the changesin amplitude and frequency
content of sound signads. An gpplication to fault diagnosis is presented in Reference [21] where the
transformation is implemented to diagnose changes in sound signals between hedlth and faulty bearings.
In our example, the angle shift ? is set to 60 degrees, the amplification factor ? is set to 10.0 and the
time shift t is equal to 1/500™ of the time record’s length. These parameters are determined somewhat
arbitrarily. When transformed, the previous four time series produce the patterns shown in Figure 15.
An immediate advantage is normdization. While the horizontal and verticd scdes are dl different in
Figure 2, the four subplots of Figure 15 are contained between —1 and +1, which makes for a
convenient comparison. Significant differences can be observed between the patterns produced by the
linear sgnds (top) and the nonlinear signas (bottom). The chaotic response is dso different from the
other three asindicated by the accumulation of data pointsin the vicinity of coordinates (%2 0).

A
LAST UPDATED: MAY-15-2001 LA-UR-01-2492 —
UNCLASSIFIED



F.M. HEMEZ AND S.W. DOEBLING

05 : 05} % i

Imag[Z, .1
=]

ImzalZe,]
[=]

0.5 0.5
1 -1 iz,
1 0.5 ¥ (18- 1 -1 {123 Q 05 1
ReallZ, | ReallZ.,|
1 . 1
- - S o ‘-\
7 i
05 .# < h Y 08k
3 f S ") ) £
Lty A 3 )
ﬂ ) & [= 1 D
g & ’ F &
E [% & 1 / E
i A ot 05
"1.?:1,1 b gy g
'ﬁ?—'ﬁ;:;w b
2 s -4 LY
- -0.5 0 05 1 -1 05 0 05 1
ReafZ, .| ReallZ,, |

Figure 15. Symmetric Dot Patterns From the Two-particle Systems.
(Upper Left: System 10; single mode, low-frequency response. Upper Right: System 60; single
mode, lightly damped response. Lower Left: System 100; high-frequency response with time-
varying frequency. Lower Right: System 150; chaotic and unstable response.)

If less amplification is used (?~1) and severd shift angles ? are defined (for example, 0, 60, 120,
180, 240 and 300 degrees), then the patterns shown in Figure 15 are replicated six times and the
resulting figure is very Smilar to that produced by the sand-tracing pendulum in Figure 14.

Comparisons such as those illudtrated in Figures 2 and 15 are visudly appeding but they do not
provide a quantitative assessment of the difference between data sets. Quantitative mesasures are needed
for inference and parametric cdibration. One solution is to train surrogate models to recognize the
difference between images and to relate the changes observed to characterigtics of the origind models
or experiments. This is typicaly how pattern and image recognition techniques proceed [22]. The
dternative is to further condense the information into low-dimensond festures. Although many sgnd
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processing techniques cannot accommodate nonlinear and non-stationary behaviors, tools such as

fractd andysis are available that can.

The fractd of a Sgnd is defined as one of its topological dimension. It represents the number of
degrees-of-freedom of the corresponding data set in a multi-dimensiond space. Fractd models are
gopropriate for analyzing sgnds that exhibit some form of sdf-amilarity (for example, satistica), strong
irregularity and structure on a globd scae as well as arbitrarily fine scaes. An application is detailed in
Reference [23] where an input-output modd of cavitation diagnosis is constructed between the fractal
dimenson d acoustic pressure measurement and the degree of cavitation in a pump. One estimate of
the fractal dimengion is provided by the Higuchi method that mode s the average evolution of the sgnd’s

increment coefficients ? . Increments for samples distant of k intervasin time are computed s

N-1 o . .
L —— +ik) - +(i - Dk 10
0 = 2Nk ) i:l...‘?}NJﬁ/;g)p )- y(p +(i - k) (10)

where ?(N;Kk;p) is defined as the lower integer part of (N-p/k). The index denoted by p in equation
(10) dlows multiple estimates on a single time series and k denotes the time shift consdered. The
increment coefficients ? , are averaged over the values of indices p and the Higuchi model assumes a
linear relationship (on alog-log scale) between <?,>, the averaged increment coefficient a index k, and
the time shift index k:

(?,)=ak™® (11)

A smple least squares fit can be performed to estimate the fractd dimenson D. Note that the
fractd dimenson mugt, by definition, be an integer even if its numerica estimation is not. Figure 16 (top)
illustrates the data points <?> as a function of the time shift k. The other haf of Figure 16 (bottom)
shows the fractd dimenson D estimated for each system. The curves shown on the top haf of Figure
16 correspond to the four responses of Figures 2 and 15. The model assumed in equation (11) states
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that sraight lines of dopes equal to —D should be observed. For each system, the mean <?,> is plotted
in s0lid line and the 2 s confidence intervas are shown in dashed lines. Very little variability can be
observed, meaning that the fractas D are condstent no matter which time window is andyzed. One
exception is the 150" system. When the end of the time record is andyzed, large variations of the fractal
dimenson are obtained because the sysem trandtions very ragpidly from nonlinear to chaotic and
ungtable behaviors.

On the bottom half of Figure 16, three main categories of dynamics can be observed. When the
initial momentum ranges from 10™ to 1, little energy is provided by the secondary particle x, and the
two-particle modd behaves as a single degree-of-freedom. The corresponding fractd dimension is
logically found close to one. The second category of dynamic systems corresponds to cases where the
energy inputted by the light particle X, is sgnificant enough to influence the heavy particle X;. Then, the
system is truly a two-particle system. Figure 16 shows that the fractd dimension is close to two when
the initid momentum ranges from 3x10** to 3x10*2 The last category of dynamic behaviors exhibits a
fractd dimension that oscillates between one and two. This is because the dynamics of these systems
trangtion from single degree-of-freedom linear (D=1) to multiple degrees-of-freedom nonlinear (D=2).
This third category corresponds to initid momentum vaues equal to 7x10*2 or greater. Except for the
last case, the edtimated fractd isinsengtive to the initid position and only the leve of energy inputted by

particle x, matters.
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4 Fractal Dimension of Four 2-DOF Systems
10 ;¢ T : :
[ : { = System 10
e —— System 60
103 5 i | = System 100 4
i ; - System 150 ]

Fractal Dimension (log)
]

10 10’ 10
Window Number (log)

Higuchi Fractal Dimension of 2-DOF Monlinear Systems

— e —
= o o

Fracial Dimeansion

—-h
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Figure 16. Increments and Fractal Dimensions of the Two-particle Systems.
(Left: Sgnal increments <?> versus time shift k. Right: Fractal dimensions D for each system.
Shown on the left and from bottom to top are the average increment curves for the 10", 60™,

100™ and 150" systems. Shown on the right are the fractal dimensions for all 169 systems.)
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This example illugtrates that powerful features can be implemented that can effectively characterize
awide variety of dynamic behaviors. Of course, we cannot stress enough the importance of selecting
features that are relevant to the gpplication investigated and useful to the andyst. Time-frequency
andyss techniques encountered in structurd dynamics include the power spectra dendity, power
cepstrum, cyclo-dationarity anadyss, Willer-ville transform, wavelet transform, spectrogram and
Karhunen-Loéve decomposition. Generd-purpose features can dterndively be extracted from
probability density functions, shock response spectra, tempora and statistical moments (mean, variance,
energy, kurtoss, etc.) and fractd andyss. In addition, features can be extracted from parametric
models best fitted to data sets. The mode fitting techniques that have been applied to engineering
mechanics problems with success include linear regresson (such as AR, ARX), nonlinear regresson

(suchas ARMA), neura networks, satistical models and kriging models.

V1. RESPONSE SURFACE M ODELSAND PREDICTABILITY

Visudizing the output of large-scale numerical Smulations can be a cumbersome process. Efficient
and user-friendly tools must be developed to make modd vaidation useful to the andysts This means
that output visudization, parameter sengtivity, test-andysis corrdation, modd updating, uncertainty
andysis and predictability assessment must be integrated within the same framework and possibly soin
a graphica manner. To fulfill these requirements, the methodology of response surface modds is
adopted, asintroduced in Reference [16].

Response surface is a genera methodology for representing the dependent variables of a process
as a gragphicd function of the independent inputs. Visudization is accomplished by sdlecting a Sngle
dependent variable and by plotting its response againgt one or two independent variables. If the
functiond relationship between varigbles is continuous, the resulting object isa 1D plot or a2D surface
as illustrated by Figure 17. More commonly, the dependent variable is known a some discrete points
representing combinations of particular values of independent variables. In this case, it is common
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practice to best fit a multi-dimensond response surface (e.g. polynomid, exponentia, neurd network,
datigtical) through these points to gpproximate the unknown modd.

Physical
Observations

Output Feature Y

- o

Figure 17. Illustration of a Response Surface for Surrogate M odeling.
(The figure illustrates a typical response surface generated from a model y = M(py; p2) when the
input parameters p; and p, are uniformly varied from —1 to 1. Stars represent measurements
from physical experiments performed at eight different values of (pi; p.). The experiments are

replicated so that measurement variability can be inferred from the distribution of data points.)

In the problems we are more particularly interested in, the “process’ is a large, sochadtic finite
element smulation. The dependent response variables are features y of the smulation outputs (e.g. pesk
vaues, moda frequencies) and the independent variables are input parameters p that define the finite
element smulaions (eg. materid definition, initid conditions, preoads). The information that needs to
be combined during modd vdidation congss of output from the high-fiddity numerica smulaion,

output from the surrogate models and physical observation:
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High-fidelity Surrogate Physical
Model Models Observation
Model y =M(p) y = M(p) ™=, - Y (PN
Input PDF fp(x):d—P[pEX] fp(x):d—P[ﬁEX] foe (x):d—F’[pT%t £X]
dx dx dx

(12)

Output PDF h, (x)= d—P[y £ X] ﬁy(x) = d—P[)? £x]  hy®(x)= d—P[yTaSt £X]
dx dx dx

In equation (12), the symbols f, and h, denote the input parameter’ s multi-dimensiona probability
densty function (PDF) and the output feature's PDF, respectivdy. When large-scde numerica
smulations are involved, only an estimate of the output probability information h, can be obtained,
based ether on surrogate models or gpproximate analyss such as fast probability integration. One
advantage of the RSM approach is that probability information can be combined to the smulation
output and visudized through the definition of confidence regions. As mentioned previoudy, integrating
in a user-friendly environment the modd outputs y, predictions of the surrogate models y and physicd
obsarvations y'*(p,) can be a complicated process. This becomes even more chalenging when the
andysis must account for input and output uncertainty. The response surface methodology can offer
severd beneficid effects

(a) Analyzing the finite element output:

When outputs of the smulation code are available, surrogate models can be trained to improve the
fit to the smulation data. Figure 17 illustrates a 2D response surface that could typicaly serve as basis
for dl subsequent andyses. Beyond the graphica representation, this exercise can provide vauable
information regarding the smulation. For example, investigating the most gppropriate modd form might
reved correlation between the parameters and features.
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(b) Sensitivity and effect analysis.

The andydt can examine the location of a desgn point on the RSV and make some useful
observations. For example, the design point might be in a region of reatively high dope. Thus, a smdl
perturbation in either p, or p, can rexult in a dgnificant change in the feature y. If the gpplication of
interest is a dress analysis with y defined as the peak stress and p; isamaterid congtant with relatively
high uncertainty, then the RSM indicates to the andys that there may be serious concerns about the
ability of a population of manufactured units to stay under the maximum dgress limit. Beyond loca
sengtivity, datisticadl RSV can be developed for globa parameter effect sudy and andyss of variance.
Such techniques estimate the globa influence of input parameters on output festures over the entire

design space.

(c) Test-analysis correlation:

Mode vdidation and cdibration experiments aways require comparison between modd output
and physica observation. Test data sets can be graphicaly compared to the response surface, as
illugtrated in Figure 17. In thisillugtration, the results from eight physical experiments are plotted. It can
be ingtantly observed that some observations are consistent with model predictions and others are not.
Quantitative subspace agreement and test-analysis correlation metrics are easy to compute once RSM
arefitted to the smulation data.

(d) Parametric calibration:

Parametric cdibration experiments are generaly formulated as optimization problems. An objective
function parameterized by the modd’sinput parametersis defined and minimized. Of course, evauation
of the objective function requires modd output. It is therefore unredidtic to believe that large-scale,
multi-physics computational codes can be embedded within an optimization procedure. Instead,
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parametric cdibration based on RSM is immediate because function, gradient and Hessan evaduations

are straightforward.

(e) Uncertainty analysis:

Figure 17 illustrates the case where severd replicate observations are collected at each design
point for which an experimenta measurement is carried out. Results are located at the same location in
the (py; p2) plane and the vertica spread trand ates experimenta variability. When enough replicates are
avaladle, datidicd parameters (eg. mean vdue, 2-s intervad confidence) can be inferred and
represented graphicdly as confidence intervas. If the controllability of parameters p; and p, isuncertain
during testing, then the placement of replicate measurements in the (py; p2) plane becomes uncertain as
well. Then, the confidence interva's become confidence regions in the 3D space (eg. dlipsoids). Both
geometrical entities can easily be plotted and compared to the response surface. Uncertainty associated

with the numerica amulations and RSM can be represented in asmilar manner.

(f) Design of validation experiments:

RSM and globd effect andysis hep design the test matrix, that is, the combinations of input
parameters (p1; p) for which it is recommended to perform a measurement or series of replicate
measurements. Physical experiments are recommended, for example, in areas of the design space where
variaility seems important, sengtivities are high or sysem rdiability might be an issue. Andyss of
variance techniques based on RSM can down-sdlect input parameters as illugtrated in section IV. It is
emphasized that numericd smulaions and RSV should guide, not replace, physicd experiments.
Experimentd practices are likely to change from qudlification testing (that is, ensuring that the integrated
gysem satidfies a specified performance criterion) to vaidation testing (that is, ensuring that the
numerical mode predicts with acceptable accuracy the response of the system in a large region of the
design and operating condition spaces).
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(g) Predictability:

The ultimate god of mode vdidation is to guarantee that numerica models accuratdy represent
redity, especialy when testing is not an option. This, for example, corresponds to andyzing the RSV on
Figure 17 away from any combination of input parameters (p1; pz) where physica observations are
available. Confidence in the prediction must therefore be assessed. Assessing predictability based on
vaidation experiments is an area of open research to a great extent. Rference [23] develops a
Bayesan meding framework for datistica inference of smulation models that integrates diagnostic
checking, modd vaidation, hypothess testing and mode selection methods. The approach proposed
builds on conventiona Bayesan inference, goes beyond parametric cdibration but stops short of
addressing the predictability issue. Another interesting attempt is made in Reference [24]. The authors
present a cdibration technique that integrates the notion of predictive confidence regons by quantifying
and propagating resdud errors between cdibrated models and experimenta data sets. By
sysematicdly quantifying al sources of uncertainty, their procedure can assess the prediction’s
confidence regions and monitor modd inadequacy errors.

To the quedtion “Can numerical predictability be assessed?” our opinion is therefore a
cautious yes given that adequate vdidation experiments are performed. However, this is a difficult
problem, far from being resolved. The aforementioned techniques are currently being investigated at Los
Alamos for assessing the predictive accuracy of computer codes for hydrodynamic and structura
mechanics gpplications. Given our current computational resources, it is unredigic to envison that
predictability assessment techniques can be efficiently integrated to large- scale computational codes. To
the best of the authors' knowledge, no such work has ever been attempted without, first, developing an
appropriate RSM.

VIl. CONCLUSION
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This publication discusses the concepts of modeling, uncertainty quantification, modd vaidation and
numerica predictability. Not only does uncertainty refer to parametric variability and lack of knowledge,
but it can aso be seen as an integra component of the numerical modd. In light of this conception of
uncertainty, modd validation is defined as an attempt to identify regions of the design space where the
mode “bresks down” or uncertainty is too important. Predictability refers to the ability to quantify the
accuracy of the modd in regions of the design space where physica observations are not available.
Mode vaidation must rely on carefully planed experiments that provide an assessment of redity for the
largest possble array of configurations and operationa conditions. Parametric cdlibration is a pre-
requisite that permits to reduce some of the discrepancy between physica observation and model
output but under no circumstance should a cdibrated modd be considered vadidated. The issue of
feature extraction, or how b characterize the dynamics of time series, is aso discussed and the

efficiency of afew techniquesisillustrated with asmple moded of eementary particle interaction.

A sructurd dynamics gpplication is aso presented that features the transmisson of ashock through
a complex jointed assembly. This highly trangent event is andyzed on a 3 TeraOps computer using a
multi-million degree-of-freedom explicit finite eement modd. Work to date has indicated thet it is
possible to reduce a high-dimengon parameter space to a reasonable dimension using a moderate
number of runs. Future work includes creeting higher-order response surface models using this lower
dimension parameter space. The higher-order models will then be used for parameter effect andysis and
cdibration. A second round of vdidation experiments will then be desgned to further explore the
parameter space and define the regime of vadidity of the model. The ultimate objective isto demondrate
that the numericad modd can be used with some confidence (dso to be quantified) to predict events
outsde the regime of practica testing.
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