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A complete Lie group analysis of the general 1D hydrodynamic flow problem for a general K(�,P) 
type equation of state is presented. Since many equations of state (e.g., Vinet, Birch-Murnaghan, 
Shaker, and Tait) are of this form, one can use the techniques presented here to study their behavior.  
Making use of the full transformation group, the hyperbolic conservation laws for mass, momentum, 
and energy reduce to non-linear, ordinary differential equations.  These equations describe the den-
sity, particle velocity, and pressure behind the shock as functions of the shock front Mach number.  
Note that unlike the classical result that defines the flow only at the strong shock limit, in this analy-
sis the Mach number is allowed to be one or greater. This allows the behavior of a shocked material 
to be described down to the acoustic limit. This technique is illustrated using the Tait EOS for a 
shock moving through NaCl.  Finally, the ratios of the group parameters are shown to have definite 
physical meanings defined in terms of the equation of state and the physical conditions occurring 
during the event that has produced the shock wave. 

 
INTRODUCTION 
 
Group analysis of the general 1D hydrodynamic 
flow problem has only been superficially inter-
preted and applied.  Traditional work has centered 
on the classical self-similar solution of the first 
kind.  The typical application being the generation 
of analytic test problems of a physically degener-
ate, asymptotic flow useful in benchmarking gen-
eral computer codes. 
However, this represents a small and limited class 
of solutions.  A much richer interpretation exists if 
one considers the full group transformation. 
The goal of this paper is to provide a general tech-
nique that allows the researcher to accurately de-
scribe the hydrodynamic flow behind the shock 
front for Mach numbers at the shock front greater 
than or equal to one.  This is done via a similarity 
transformation using the full Lie group and is ap-

plicable for 1D hydrodynamic flow with a K(�,P) 
closure/EOS relation. 
 
 
GROUP STRUCTURE 
 
 The 1-D flow equations for this problem are as 
follows; 
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Where t and r are the temporal and spatial vari-
ables, � is the density, u is the particle velocity, P 
is the pressure, K(�,P) is the EOS/closure relation, 
and j=0, 1, or 2 for rectangular, cylindrical, and 
spherical geometry respectively.  

 



 

Application of the Lie algorithm leads to the fol-
lowing five-parameter group generator;(3) 
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 Dividing by c2, these five group parameters can be 
reduced to the four values, �= c1/c2  the expansion 
rate of the shock wave, �= c3/c2 the time delay till 
the onset of shock formation,�=c4/c2 the material 
resistance ratio, and �= c5/c2 the material uniform-
ity in front of the shock. The problem is further re-
stricted by the invariance condition that dictates the 
structure of the bulk modulus K. 
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From the group generator a set of characteristic 
equations can be written that can be used to gener-
ate various coordinate transformations of the flow 
equations  
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Given this set of equations, it is then possible to 
construct the following general class of coordinate 
transformations.  Starting with the similarity vari-
able. 

� � �

��
�

�� tr                        (7) 
and the new dependent variables for the density 
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and finally the pressure 
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Note that these variables are expressed in terms of 
the independent similarity variable �, time, the 
group parameter ratios as described above, and the 
reduced functions f(�), g(�), and h(�). 
 
 
 
 

REDUCTION OF THE FLOW EQUATIONS 
 
The conservation equations (1-3) can be reduced 
by the substitution of the similarity variable and 
the transformed dependent variables (eqns. 7 – 10).  
The continuity equation is then 
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The conservation of linear momentum equation 
becomes 

0]['][')][]([][][)1( ����� ���������� hggfgf    (12) 
and the conservation of energy is written 
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Where � = K/ P. 
Reduction of this coupled set via Cramer’s rule 
yields f’[�]=�[�]/	[�], g’[�]=
[�]/	[�], and 
h’[�]=�[�]/	[�], where 
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Note that �= -1+� +j � and 
= -2 +2 �+ �. 
   
 
INVARIANCE CONDITIONS FOR  
THE BULK MODULUS 
 
The invariance condition on the bulk modulus (5) 
allows the following four mathematical forms;  
�� The full form with material resistance and 

non-uniformity (��0 and ��0) 
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�� no material resistance ��0, but non-uniform 
material ��0 
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�� uniform material ��0, but resistance ��0 
][))1(2(),( ���� CPPK ���          (20) 

�� uniform material ��0, and no resistance  ��0                   
Note that �=2 - (3+j)� in order to maintain invari-
ance of the energy integral. 
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These forms can be used to represent the bulk 
modulus in various ways in the reduced equations 
(11-13).  Note that the material resistance �, does 
not appear in the solution of the reduced functions 
f,g, and h, but rather is seen in the expression for 
the pressure (10) 
The expression for the pressure without this 
material resistance turn out to be different from the 
one where the material resistance is incorporated 
into the analysis.  Estimates of the effect of 
including � will be considered in a future paper. 
 
 
ILLUSTRATIVE EXAMPLE 
 
As an example, consider the Tait Equation of 
State(4)     
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where �o is the initial density. 
If we start with the general form (18) we can write 
the Tait bulk modulus as follows 
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This yields the material resistance function � 
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where we have made use of the fact that K=c2b and 
the speed of the shock wave R=cM, where c is the 
speed of sound through the medium and M is the 
Mach Number.  For NaCl (Ko=23.81GPa and 
Ko’=5.68) the compression ratio asymptotically 
approaches 1.6823 (see Table 1).  Note that this 

Where � is the compression ratio and Ko and Ko’ 
are the bulk modulus and its first derivative. 

The variation of � for NaCl(5) is shown in Figure 1. 

 
The Rankine-Hugoniot relations 
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Figure 1 Tait � for NaCl Ko=23.81, Ko'=5.68
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are used to generate the boundary conditions at the 
shock front (�=1).  From the conservation of 
energy relation (29), an estimate of the 
compression ratio for the particular equation of 
state (i.e., Tait) can be defined in terms of the 
Mach Number and the first derivative of the bulk 
modulus K0’. 

 



 

table shows how the speed of the shock can only 
produce a well defined (via eq. 30) compression or 
it will not conserve energy across the shock front. 

Figure 4 NaCl Variations by Mach No. (j=2, �=0.0)
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Table 1. Energy Conservation Across 

The Shock Front for NaCl 
 

Mach No. (M)* Compression Ratio (�) 
1.1 1.0584 
1.2 1.1135 
1.5 1.2547 
2.0 1.4101 
5,0 1.6329 

10.0 1.6697 
20.0 1.6791 
50.0 1.6818 

580.0  (��) 1.6823 
 
*Note that the high Mach flow (M>5) are only pre-
sented to show the onset of asymptotic behavior. 
Using the Mach-Compression relationship (30), 
and numerically integrating (11-13) for the Tait � 
equation  
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The profiles vary with Mach number and should 
approach an acoustic wave solution as M�1.  As 
M��, the profiles asymptotically converge as a 
consequence of the conservation of energy re-
quirement at the shock front (30) and generate the 
strong shock, self-similar solution.  (14-17) yield solutions to (11-13). Figures 2 - 4 il-

lustrate how the density, particle velocity, and 
pressure profiles vary from the shock front (�=1) 
back towards the center of initiation (�=0) for a 
spherically expanding shock wave in NaCl. 

 
 
Note that in figures 2-4, the lowest curves corre-
spond to M=1.1 and that the curves for M �5 are 
merging at the asymptotic, strong shock limit. 
 
 
DISCUSSION 
 

 
 
CONCLUSION 
 
Group theoretical methods have been shown to be 
a powerful method in the evaluation of flow behav-
ior behind a shock front.  Using the full group 
transformation and the Tait EOS, the passage of a 
shock through a block of NaCl has been simulated 
as a function of Mach number at the shock front. 

Figure 2 NaCl Variations by Mach No. (j=2, �=0.0)
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Figure 3 NaCl Variations by Mach No. (j=2, �=0.0)
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