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Abstract 
We use the r-matrix formulation to show the integrability of geodesic 

flow on an N-dimensional space with coordinates q k ,  with k = 1, ..., N ,  
equipped with the co-metric g i j  = e-141--431(2 - e-Iq1-q3l). This flow is 
generated by a symmetry of the integrable partial differential equation 
(pde) mt + um, + 3mux = 0, m = u - a2uZx (a is a constant), which 
was recently proven to be completely integrable and possess peakon 
solutions by Degasperis, Holm and Hone. The isospectral eigenvalue 
problem associated with this integrable pde is used to find a new Lax 
representation for its N-peakon solution dynamics. By employing this 
Lax matrix we obtain the r-matrix for the integrable geodesic flow. 
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1 Introduction 

The b = 3 peakon equation and its isospectral problem 

We begin with the case b = 3 of the b-weighted peakon equation. This is the 
evolutionary equation defined on the real line as, 

lim m=O, (1.1) 

in which the subscripts denote partial derivatives with respect to the indepen- 
dent variables x and t. For any values of the dimensionless constant b and 
constant lengthscale Q, this equation admits exact N-peakon solutions 

2 mt+um,+bmu,=O, m = u - Q  u,,, 
14-+~  

N 

i=l 

in which the 2N time-dependent functions p i ( t )  and q i ( t ) ,  i = 1 , 2 , .  . . , N, 
satisfy a system of ordinary differential equations whose character depends on 
the value of the bifurcation parameter b. The case b = 2 is the dispersionless 
limit of the integrable Camassa-Holm (CH) equation that was discovered for 
shallow water waves in [2]. As shown in [3], the CH equation with dispersion is 
'one full order more accurate in asymptotic approximation beyond Korteweg- 
de Vries (KdV) for shallow water waves, yet it still preserves KdV's soliton 
properties such as complete integrability via the inverse scattering transform 
(IST) method. 
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An equation equivalent to the case b = 3 of the peakon equation (1.1) 
was singled out for special attention among a family of related equations, by 
Degasperis and Procesi in [l]. The peakon equation (1.1) was shown to be 
completely integrable for the case b = 3 by Degasperis, Holm and Hone [4], 
who found the following Lax pair consisting of a third order eigenvalue problem 
and a second-order evolutionary equation for the eigenfunction, 

1 
Q2 

= -++-Am+, 
1 2 

Q2X 3x lClt = --qxx - + (21, + -)+. 

Compatibility $J,,,~ = qtzXx implies Eq. (1.1) with b = 3 provided dX/& = 0. . .  
Thus, Eq. (1.1) with b = 3 is integrable by the inverse spectral transform for 
the isospectral eigenvalue problem (1.3). 

Equation (1.1) with b = 3, 

(1.5) 2 mt +umx + 3muX = 0 ,  m = u - 0  u,, , 

was shown to be integrable by the inverse spectral transform and to possess 
an infinite sequence of conservation laws in Degasperis et al. [4]. The first few 
of these are, in the notation of [4], 

H-1 = L J u 3 d x ,  Ho = J m d x ,  
(1.6) 6 

H I  = +5v: + 4 v 2 ) d x ,  

We shall pay 

(1.7) 

the quantity Y is defined as 

2 -1 - 2 -1 v := (4 - ax) u = (4 - 8,) (1 - a y  
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Lax matrix for N-peakon dynamics 

Substituting the N-peakon solution, 

into the isospectral eigenvalue problem (1.3) yields [4] 

Setting +(qi ( t ) ,  t )  = +i(t) then gives the following matrix eigenvalue problem, 

N 2 
1 -  

j=1  

(1.10) 

where 

Let L denote the N x N matrix &. In Ref. [4], the authors used the two 

conserved quantities trL and trL2 to solve the 2-peakon subdynamics of the 
the N-peakon dynamics q k ,  pk, with k = 1, ..., N ,  cu = 1, satisfying 

Amongst other results, the authors in [4] discovered the two-peakon collision 
rules for N = 2 and gave explicit formulas for its phase shifts as functions of 
the asymptotic speeds of the two peakons. 
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2 A geodesic flow associated b = 3 peakons 

The quantity used for determining the two-peakon N = 2 collision laws in [4], 

is also the quadratic conservation law H1 in (1.6) for the b = 3 peakon equation 
(1.5), when H1 is evaluated on the N-peakon solution (1.8) with Q = 1. 

The canonical Hamiltonian dynamics generated by HI is geodesic motion on 
an N-dimensional space with co-metric gij = e-1qa-q31(2- e-lqa-qjl). As we shall 
show by finding its r-matrix structure in the remainder of the present paper, 
the geodesic motion canonically generated by the conservation law H1 = TrL2 
in (2.1) provides a new 2N-dimensional integrable system, 

These geodesic HI-dynamics for Pk,qk, are not the same as the N-peakon 
dynamics in (1.12). Rather, we are studying the restriction to the peakon 
sector of the Hl-flow in the hierarchy of integrable equations associated with 
the isospectral problem for equation (1.5). 

R-matrix results for the geodesic HI-dynamics 

To find the r-matrix structure for these Hl-dynamics for pk, q k ,  we now intro- 
duce an alternative Lax matrix for the peakon dynamics of Eqn. (1.5), 

N 

i,j=l 
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where 

The Lax matrix (2.4) also satisfies, 
. N  

(2.7) 

which is the Hamiltonian for the canonical dynamics in Eqs. (2.2) and (2.3). 
In Eq. (2.6), we have 

and the function A ( z )  Satisfies the following relations, 

a a  
aY 

( z + - ) A ( z ) A ( - z )  = 0. (2.13) 

We shall work in the canonical matrix basis Eij, 

( E i j ) k l  = J i k J j l ,  i , j ,  k, I! = 1, ..., N .  

To find the r-matrix structure for the HI-dynamics in Eqs. (2.2) and (2.3), we 
consider the so-called fundamental Poisson bracket [6] : 

{ L l ,  L2) = [r12, Ll ]  - [ T a l ,  L21, (2.14) 
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where 

k,l=l 
N 

i r j t sJ  
N 

(L11 L2} = (Liji Lkl}Ezj @ Ekl. 
a, j ,k , l=l  

Here {Li j ,  L k l }  is the standard Poisson bracket of two functions, 1 is the N x N 
unit matrix, and the quantities are to be determined. In Eq. (2.14), [ e ,  . ]  

denotes the usual commutator of matrices. 

After a lengthy calculation for both sides of Eq. (2.14), we obtain the 
following key equalities (whose detailed verification is given in the Appendix) : 
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[rst, ,!,Ij1 = 0, for different s, t ,  j ,  1 .  

where r j l  = x k , m r k m , j l E k m ,  r l l  = x k , m r k m , l l E k m l  are two N x N matrices 
whose entries are to be determined, L is the Lax matrix, and [ e ,  L ] k l  stands for 
the k-th row and the l-th colum element of [-, L].  

In matrix notation, all the above equalities can be rewritten as 

[ r j l ,  L] = B j ‘  , j f . 1 ,  (2.15) 

[ T u ,  L] = B 1 l ,  (2.16) 

where B j ‘ ,  B“ are the following two N x N matrices: 

By solving Eqs. (2.15) and (2.16), we have the following r-matrix structure: 

8 



Perhaps not unexpectedy, this non-contant r-matrix for the geodesic HI- 
dynamics differs from the constant r-matrix associated with the CH equation 
( b  = 2) discovered by Ragnisco and Bruschi in [5]. 

Concluding remarks 

In this paper, we found the r-matrix formulation' for the integrable geodesic 
motion generated canonically by the quadratic quantity H1 in (2.1). This 
quantity arises by restriction to the peakon sector of a quadratic conservation 
law in the hierarchy of integrable equations associated with the isospectral 
problem for equation (1.5). The quadratic quantity HI is also conserved for 
the 2-peakon dynamics of the 1+1 integrable partial differential equation (1.5) 
that was singled out in [l] and was proven to be completely integrable by 
the isospectral transform in [4]. We also introduced a new Lax matrix L for 
the N-peakon flows of the integrable equation (1.5) that facilitated the r- 
matrix calculations and for which H1 = itrL2. In later work, we shall discuss 
additional flows in the hierarchy of integrable equations associated with the 
isospectral problem for equation (1.5) and study their relationships to classical 
finite-dimensional integrable systems [7]. 
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Appendix 

The following computations are needed in verifying Eq. (2.14). 
First, we calculate the left hand side of Eq. (2.14). 

where the superscript I means Eq. (2.12) with the argument. 
Thus, we obtain the following formula, 
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The first term of Eq. (2.19) is: 

Therefore) we have 

(2.19) 
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