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An Effective Model for Microscopic Intrinsic Localized Modes.

G. Kalosakas and A. R. Bishop

Theoretical Division and Center for Nonlinear Studies,
Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

We present a system of coupled degrees of freedom
that can effectively describe the localization of intra-
molecular excitations in the charge transfer solid PtCI.
These excitations correspond to the Raman active mo-
tion of chlorines (symmetric Pt — C! stretching). By
fitting two parameters of the model we obtain an accu-
rate description of the strong red-shifts that appear in
the overtone Raman spectra of the isotopically pure ma-
terial. The resulting intrinsic localized modes extend on
length scales of the order of nanometers. With the same
set of parameters the model can reproduce the specific
structure of the Raman spectra of naturally abundant
PtCl, which contains a random distribution of chloride
isotopes.

Keywords: Intrinsic localized modes, breathers, over-
tone red-shifts, isotopic disorder, PtCl Raman spectra.

1 INTRODUCTION

The resonance Raman spectra of both naturally abun-
dant and isotopically pure PtCl constitute a direct indi-
cation of microscopic vibrational intrinsic localized modes
(ILMs) in a solid [1]. The abbreviation PtC! represents
the halogen bridged, mixed valence, transition metal
compound {[Pt(en)s][Pt(en)2Cl3](ClO4)4}, where en =
ethylenediamine (see for example reference [2]). The
unit cell of this quasi one-dimensional solid contains the
molecular unit CI~ — PtT* —CIl~ - -- Pt*2, where two en
ligands are chemically bonded to each Pt ion. PtClI is
a strong charge density wave material with highly non-
linear properties [2]-[4].

1.1 The Model

We use a Holstein-type Hamiltonian [5], [6] to model
the interactions of intramolecular excitations correspond-
ing to the symmetric vibration of the chlorides within a
unit cell. In particular [7], [8],

H = Hezc + Hen'v + H’int; (1)

where the first term represents a tight-binding approxi-
mation for the intramolecular excitations,

Hepe = Z (anjai — J(afaip + a3+1a,-)) ,  (2)

i

the second term describes an interactive environment
represented by classical Einstein oscillators,

Henv =

2 2
D; Muwj ,
oM +Zz_ g Tiv (3)

and the last term corresponds to a linear coupling

Hiny = x Z zial oy, (4)

In eq. (2) the o and o are creation and annihilation
operators, respectively, of intramolecular excitations on
lattice site ¢. The on-site energy of the excitation is Ey
and J is the transfer integral between adjacent sites. In
eq. (3) z; and p; are the displacement from the equilib-
rium position and the momentum, respectively, of the
ith oscillator. Each oscillator has mass M and frequency
wo. Finally, in eq. (4) x is the strength of the interaction
between the coupled degrees of freedom.

2 RED-SHIFTS OF ISOTOPICALLY
PURE MATERIAL

2.1 Many-Quanta Stationary States

Using J as the unit of energy and dimensionless pa-
rameters [6], we obtain that in the adiabatic approxi-
mation the stationary solutions of Hamiltonian (1) de-
pend on two parameters: the dimensionless on-site en-
ergy €¢o = Ey/J and the dimensionless coupling constant
k = x/+/JMw?. In that case the eigenvalue equation of
a general N-quanta stationary state is given by [7]:

E® = (NEO — Ay — kQPN)®j17j27"'7jN’ (5)
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where £ = FEc;c + Eijpy and @5, 4, . jy is the time
independent probability amplitude for finding one in-
tramolecular quantum on site j;, one on site jz, etc.
Furthermore, in the last equation
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where the indices n;, denote summation over the nearest
neighbors of site j;, and
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where L is the number of lattice sites.

The eigenvalue equation (5) admits extended (Bloch
type) solutions which form a band extending from N(ep—
2) to N(eo + 2) in the limit of infinite chain. Addition-
ally, localized modes below this band exist, due to the
nonlinearity.

2.2 Numerical Calculation of the
Ground State

A simple numerical method for the calculation of the
N-quanta ground state of eq. (5) results from the fact
that it constitutes an attractor of the map

(@)
2 = gy

where {®} = {®;, ., ji,---,jn,= 1,...,L}. The
operator H defined as minus the right hand side of eq. (5)
and |H{®}| is the norm of the vector H{®} (for more
details see reference [6]).

In order to calculate the ground state for a particular
number of quanta, N, we begin with an initial state
completely localized at one lattice site, say ng,

q%'?,l.t..,j}v = 6]'1,n0 s 6J'Nyﬂo )

act on this with the operator #, normalize the resulting
vector and repeat this procedure until convergence is
achieved. At the end we find the wavefunction {®final},
while the energy E of eq. (5) is given through the norm
|H{®fi"a!}||. Then, the total energy En obtained by
the inclusion of the E.,, of eq. (3) !. This procedure
converges rapidly to the localized ground state.

As N increases, the resulting ground states charac-
terized by the increasing of the absolute value of the
binding energy (referring to the lower band edge of the
extended N-quanta stationary states) and the stronger
localization of the wavefunction [7].

11n the adiabatic approximation p; = 0 and the z; are given in
terms of the resulting wavefunction ®fée [7].

£ numerical &
X analytical

3 experimental 1

=
o
T

Relative red-shifts (%)
g

NI S
% T 2 3 4 5 6 7
Number of intramolecular excitation quanta (N)

Figure 1: Relative red-shifts of the Pt35CI overtone Ra-
man spectra as a function of the number of excitation
quanta, N. The error bars represent experimental er-
rors.

2.3 Parameter Values

The increase of the binding energy results in strong
red-shifts in the overtone spectra. The fitted values

k=12 (£0.1) and € = 200 (£30) (8)

provide accurate agreement with the corresponding ex-
perimental red-shifts of the overtone Raman spectra, for
both Pt3°Cl and Pt*"Cl. In figure 1 we show the nu-
merical relative red-shifts for up to the N = 7 quanta
(sixth overtone) for the case of Pt3°Cl, along with the
experimental data of reference [1]. Analytical results are
also available through accurate approximate expressions
[7].

The experimental values of the fundamental frequen-
cies are 312 em ™! for Pt35Cl and 304 cm ! for Pt37CI
[1]. For values of k below ~ 1.5 the energy of the single
quantum ground state of Hamiltonian (1) is approxi-
mately obtained by €y — 2 [6]. As a result we have that

for Pt3*Cl: J~1.58cm™" and Ep~315cm™", (9)
and
for Pt*'Cl: J~154cm ! and Ey~ 307 em™'. (10)

The fitted values of the parameters, egs. (8) and
(9), (10), are consistent with independent calculations
arising from physically different properties of the mate-
rial [8], viz. the position and the width of the relevant
phonon dispersion branch v; and the requirement that
the nonlinearity of the effective model mimics the lat-
tice anharmonicity induced by the underlying electron-
phonon interacting system that is actually responsible
for the formation of the ILMs.
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Figure 2: The extent of the 1-quantum and 2-quanta
ground state as a function of k. The dotted line denotes
the fitted value of k for PtCI.

The ground state wavefunction depends only on the
value of the dimensionless coupling k. In figure 2 we plot
the variation of the extent of the wavefunction for N =1
and N = 2 with k. The extent is calculated through
the participation number [9], Z, of the corresponding
solution, where Z = 1/ Zle |®;|* for N =1and Z =

1/ me’:’:l |®,, j»|* for N = 2, respectively, and the use
of the value of PtCl’s lattice constant which is equal
to 1.08 nm. The fitted value of k = 1.2 for the PtClI
indicates that a single quantum ILM extends over about
8 nm, while a 2-quanta ILM extends over 2 — 3 nm.

3 RAMAN SPECTRA OF
NATURALLY ABUNDANT
MATERIAL

The natural abundance of Cl consists of 75.6% 35C1
and 24.4% 37Cl. As a result the naturally abundant
PtCl contains 57.2% unit cells with 3°CIl -3 Cl, 36.8%
with mixed 3°Cl —37 Cl or 37Cl —35 CI, and 6% with
3501 —35 (1 isotopes.

3.1 Disordered Model

Applying the effective model (1) in the disordered
case we consider the following values for the parame-
ters of the corresponding eigenvalue equation (5). For
the lattice sites with unit cells containing 3°Cl —3° CI
or 37Cl =37 Cl we use the fitted values of Ey given by
eqs. (9) and (10), respectively. Since Eg> 3°/E3737 =
1/37/35, as expected, we assume that for the lattice
sites with mixed isotopes is

Emiv — E‘O*”“*"\/“Li35 =311 em™, (11)
H35-37

where p,_p = a“—fb is the reduced mass of a *Cl —° Cl
pair. As regards the hopping integrals J between adja-
cent unit cells, we use for the general case *Cl —° Cl —
@Ol =Y Cl the mean value Job2a'~¥ — l(ja-b 4
J9' "), where the J35-35 and J37-37 are obtained from
egs. (9) and (10), and J™® = (J35735 4 J37=37)_ Fi-
nally we use the same value £ = 1.2 for each lattice
site.

For the calculation of the fundamental Raman spec-
trum in this disordered case we consider a single quan-
tum of excitation and calculate the energy distribution
of the most localized eigenstates at the center of the
lattice for a large number of different random configura-
tions of the chloride isotopes. We assume that the most
localized eigenstate is locally excited during the Raman
process.

3.2 Numerical Method for the
Calculation of the Spectrum

The Hamiltonian that is necessary to diagonalize in
order to find the required energy distribution depends on
the unknown eigenstate, since the last term of the right-
hand side of eq. (5) —the nonlinear term— contains
the corresponding wavefunction. We use an iterative
numerical algorithm for calculating the most localized
eigenstate at the center. This comprises the following
steps:

i) choose a random configuration of 3°Cl —3% (I,
mixed, or 37CI1—37 C1 lattice sites, with the probabilities
obtained from the natural abundance,

ii) start with a guess eigenstate completely localized
at the center of the lattice,

iii) diagonalize the Hamiltonian and choose the eigen-
state that is most localized at the central site,

iv) substitute the resulting eigenstate in the Hamil-
tonian and repeat the diagonalization,

v) if convergence is not achieved after a number of
iterations of the order of 100-200, start again from step
ii) and expand successively the central region of step
iii) by including the two adjacent surrounding sites each
time,

vi) when the algorithm converges, monitor the en-
ergy of the resulting eigenstate and repeat the procedure
with another random configuration.

Typically, the percentage of convergence is more than
99%.

3.3 Fundamental Spectrum

The theoretical calculation of the fundamental spec-
trum as explained above yields a very good agreement
[8] with the corresponding experimental results presented
in reference [10]. In figure 3 we show the calculated spec-
trum in the case where the same weight is attributed to
each eigenstate obtained from the algorithm described in
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Figure 3: The energy distribution of the eigenstate
which is most localized at the center of the lattice for
naturally abundant PtCl. A Gaussian distribution of
the on-site energies has been used for the broadening of
spectral lines.

the previous section. This spectrum exhibits a hump in
the higher energy part that does not appear in the exper-
imental profile. However, attributing a weight at each
eigenstate of the disordered system obtained through a
rough estimation of the Raman cross section [8], leads
to the elimination of this structure. The corresponding
spectrum is presented in figure 4.

In both figures 3 and 4 we have used 10* different
random configurations of chloride isotopes and the con-
vergence is 99.2%. Furthermore, a Gaussian distribution
with variance wy, = 0.6 has been applied to the exci-
tation energies (around their mean values €y obtained
through the parameters of section 3.1) in order to rep-
resent the finite width of the experimental spectra [8].

The model also describes accurately the positions of
the peaks that appeared in the first overtone Raman
spectrum [8]. In general the calculated spectra can ac-
curately reproduce the energy of the spectral lines. Re-
garding the overall profiles, they slightly underestimate
the intensity of the higher energy peak.

4 CONCLUSIONS

A simple phenomenological model in which the many-
quanta intramolecular excitations corresponding to the
symmetric stretching motion of the chlorides are lin-
early coupled to a bath of other degrees of freedom,
represented by classical Einstein oscillators, is able to
account for the localization of the vibrational energy
and the resulting red-shifts that appeared in isotopi-
cally pure PtCl. The minimization of the total energy
of this coupled system in the adiabatic limit yields a
nonlinear eigenvalue problem for the N-quanta excita-
tions. Through fitting of two parameters of the model an
excellent agreement with the very large, experimentally
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Figure 4: The calculated fundamental Raman spectrum
of naturally abundant PtCI, taking into account an ap-
proximate Raman cross section of each eigenstate. We
have again used a Gaussian distribution of the on-site
energies.

observed relative red-shifts of the overtones is achieved.
Without introducing any further parameters, the main
features of the fundamental Raman spectrum of the nat-
ural abundant PtCl are reproduced within the model,
by taking into account an approximate estimate of the
Raman cross section.
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