LA-UR-02-0893

Approved for public release;
distribution is unlimited.

Title: | Unstructured grids in 3D and 4D for a time-dependent

interface in front tracking with improved accuracy

Author(s)-| 3. Glimm, University at Stony Brook

J. W. Grove, Los Alamos National Laboratory
X. L. Li, University at Stony Brook

Yingjie Li, University at Stony Brook

Zhilang Xu, University at Stony Brook

Submitted to: | proceedings of the 8th International Conference on

Numerical Grid Generation in Computational Field
Simulations. Waikiki Beach Marriott Resort Honolulu, Hawaii,
USA, June 2-6, 2002.

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (8/00)

Unstructured grids in 3D and 4D for atime-dependent
interface in front tracking with improved accuracy

J. Glimm*

J. W. Grove**
X. L. Li*
Yingjie Li*
Zhiliang Xu*

*Department of Applied Mathematics and Statistics, SUNY at Stony Brook
Stony Brook, NY 11794 USA

linli@ams.sunysb.edu

**Los Alamos National Laboratory

Los Alamos, NM 87545 USA

jgrove@lanl.gov

Abstract

Front tracking traces the dynamic evolution of an interface separating dif-
ferent materials or fluid components. In this paper, we describe three types
of the grid generation methods used in the front tracking method. One is
the unstructured surface grid. The second is a structured grid-based re-
construction method. The third is a time-space grid, also grid based, for a
conservative tracking algorithm with improved accuracy.

Introduction

The computation of a dynamically evolving material interface demands an
effective algorithm to detect and resolve the changing topology of a moving
front. The front tracking method explicitly traces the lower dimensional
manifold embedded in space. As the front vertices propagate in the triangu-
lated interface, the surface needs to be re-adjusted to maintain uniformity
of the mesh. When bifurcation occurs, a reconstruction is needed to suite
the new topology after the bifurcation. Two methods [1, 2] have been used
for these purposes. The first, independent of the structured spatial grid,
is called grid-free tracking. This method combines redistribution of the
surface grid meshing and the crossing detection based untangling (bifurca-
tion). This method is able to provide quality simplices to ensure accurate
and uniform propagation of the interface but fails when multiple surface
sections meet and the bifurcation becomes overly complicated. A second
method, grid-based tracking, reconstructs the front using the rectangular

structured grid as a base frame. It was previously used in computer graph-
ics [5]. This method assumes that the interface intersects each edge of a
rectangular mesh block only once. This assumption greatly simplifies the
topological variation of the interface within the block. However, due to the
arbitrariness of the interface-grid line intersection, the quality of the trian-
gulation is not guaranteed. Our preferred approach will combine the two
methods: namely use of the grid-free interface during regular expansion and
contraction but use of the grid-based method for topological bifurcations.

Another grid generation requirement arises from a new algorithm for the
conservative front tracking method [3]. Tracking methods previously em-
ployed the ghost-cell method for the construction of finite difference stencils
crossing different fluid components [4]. This method has been successful
in the computation of physical problems requiring the maintenance of a
sharp discontinuity, but it is not conservative because the fluxes calculated
through ghost-cells cannot cancel at two sides of the interface. Our new
conservative tracking method is based on the matching of the dynamic flux
at the moving cell boundary. To do this, we need to create computational
cells in time-space coordinates. Such cells are located between two time lev-
els t” and t"*! and are bounded in part by the moving front of the interface.
They are generated by the grid based algorithm applied in space-time.

The Dynamic Surface Grid for the 3D Front

An interface is a representation of wave fronts in a flow. Geometrically,
these fronts consist of a set of surfaces, curves along the boundaries of the
surfaces, and the curve boundaries called nodes. A valid interface is one
where each surface and curve is connected, surfaces only intersect along
curves, and curves only intersect at nodes. For the three dimensional flows,
we assume the interface is embedded in a compact subset of the R® com-
putational domain. The surfaces divide this domain into a set of connected
components. Topological consistency requires that a component is uniquely
assigned at each given space point. The discretization of an interface is
given by representing each surface as the union of a set of planar triangular
elements, the vertices of which are called points.

Within each connected component we assume a fixed fluid equation of state.
Physical quantities such as density, velocity, or energy, as well as material
properties (such as equation of state parameters) and even the dynamical
equations may have a jump discontinuity across a surface.

Points on an interface are propagated at each time step in a spatially opera-
tor split fashion, using a local coordinate system aligned with the interface.
The normal propagation step is based on the solution of Riemann prob-

lems using data from either side of the surface together with the method
of characteristics for incorporating the influence of incoming and outgoing
waves at the interface.

As the wave fronts evolve, some of their sections will converge while oth-
ers diverge. This causes stretching and compression of the surfaces on the
interface and will eventually lead to severe distortion in the triangles that
make up the interface elements. This is a common problem with all La-
grangian hydrodynamic methods, with which front tracking shares many
features. We use a time periodic retriangulation of the interface to maintain
uniformity of the triangles that form the surfaces.

An additional difficulty occurs due to wave interactions such as droplet
pinch off or droplet merger. Since the propagation algorithm for the front
points does not use global topological information, surface intersections are
not detected during front propagation. The interface must be explicitly
checked for intersections after each time step, and when detected, these
intersections must be resolved.

The topological bifurcation algorithm in the grid-free method has three
main steps, intersection detection, retriangulation of intersecting triangles,
and interface surgery where unphysical interface sections are removed and
the surfaces are reconnected into valid non-intersecting sections.

All pairs of distinct triangles not sharing a common point are tested for
intersections. The basic algorithm is elementary. First the line of intersec-
tion of the two planes determined by the triangles is computed. The two
triangles are checked to determine whether they both cross this line and
if so we compute the overlap of the line segments formed by triangle-line
intersections. If such an overlap exits then we record the two intersecting
triangles and their segment of intersection.

For each intersecting triangle on the two intersecting surfaces, the intersec-
tion bonds divide it into two polygonal parts each bounded by the bonds
of the crossing curve and the original triangle sides. Briefly, the algorithm
uses a divide and conquer scheme. The domain is first embedded in a finite
rectangle, which is then subdivided into parallel strips with a single vertex
per strip. The basic operations are to triangulate a strip and to adjoin
adjacent strips.

The first two steps produce an untangled interface that satisfies all the re-
quirements for a valid interface except for the consistency of its embedding
into the computational domain. For surfaces meeting along the intersection
curves, the component numbers of the common side of the surfaces meeting
at this curve are inconsistent, so that it is impossible to assign components

to the regions of the computational domain defined by this interface. Once
these surface segments have been identified and removed, the remaining
surfaces will define a topologically consistent interface. Local information
near the intersection is not sufficient to resolve the inconsistency, and global
knowledge of the interface topology and geometry must be used to identify
the unphysical surface segments. We use a coboundary method to supply
the missing information. If a surface bordering an intersection curve has
other bounding curves, not involved in the intersection and interface recon-
struction process, then this surface must be physical and is retained. If no
such bounding curves exist (as for example in the collision of two closed
surfaces), then we appeal to geometric information and remove surface seg-
ments from the intersection that have small areas compared to the other
surface segments.

The deficiency of the grid-free algorithm is that the intersections of surfaces
can be arbitrarily complicated and therefore make the untangle process less
robust.

Another method to resolve changing interface topology is to reconstruct the
interface using micro-topology within each rectangular grid block cell on a
user specified lattice. In practice the lattice used for this reconstruction is
the dual lattice of the computational grid, i.e. the lattice defined by the cell
centers of the computational grid. This scheme is divided into three steps:
(1) Compute the crossings of the interface and the grid block edges, (2)
Determine component values at the grid block corners and eliminate incon-
sistent crossings, and (3) Reconstruct a new interface using the remaining
consistent grid block edge and interface crossings.

The intersection algorithm is again elementary. Compute the intersection
of the plane of the triangle with the line of the cell edge, and then determine
whether this point lies both inside the edge and within the convex hull of
the three triangle vertices. To reduce the number of intersection tests, we
use a hashing type scheme (also used for the grid free case) to create for each
grid block in the reconstruction lattice the list of triangles that intersect
that block.

The intersections of the interface with the cell edges divides each edge into
a set of subintervals. In regions where the interface is not tangled, the
component labels on the interface provide a well defined component label
for each of these subintervals. If tangles are present some subintervals will
have different component labels at their opposite endpoints. We process
each cell edge to eliminate crossings that produce inconsistencies in the
assignment of component values to the subintervals.

Once the unphysical crossings have been removed, we use the remaining
edge crossings to reconstruct the interface.

We use an algorithm similar to the one by Lorensen and Cline [5] in com-
puter graphics to reconstruct the interface in a single grid block and the
assemble of the block surface elements into global surfaces. Note that the
reconstruction algorithm automatically ensures consistency of the surface
elements generated from adjacent grid blocks since interface crossings along
a specified lattice edge are the same for all cells that contain that edge, and
the generated triangles are required to have sides that link adjacent cross-
ings along a cell face.

Figure 1 and Figure 2 show the two interface grid structures in a simulation
of the Rayleigh-Taylor instability. Both the grid free and grid based meth-
ods described above have advantages and deficiencies. The grid free method
produces a high quality distribution of triangle sizes and shapes (see Fig.
1), and accurately controls numerical diffusion. It suffers from code com-
plexity and is subject to failure when the interface is complex. The grid
based method is over diffusive, which is manifested as an over smoothing of
the interface. It also tends to produce poorly conditioned surface triangles
due to the constraint of reconstructing the surface elements within a single
grid block, see Figure 2. On the other hand, this method is highly robust
and always reconstructs a topologically valid interface. For optimal results
we use a hybrid strategy, alternating (at some frequency) the two methods.

-,
L /
VLY.

A Ay,
o

I\
AN
N\KA

NL/I\/

e\/
\7)
N

Figure 1. An evolved fluid interface using the grid-free redistri-
bution algorithm. A detail of the surface triangulation is shown
on the right.

NLTVNVNNNY
NN
AAZNNNS N
N2

A NN
= TNINER
ENAVAVAY

NN

{9

Figure 2. An evolved fluid interface using the grid-based redistri-
bution algorithm. A detail of the surface triangulation is shown
on the right.

The Two Dimensional Space-Time Grid
Consider the two space dimensional system of conservation laws

du Of(u) Og(u)

ot ox oy

=0, (1)

defined in a spatial domain). Assume that) can be partitioned by a
uniform square grid whose boundary lies along grid lines. The side of a
grid cell is of length Az.

Our algorithm is organized into three main steps. The first is to identify
the space-time propagated interface. To do this, we identify the crossings
of the approximate space time interface with the edges of the space time
hexahedra. The second is to construct a finite volume decomposition which
respects the space-time interface. We split the space time hexahedra whose
interior is cut by the space time interface into parts each of which belongs
to only one side of the space time interface. We merge those with small
top area to form a polyhedron with top area bigger than 0.5Az2. Finally,
as a third step, we derive a finite volume discretization associated with
the space time interface and the conforming space time polyhedra. This
step is similar to the related step in [6], where a conservative higher order
algorithm is constructed for a stationary boundary. Additional references
can be found in [6], including ones to the cell merging problem.

In the present study, we require that at each time level, the 2D discretized
spatial interface is a disjoint union of non intersecting curves. Each curve
is piecewise linear and connected, and composed of bonds. Each bond is
a pair of interface points or points, and (conceptually) the straight line
segment joining them. Each curve is assigned an orientation which remains
unchanged during the propagation of the interface.

Propagation of the points of a grid based interface will yield a general
interface, not grid based, as there is no reason for a propagated point to
lie on a grid cell edge, just because it starts as one. According to the grid
based construction, we consider this propagated interface as a collection of
polygonal curves in R2. Crossing points of the curve with grid cell edges are
inserted as new points. The propagated old points will be deleted (named
images of propagation in this sense). The curve is then reconstructed, as
straight line segments joining these new points. In this process, the curve
is displaced by an amount O(Az?), assuming that the curve is smooth, so
that all angles between neighboring bonds are O(Az). Finally the space
time interface is reconstructed to be grid based relative to the space time
grid cells. We assume that there is no topological change of the interface
during the time interval of computation. (Exceptions are treated separately
using the spatial ghost cell algorithm.) See Fig. 3.

S T VS A
i

FARYARVANVANVANVAN

AVAVAVAVA
S

W e
=

AVAVAVAVAVATA
NVAVAVAWAVAVAVAVAVA
% I VAVAVAVAVA
o VAVAYAYA

M
Tj,"i"!‘_.’!!-‘—'
l—l'r ";'

Figure 3. Space time interface for D = 2 space dimensions

We also assume that the CFL number is less than 1/2. so that each point of
the interface can be propagated a distance less than Axz/2. This condition
may not be sufficient if the interface intersects the boundary at a small
angle. We adjust the CFL number so that the intersection point between
them moves a distance less than Az along the boundary during the time
step in order to reach the same property. We construct the approximate

space time interface first by joining each point P at the time level t,, with
its image at the time level ¢, (before constructing a grid based interface
at the time level ¢,,+1). Then we connect one diagonal of each quadrilateral
to fully triangularize the approximate space time interface. Finally, the
approximate space time interface is linearly reinterpolated locally according
to its crossings with the edges of a space time hexahedron. There are only
16 different topological structures of the linearized space time interface
within each space time hexahedron modulo rotation and reflexion. This
also creates a grid based interface at the time level ¢,1. It is easy to see
that this is a locally second order reconstruction process. See Fig. 4.

L - \A\Av\\/\vv VAVAY,
T ORIV VAT
RN A A\VAVAVAYAYAVAVAY:

VA T YA VAVAVAY

— e

T
i

ZAVAY

T I NP

[

Figure 4. Partial hexahedra on one side of space time interface

Construction of the Space-Time Hexahedra

We connect the nodes of a cell D} at time ¢ = t,, to the nodes of its cor-
responding cell D?“ at time t = t,4; to form a space-time hexahedron.
We call D"*! the top of the hexahedron and D? the bottom. We call a
hexahedron mixed if the interface passes through its interior; otherwise it
is pure. The mixed hexahedra are divided into pure partial hexahedra,
and if necessary, these are combined with neighbors to form the finite vol-
ume space-time grid suitable for construction of a conservative difference
algorithm.

Two space-time polyhedra are adjacent if they share a non-trivial surface
which is not on the space time interface. Two space-time polyhedra are
neighboring if they share a non-trivial vertical line segment which is part of
the line connecting two corresponding grid nodes at the time levels ¢,, and
tn+1 (denoted as a vertical grid line), and not on the space-time interface.
It is easy to see that two adjacent or neighboring polyhedra must be on

the same side of the space time interface. It can be proven that if a space-
time polyhedron is constructed by merging any number of adjacent partial
hexahedra with no top, then the polyhedron will be adjacent to a pure
or partial hexahedron. This ensures the eventual success of the merging
algorithm.

The merging process can be accomplished as follows: Merge every pure or
partial hexahedron having a top area greater than or equal to %A:L’2 with
adjacent partial hexahedra having no top or top area smaller than %AmQ
which have not been merged elsewhere. Denote the resulting space-time
polyhedra the intermediate hexahedra. Merge every intermediate hexahe-
dron with all adjacent partial hexahedra having no top or top area smaller
than %Amz which have not been merged elsewhere.

After the merging process, we also call the remaining pure and partial
hexahedra big hexahedra for equivalence in the finite volume scheme. It is
easy to see that a big hexahedron contains no more than a fixed number
of pure or partial hexahedra. Actually in most cases the merging process
yields big hexahedra consisting of two pure or partial hexahedra. The
number of pure or partial hexahedra in the big hexahedron could become
larger if the radius of curvature of the moving curve is closer to the mesh
size. See Fig. 5.

L/ O P \/\\/\\Av\vv

AVAVAVAVAVARS
N A VAVAVAYAVA

- \AVAVAVAVA

Figure 5. Merged partial hexahedra on both sides of space time
interface

Extensions to Three Spatial Dimensions

All aspects of the above construction save one have an obvious extension
to three spatial dimensions, and are not discussed here. However, the re-
construction of the space time interface in four space time dimensions will

encounter the following problem. It is based on enumeration, and while this
construction will apply theoretically in four dimensions, the number of cases
is too large for a practical algorithm. Thus in three spatial dimensions, we
construct a space time grid not out of rectangular grid elements, but out
of 4D simplices obtained by division of the rectangular grid elements. The
grid based reconstruction starts with the intersections of an arbitrary space
time interface with edges of simplices. These are assumed to occur at most
once per simplex edge, and at interior points of the edge only. Then it can
be shown that at most two cases occur for the reconstruction of the inter-
face within the simplex, up to isomorphism. Thus the above proof of the
reconstruction, when based on simplices, is not only possible theoretically,
but in practice as well.

Acknowledgements

This work was supported in part by the NSF grant DMS 0102480, the ARO
grant DAAD19-01-10642, and DOE grants DE-AC02-98CH1086,
DEFG0398DP00206, and the Los Alamos contract 267300010141.

References

[1] J. Glimm, J. W. Grove, X.-L. Li, K.-M. Shyue, Q. Zhang, and Y. Zeng.
Three dimensional front tracking. SIAM J. Sci. Comp., 19:703-727,
1998.

[2] J. Glimm, J. W. Grove, X.-L. Li, and D. C. Tan. Robust computational
algorithms for dynamic interface tracking in three dimensions. SIAM
J. Sci. Comp., 21:2240-2256, 2000.

[3] J. Glimm, X.-L. Li, and Y.-J. Liu. Conservative front tracking in higher
space dimensions. Proceedings of International Workshop on Computa-
tional Methods for Continuum Physics and Their Applications (IWC-
CPA). In Press, 2001. Report SUNYSB-AMS-01-17.

[4] J. Glimm, D. Marchesin, and O. McBryan. Subgrid resolution of fluid
discontinuities II. J. Comp. Phys., 37:336-354, 1980.

[5] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. Computer Graphics, 21(4):163-169,
1987.

[6] R. Pember, John Bell, Phillip Colella, William Cruchfield, and Michael
Welcome. An adaptive cartesian grid method for unsteady compressible
flow in irregular regions. J. Computational Phys., 1995.

	Unstructured grids in 3D and 4D for a time-dependent interface in front tracking with improved accuracy
	Abstract
	Introduction
	The Dynamic Surface Grid for the 3D Front
	The Two Dimensional Space-Time Grid
	Construction of the Space-Time Hexahedra
	Extensions to Three Spatial Dimensions
	Acknowledgements
	References

	laur #: 02-0893
	title: Unstructured grids in 3D and 4D for a time-dependent interface in front tracking with improved accuracy
	authors: J. Glimm, University at Stony Brook
J. W. Grove, Los Alamos National Laboratory
X. L. Li, University at Stony Brook
Yingjie Li, University at Stony Brook
Zhilang Xu, University at Stony Brook
	submitted to: Proceedings of the 8th International Conference on Numerical Grid Generation in Computational Field Simulations. Waikiki Beach Marriott Resort Honolulu, Hawaii, USA, June 2-6, 2002.
		2002-04-08T15:07:08-0600
	Viola Vigil

