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Abstract 
 
We describe a system able to perform universal 
stochastic approximations of continuous 
multivariable functions in both neuron-like and 
quantum manner. The implementation of this 
model in the form of multi-barrier multiple-silt 
system has been earlier proposed. For the 
simplified waveguide variant of this model it is 
proved, that the system can approximate any 
continuous function of many variables. This 
theorem is also applied to the 2-input quantum 
neural model analogical to the schemes 
developed for quantum control.  
 
                       1. Introduction 
 
Current attempts to combine quantum and neural 
information processing can be justified both by 
the potential of combining their benefits of these 
two technologies and also to eliminate some 
their inherent shortcomings [1]. It is well known, 
that the strong demand in neural and quantum 
computations is driven by the limitations in 
hardware implementation of classical 
computations. Classical computers efficiently 
operate with numbers and symbols processing 
relatively short bit registers But the processing of 
patterns (wide-band signals having 100>>d  
bits) is limited by the empirical Rent law which 
demands in this case the use of enormous 
number of gates 8.4d∝ . This motivates the 
search for new architectures able to process these 
signals. Moreover, the typical program able to 
perform universal calculations on patterns 
requires d2∝ operators. This fact completely 
excludes the possibility of using algorithmic 
approach. 

Artificial neural networks (ANN) give answers 
to both of these challenges, suggesting the use of 
novel architectures able to process long bit 
strings using learning by examples. ANN can 
solve complex problems typical for poorly 
formalized knowledge domains.. On the other 
hand, quantum computations also have their 
historical roots in hardware limitations, 
associated with the miniaturization of computer 
elements, which will be governed in future by 
quantum laws. The mainstream of research in 
quantum computing deals with the development 
of the quantum analog of classical computational 
architectures, which operate with qubits strings 
using few-qubit gates in sequential operations 
and for which precisely formulated algorithms 
must be used (algorithms of P. Shor [2] and L. 
Grover [3] are examples). Note, that quantum 
computers retain many features inherent in 
classical computers. So, they cannot operate with 
wide-band signals and cannot be simply trained 
by examples. Just opposite, their efficiency will 
depend on the discovery of sophisticated and 
powerful quantum algorithms.  Classical neural 
networks also face many difficulties, including 
the absence of rules for determining optimal 
architectures, time-consuming training, restricted 
memory capacity, etc. However, the use of 
quantum approach seems to be useful in 
overcoming at least some of these difficulties. 
For example, as shown by D. Ventura [4], 
quantum associative memory can have 
exponential capacity, while T. Menneer [5] has 
argued that quantum superposition of the outputs 
of many networks permits the use of simpler and 
faster trainable architectures operated in ”parallel 
universes” [6]. However, it is important to take 
into account one principal difference between 
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classical and neural computations. While 
classical computers process digital information, 
neurocomputers are inherently analog. Despite 
the historical use of neural networks for 
realization of logical functions, their modern 
wide applications mainly deal with analog input 
and output. It means, in particular, that the 
concept of a qubit can be as irrelevant to future 
quantum neural technology as the concept of bit 
is to modern neural technology. There is also a 
quantum computing approach to the information 
processing of continuous variables [7]. It uses 
the fact that some quantum variables (position, 
momentum etc.) have a continuous spectrum. 
Here we shall use a different approach to 
quantum neural models. It is important, that the 
outputs of most widely applicable neural systems 
– multilayer  perceptrons – can be interpreted as 
the a posteriori probability for the input to 
belong to a given class. Therefore, it is 
reasonable to propose that quantum mechanical 
probabilities should be used to generate the 
output of quantum neural systems, enabling 
stochastic calculations with many particles.  
Remember, that three main theoretical results 
form the basis of modern neural technology 
which deals with processing of analog 
information: 1) the proof that the 2-layer can 
approximate continuous multivariable functions; 
2) the discovery of the efficient training method 
(back propagation error method [8]). 3) the 
proof that multilayer perceptrons have finite VC 
dimension [9]. 
Despite the long history of neural networks 
research, the first result was obtained only in 
1989 [10], while the second one became widely 
known in 1986. Surely, analogous results will be 
extremely important for the quantum analogs of 
classical neural systems. 
Here we show, that for simplified form of 
quantum neural system the analog of point 1 can 
be proved. This result can be extended to other 
variants of quantum neural processing. 
Surprisingly, the use of the quantum approach 
can eliminate the necessity of building networks 
of neurons to obtain approximation universality. 
Only quantum neuron seems to be able to 
perform universal approximations the way a 
single photon can “investigate” all possible 
paths, which connect its initial and final 
positions. 
 
2  Multi-barrier multiple-slit model 
 
First, it is necessary to take into account, that a 
system can be called “neural” if there is at least 

one “neuron” in it. It is possible to call a unit 
neuronal if: 

• it has many (d) inputs  and single output; 
• the external stimulus ),...,( 1 dxx=x is 

weighted by a synaptic vector w  and 
• the resulting neural activity, xw Τ=a , is 

transformed nonlinearly into the unit’s 
output y f a= ( ) . 

We suppose, that these properties are sufficient 
for the unit to be called a “neuron”. We can also 
suggest that a neural system is a quantum neural 
system if it can perform a quantum computation. 
Here we use the definition of quantum algorithm 
(quantum computation) given by A. Narayanan 
[11]. The main properties of such algorithm are 
as follows: 

• the problem to be decided have to be split 
in subproblems; 
• each subproblem is decided in separate 
“universe”; 
• the problem decision can be obtained after 
the performing the interference of  different 
“universes”. 

Consider a typical problem in classical 
neurocomputing. It is necessary to construct a 
neural system able to perform the mapping from 
the set of input patterns to the set of prescribed 
real values (regression)   
         ),...,(, 1

ααααα
dxxy =→ xx  P,...,1=α .  

Consider a system of 1−d  barriers with 
multiple slits analogous to the one introduced by 
R.Chrisley [12]. Let the space between barriers 
can be filled with substances having different 
refractory indexes djn j ,...,1, = . The vector 

),...,( 1 dnn=n will serve as the input to our 
system, analogous to the vector x .  
Let  ),( 1
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jj Nk ,...,1= , where jN  is the number of slits 
for j-th barrier. The values of l will serve as 
adjustable parameters proportional to the weight 
coefficients, wi . Suppose detector (D) has a 
definite location on the screen. Let the complex 
amplitude for the particle’s source-detector 
transition along a given trajectory 
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where jh  is the distance between j-th and (j+1)-
th barriers. Let us calculate the probability 
amplitude for the particle to reach the detector by 
the trajectory   
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Then amplitude (1) can be rewritten as nonlinear 
transformation 
       ( )θ−=〉〈〉〈 −

−
wnexp|...| 1

1

1

1
SssD k

d
dk .           (4) 

(this consideration is inspired by E.Behrman et 
al. [13]). 
We conclude that the calculation of the 
amplitude corresponding to given trajectory 
joining the source of the particle and the detector 
satisfies our earlier definition of computation 
performed by single neuron. Therefore, our 
experimental system defines single neuron in 
each universe. The full amplitude can be 
obtained by summation over all trajectories 
   ∑ 〉〈〉〈=〉〈 −

−
}{

1
1

1
1

|...||
k

SssDSD k
d
dk .             (5) 

It is obvious, that if we shall relate the decision 
of our problem with the probability of the 
particle’s detection 2||| 〉〈= SDP , then this 
value can be considered as the result of 
interference of the outputs of quantum neurons in 
different universes, or, in other words, as the 
result of universe’s interference themselves.   We 
can conclude, that our simple system really has 
the main properties of both neural and quantum 
computations.   In general, training of this 
system can be performed using different 
optimization procedures. We used a variant of 
simulated annealing to realize all Boolean 
functions of two variables.  Note, that the 
realization of Boolean functions is far from the 
central problem of really applicable quantum 
neural technology. But it permits us, at least 
qualitatively, to study the generalization abilities 
of theses systems. It can be seen from Fig. 1, that 

a good generalization (expressed in a smooth 
mapping performed by the neuron at 
intermediate values of refractory indexes) is 
achieved if the differences in optical lengths of 
photons with different interfered paths have an 
order of wavelength for all interval of the 
refractory indexes used, or when 2/λ≈∆∆ nl . 
Otherwise, corresponding mapping has a non-
regular wavy form. 
 

 
 
Figure 1: Two variants of the continuous mapping 
performed by a single barrier with 4 slits, trained to 
realize the ),( 21 nnXOR function ])67.1,1[( 2,1 ∈n . 
A good generalization  is shown  at the top (in this 
case for trained system 2/λ≤∆∆ ln ), while a poor 
generalization (bottom) is expressed as a wavy surface 
( λ4≅∆∆ ln ). 
 
3  Waveguide model  
 
It is not easy to prove the universality of the 
scheme described in the previous section. The 
reason is that photon paths with different 
trajectories are geometrically correlated. But if 
we shall neglect these correlations then the 
required proof can be done. Actually, this 
simplification means that we switch to a model 
in which the slits are connected by optical 
waveguides having prescribed refractory indexes 
and arbitrary length. What is more, we shall 
suppose, that two any slits can be connected by 
arbitrary number of identical wave guides. We 
shall refer to this model as the wave guide 
(WGM). Let us prove that WGM is the universal 
stochastic approximator of any continuous 
function.  



 
Lemma: For each ℑ∈L , where ℑ denotes 
some set of indexes, let Lf  and Lg  be complex-
valued continuous functions defined on a 
compact (closed and bounded) subset E of 
Euclidian space nR . For any pair of indexes 

ℑ∈1, LL  , let  

            |)(||)(|
1

xx LL ff =  E∈∀ x              (7) 
Suppose, that for any real 0>ε , there exists an 

ℑ∈L , such that ε<− |)()(| xx LL gf         
E∈∀ x  

Then, for any real 0>ε there exists an ℑ∈L , 
such that   ε<− ||)(||)(|| 22 xx LL gf       E∈∀ x  
 
Proof: Let ),0( RC be a closed ring with radius R 
and with center at the origin of the complex 
plane C  (e.g. the set of all complex numbers z, 
for which Rz ≤|| ). Because E is compact and 

Lf  is continuous, then the set )(Ef L is compact, 
and bounded and belongs to some closed ring 

),0( RC . According to (7) this ring is common 
for all ℑ∈L , i.e. ),0()( RCf L ∈x for all 

ℑ∈∀ L  E∈∀ x .  
Given 0>δ the complex function 2|| zz a is 
uniformly continuous inside the closed ring 

),0( δ+RC , e.g. for any 0>ε  there exists a 
01 >δ  such that for all ),0(, 1 δ+∈ RCzz  from 

11 || δ<− zz  it follows that ε<− |||||| 2
1

2 zz .  
Define ),min( 12 δδδ = and choose ℑ∈L  such 
that 2|)()(| δ<− xx LL gf  E∈∀ x . Then, for any 

E∈x from ),0()( RCf L ∈x it follows that 
),0()( δ+∈ RCg L x . It means that the complex 

numbers )(xLf and )(xLg are both inside the ring 
),0( δ+RC . Apart from this, they satisfy 

12|)()(| δδ ≤<− xx LL gf .   
Therefore, ε<− ||)(||)(|| 22 xx LL gf  ! 
 
Theorem:  Let f be a real non-negative function, 
defined on a compact subset E of the Euclidian 
space nR and let ω  be positive real number. 
Then, for any 0>ε  there exists an integer U 
and 

(i) integer positive digits 
Uuku ,...,1, = ; 

(ii) real positive digits 
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satisfies  
     ε<− |)()(| 0 xx gf  Exxx d ∈=∀ ),...,( 1 .  
 
This is an obvious consequence of the Stone-
Weierstrass theorem. If E is rectangular it 
follows from the elementary theory of Fourier 
series.   Let us choose 0>ε and apply the 
lemma. As functions Lg  we take the function 

0g (10) satisfying the conditions (i’) and (i’’), by 
labeling them with some set of indexes ℑ , and 
by taking ff L = for all ℑ∈L . We conclude, 
that there exists a function 0g for which  

2/||)(|)(| 2
0 ε<− xx gf  Exxx d ∈=∀ ),...,( 1         

                                                                        (11)        
Now we replace the function 0g  by the function 
having the same form (10) which satisfies the 
conditions (i’) and (11), but for which instead of 
condition (i’’) the more strong condition (ii) will 
be satisfied. 
For this,  choose a real positive number l such as  
            i

ull <−  diUu ,...,1;,...,1 ==∀ ,  
and real positive number θ such as       
                     uθθ <−  Uu ,...,1=∀ . 
Then the function   

)(}...(exp{)( 011 xx glxlxig d θω +++= will have 
the same modulus as )(0 xg : |)(||)(| 01 xx gg = . 
Therefore, from (11) 
              2/||)(|)(| 2

1 ε<− xx gf E∈∀ x . 



The function )(1 xg can be written in the same 
form as the function )(0 xg in (10) 
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Here we have  
0>+ i

ull  diUu ,...,1;,...,1 ==∀  
and 0>+ uθθ  Uu ,...,1=∀ . Hence, we can 
suggest, that function )(0 xg in (10) satisfies 
conditions (i’), (ii) and (11). 
For arbitrary real 0>L consider the function 

)()exp()( 00 xx gLig L ω= . For any 0>L we have 
|)(||)(| 00 xx gg L = . Hence, according to (11), 
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where coefficients 0)( >Lau for 

Uu ,...,1= depend on L. 
For every real 0>L consider also the function 
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where .,...,1,1)]([)( UuLaLk uu =+=   Here 
)]([ Lau  denotes integer part of )(Lau , i.e. 

maximal integer lower than )(Lau . Note, that 
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E∈∀ x . Hence, for any 0>ε and sufficiently 
large L we obtain ε<− |)()(| 0 xx LL gg   E∈∀ x . 
Let us apply the Lemma, by taking Lg 0 as Lf . 
We obtain, that for ε chosen above (in (11) and 
(12)) there exists such *LL = , for that 
          2/||)(||)(|| 2

*0
2

* ε<− xx LL gg  
E∈∀ x . Together with the inequality (12) which 

holds, in particular, for *LL =  this gives 
          ε<− ||)(|)(| 2

* xx Lgf  
E∈∀ x . Hence, function *Lgg =  satisfies (9) 

and has the  form (8) satisfying also (i) and (ii). 
! 

Corollary: As it can be seen from the proof, for 
given ε  the values of uθ can be chosen arbitrary 
large by enlarging only uk  and by holding 

Uull d
uu ,...,1,,...,1 = fixed. 

One additional remark is needed. As it is seen 
from this proof we assume that one additional 
barrier (wave guide junction node plane) is used 
in order to have threshold-like adjustable 
parameters. In the context of previous multi-
barrier multiple-slit model, this requires the 
presence of some additional inter barrier region 
filled by the media with fix refractory index, 

10 ≡n  (this setting is also common for classical 
neural models). 
 
4 Multiphoton absorption model 
 
Note, that we proved the theorem for the 
waveguide model, leaving intact the original 
multi-slit multiple-barrier scheme. However, if it 
is possible to perform independent control of 
both these parameters then we shall have a 
system for which universality of approximation 
can be easily derived from the theorem proved 
above. As one such possibility, let us consider 
the realization of a quantum neuron having 2 
inputs. The corresponding scheme is analogous  
to the coherent quantum control of multiphoton 
transitions using shaped ultrashort optical pulses 
with properly phase tuning [14]. Our approach 
differs, however, in that the amplitude tuning is 
also used. In coherent quantum control a 
quantum system (atom, molecule etc.) should, 
occupy the desired excited state under the 
influence of light. If, for example, a laser pulse 
has a finite spectral width and the central 
frequency is only half of the frequency of 
transition of the chosen quantum system from its 
ground (g) to the excited (e) states, then this 
transition can be only due to two-photon 
absorption which can be realized in many 
interfering ways [14].  Because one photon has a 
frequency lower than 2/0ω  and the other has 
greater than 2/0ω  and these two frequencies 
are spatially separated by a diffraction grating 
(see Fig. 2) such that both photons take paths 
lower and upper than the center of liquid-crystal 
space-light modulator (SLM), then it is possible 
to use factorized phase tuning so that all phase 
increments of the SLM cells over the center will 
be multiplied by an  input component 1x , while 
the other one by other input component 2x . 
There can exist different ways to achieve 



possibilities to obtain this factoring. For 
example, we can consider 1x  and 2x as factors of 
the electrical fields which govern the refractory 
indexes of  the SLM cells. 
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Figure 2: The multiphoton absorption neural model. 
A programmable one-dimensional spatial light 
modulator (SLM) tunes both the spectral amplitude 
and the phase of the Ti: sapphire laser, spatially 
separated with diffraction grating. Phase tuning is 
performed in a factorized manner. One of the photons 
traversing the upper path with frequency lower than 

2/0ω  is tuned with factor 1x , and other photon 
traverses lower path with complementary frequency 

2/0102 ωωωω >−=  and is tuned by the factor 2x . 
This pair of photons forms one of many possible 
interfering alternatives for 2-photon absorption by Cs 
atoms. The level of the occupancy of excited state of 
Cs monitored through fluorescence gives the desired 
output. Trained neuron parameters are stored in the 
memory and are used to control the SLM.  
 
In this case we can express the phase increments 
of both photons as 11 )( xω∆Φ  and 22 )( xω∆Φ . 
Here, the multiplication factors )( 1ω∆Φ and 

)( 2ω∆Φ can be set by programmable liquid-
crystal spatial light modulator. They should be 
considered as adaptive parameters of the scheme. 
Moreover, SLM is also able to independently 
adjust the spectral amplitudes )(ωA . It is easy to 
see that universality of such 2-input neuron will 
follow directly from the theorem proved above. 
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