
Symmetry: Art and Science 
Sydney Congress, 2001 

NATURE’S STATISTICAL SYMMETRIES, 
A CHAIRACTEIIIZATION BY WAVELETS 

ANTHONY B. DAVIS 

Name: Anthony B. Davis, PhD, Physicist (b. Montreal, Que., Canada, 1952). 
Address: Space & Remote Sensing Sciences Group (NIS-2), Los Alamos National Laboratory, P.O. Box 
1663 (MS C-323), L.os Alanios, NM 87545, USA. E-mail: adavis@lanl.gov. 
Fields of interest: Mathematical geophysics, liactal geometry, multifractal statistics, three-dimensional 
radiative transfer theory, remote sensing, clouds, extreme atmospheric phenomena, environmental policy 
and security concerns (music, films, travel, history). 
Awards: Performance Award, NASA’s Space Flight Center 1997; Performance Award, Los Alamos Na- 
tional Laboratory 1Y99. 
Publications and/or Exhibitions: Davis, A. B., Ileeves, N. M., and Cahalan, R. F. (1995) Architecture of 
Clouds - Clouds as Architecture, Scale-Invariance as a Symmetry in Natural Systems and Artificial Envi- 
ronments, In: Dnrvas, G., and Nagy, D., eds., Proceedings oJ3r.d Interdisciplinary Symmetry Congress and 
Exhibition “Symmetry: Artigicial and Natural, 08/14-20, 1905, Washington (DC), published in Symmetry: 
Culture and Science, vol. 6 (#l), Int. SOC. for the Interdisciplinary Study of Symmetry (ISIS-SYMMETRY), 
137-140. 

Abstract: Wavelets are the mathematical equivalent of a microscope, a means of look- 
ing at more or less detail in data. By applying wavelet transforms to remote sensing 
data (satellite images, atmospheric profiles, etc.), we can discover symmetries in Na- 
lure’s ways of changing in lime and displaying a highly variable environment at any 
given time. These symmetries are not exact but statistical. The most intriguing one is 
“scale-invariance” which describes how spatial statistics collected over a wide range 
of scales (using wave1m)follow simple power laws with respect to the scale parame- 
ter. The geometrical counterparts of statistical scale-invariance are the random fiac- 
tals so often observed in Nature. This wavelet-based exploration of natural symmetry 
will be illustrated with clouds, 

1. WAVELET TRANSFORMS 
Consider some geophysical variable of interest f, dependent on position in space or 
time x ,  that we will denotef(x); this is nothing more than a long string of numbers 
obtained from an instrument or a model calculation. The general philosophy of wavelet 
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analysis is the separation of this signal into a slowly varying, or “local average,” part 
and the remaining fast-varying part, or “fluctuation.” In fact, this is often a goal in life 
generally speaking: how to separate the big-picture from the details, the forest from the 
trees, etc? Mathematically, this separation corresponds to two complementary filtering 
operations. A wavelet filter looks like this 

We use a to denote the scale at which we separate the “fast” and “slow” components and 
6 as a position parameter. The mathematical shorthand in Eq. (1) is now translated into 
plain language. 

2 ,  I % 1 <  _.̂  ~. - L 
*1l#L:Y+1PI# - v4 i&L 

1 J( 

I ‘  t: I i I  1. (f 

Figure 1: Example of a wavelet transform. The top panel shows the 1D input data, a daily 
record of column-integrated atmospheric liquid water, or “liquid water path” (LWP) in cm or 
g/cm2. The data was obtained from an up-looking 2-channel passive microwave radiometer at 
a climate observation site in Oklahoma. The image in the lower panel is the 2D result from 
Eq. (1) in absolute value displayed on a gray scale; notice that the scale a increases downward 
by multiplicative increments. 
The function ~ ( x )  is the so-called “mother wavelet” that it is only required to have a 
vanishing mean value, hence to oscillate at least once around zero; it is usually as- 
sumed to take (significantly) non-vanishing values only near or around the origin x = 0. 
Thus, the term Wa,b(X) in the above equations is a dilated (a  > 1) or shrunken (a  < I )  
version of the mother wavelet form that is also displaced by a distance b in either direc- 
tion , to the right (b  > 0), or to the left (b  < 0). Notice the built-in connection with 
zoom- and displacement-transforms respectively. The integral operation on the r.-h. 
side of Eq. (1) just means tform the product of the (scaledshifted) wavelet and the 



input signal, then sum over all (available) values of space (or time).’ The result is an 
“image” of&) through the wavelet transformation (WT), based on a certain choice for 
~ ( x ) ,  that will depend on a and b. So the notation Tvu(a,b) on the I.-h. side repre- 
sents a 2D array of numbers resulting from the operation prescribed on the r.-h. side, 
with a book-keeping of sorts for all the dependencies it inherits. 

If the local mean is the desired outcome at scale a, rather than the fluctuation, then one 
uses a “scaling functiotP q ( x )  rather than a wavelet ~ ( x ) .  The only difference is that it 
does not need to oscillate or, more precisely, it should have a non-vanishing mean. 
Otherwise, the same notation applies: Tcplfl(a,b), just as in Eq. (1). 

Figure 1 shows the image of a specific function A x )  though a specific WT. The graph 
offix) is plotted in the top panel (a); it is a trace in time of the amount of liquid water 
in the cloudy atmospheric column above a instrument station in Oklahoma for one day; 
sampling is done every 20 seconds. The two-dimensional result from Eq. (l), 
Tvm(a,b), is illustrated in the lower panel (b) on a grey scale in absolute value, de- 
noted 1 Tvlfl(a,b)l in the following; note that the scale parameter a increases downward. 
The choice of analysing wavelet is shown in the inset in panel (a). 

In observations of geophysical fields or time-series, there are two operationally impor- 
tant length- or time-scales: the total length of the record, L ,  and the interval between 
two subsequent samplers, 1. Thus, the total number of samples in the record is N = L/ l  
where 1 is the smallest and L the largest scales sampled in this observation (e.g., N = 
4320 in Fig. 1).  One of the simplest possible spatial statistics to examine is 

where (.)x means ‘average the quantify inside the triangular brackets (over the vari- 
able(s) in the sub-index). ’ So Sw(q;u) is just the qth-order statistical moment of the 
absolute y-WT coefficients at scale a. In this case, we have averaged over all positions 
(b-values in WT) and, if possible, over all the different “realisations” of the random 
signa1,f If the data is scale-invariant (with respect to zoom operations), then it can be 
shown that SIv(q;a) must be a simple power-law function of a as indicated on the r.-h. 
side OS Eq. (2) where ‘‘ox’’ means ‘proportional to. ’ 

Figure 2a shows typical data on internal cloud structure from long aircraft penetrations 
into marine stratocumulus layers. Such persistent and extensive clouds form almost 
daily off the coast of California and off other Eastern shores of the world’s oceans. 
Because of their ubiquity and strong reflectivity, these clouds are an important factor in 
the Earth’s climate. From there, we can understand the need to better characterise their 



internal structure; their outer structure is not very interesting: essentially, flat top and 
base. The data is "liquid water content" (LWC) which measures (in g/m3) the amount 
of water contained in the droplets suspended in the cloudy air sampled by a special 
probe under the wing of an aircraft every 5 meters along the horizontal flight path. 

Figure 2b shows logloSv(2;a) versus loglon for three different choices of the analysing 
wavelet w, including a "poor-man's wavelet" consisting of just the difference between 
two LWC points separated by a variable distance a: Tvm(a,b) = Ab+atf(b) and 
Sv(2;a) = ( IAb+~)---b)1~)h~ This older approach in data analysis restricted to q = 2 is 
known as "structure functions" [Monin and Yaglom, 19751 or the "semi-variogram" 
[Christakos, 1992; and references therein]. The tendency of the statistical results to 
align rather well in the log-log plot shows that scale-invariance prevails, as defined by 
the power law in Eq. (2). So, in spite of its appearance in Fig. 2a, LWC data has a 
hidden symmetry, that of scale-invariance. We also note that the exponent Cv(2), de- 
fined in practice as the slope of the line in Fig.2b, is not very sensitive to the choice of 
wavelet; for more information on why/when this is expected and not, we refer the in- 
terested reader to the review article by M q ,  Bacry, anddme'odo [1994]. 
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Figure 2: The scale-invariance of internal cloud structure. (a) Two traces of liquid water 
content (LWC) or density of liquid water (in cloud droplets) expressed in g/m3; these data 
were obtained from an airborne probe during an extensive field experiment on marine strato- 
cumulus. (b) Structure functions and wavelet-based generalizations with similar scaling. 
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