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What Is the Microscopic Response of a System Driven Far From
Equilibrium?

C. Jarzynski
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM
chrisj@lanl.gov

Abstract

The central theme of this lecture is that there exists a surprisingly simple and

general answer to the question posed in the title, provided that we frame the
question statistically. 1 will present this result along with several derivations,
and will discuss some of its implications and generalizations.

INTRODUCTION

It is widely acknowledged that we understand systems in thermal equilibrium far better
than those which are out of equilibrium. The statistical foundations laid over a century
ago by (above all) Boltzmann and Gibbs, have proven remarkably effective at explaining
phenomena as diverse as phase transitions, superconductivity, and blackbody radiation.
By contrast, no such universal and elegant framework exists that would simultaneously
encompass the mechanics of protein folding, the onset of turbulence, and Fourier’s law of
heat conduction. In part, the difficulty arises simply because “nonequilibrium phenomena”
covers a lot of territory. If the term is understood to include any situation involving a system
not in a state of thermal equilibrium, then it is hard to imagine a useful point of reference
upon which to build a general theory. By contrast, the very notion of an equilibrium state
— toward which a system naturally evolves if left undisturbed — provides the organizing
concept at the heart of equilibrium statistical mechanics.

While the field of nonequilibrium physics as a whole might indeed be so broad in scope
as to escape a sweeping microscopic foundation (akin to the Boltzmann-Gibbs formalism in
the equilibrium case), much progress has been made by considering sub-classes of nonequi-
librium phenomena distinguished by a common feature. For instance, the study of systems
near equilibrium has given us the linear response formalism, whose early successes include
the fluctuation-dissipation theorem!? and Omnsager’s reciprocity relations®. It also seems
reasonable to expect that nonequilibrium stationary states will eventually succumb to an
elegant statistical formulation with predictive power.

In this lecture I will focus on systems driven away from an initial state of thermal equi-
librium, where this is accomplished by the variation of an external parameter. An example
would be a container filled with gas (the system), closed off at one end by a piston (the
parameter), initially prepared in equilibrium. If we rapidly push the piston into the con-
tainer by some distance, the gas is driven out of equilibrium. At the microscopic level, the



response of the system during this process is described by a single trajectory evolving in
the many-body phase space of the gas. This response, however, is typically complicated
and non-universal, e.g. shock waves form, propagate, scatter, etc. Therefore we adopt a
statistical attitude, and imagine an ensemble of realizations, pictured as a swarm of inde-
pendent trajectories evolving in the many-body phase space. Each trajectory represents one
realization (possible microscopic outcome) of the piston experiment. The central assertion
of this lecture is that there exists a statistical representation of this ensemble (defined by
Eq.18 below) in which the response of the system becomes both simple and universal (Eq.20).
By “universal”, I mean that the validity of this result depends neither on the details of the
system, nor — perhaps more surprisingly — on how far it is driven out of equilibrium.

The above-mentioned result is, on its own, somewhat abstract. However, by a single
integration it leads to another result, the nonequilibrium work relation (Eq.46), which relates
the work performed during an irreversible process, to an equilibrium free energy difference.
This result is not only potentially useful, but has recently been tested experimentally, and
is closely related to the Second Law of Thermodynamics.

This lecture is organized as follows. I will first present a very brief review of relevant facts
from macroscopic thermodynamics (Section I). Then I will move to the microscopic level of
statistical mechanics, where I will again present a brief review, and will establish notation
(Section II). I will then present the central result of this lecture in Section III, and work
through three derivations of this result in Section IV. Section V will cover the nonequilibrium
work relation, and Section VI will relate this result to the Second Law. Finally, in Section
VII T will briefly discuss the generalization of these results to nonequilibrium stationary
states.

Classical physics is assumed throughout the lecture.

I. THERMODYNAMICS — BRIEF REVIEW OF RELEVANT FACTS

Most of this talk will take place at the microscopic level of statistical mechanics, where
one is interested in the behavior of atoms, molecules, and so forth. It is therefore useful at
the outset to briefly focus on the bulk behavior of macroscopic systems, and to review a few
relevant facts of thermodynamics.

Consider a macroscopic system which depends on an external parameter A\, and which is
in thermal contact with a heat bath at temperature 7. A simple example is a rubber band
held stretched between two stiff toothpicks. The rubber band is the system; the distance
between the toothpicks is our parameter A, which we can manipulate as we like; and the
surrounding air plays the role of the heat bath. A starting assumption of equilibrium ther-
modynamics is that for any set of allowable* values (A, T'), there exists a unique equilibrium
state to which the system will relax if A and 7" are held fixed. Furthermore, there exist state

*By “allowable”, I mean in this case a range of distances A such that the band is neither limp nor
stretched beyond its breaking point, and temperatures T' for which the band is not frozen solid,
nor melting, burning, or otherwise losing its structural integrity.



functions such as the internal energy E, entropy S, and (most importantly for our purposes)
the free energy

F=E- ST, (1)

which take on unique values at equilibrium states, e.g. F' = F(\,T).

Suppose that we now prepare our system by holding the distance between toothpicks
fixed at a value A4, and allowing the rubber band to relax to the corresponding equilibrium
state, A. We then very slowly pull the toothpicks apart, until the distance between them is
Ap. For sufficiently slow pulling the rubber band will progress through a continuous sequence
of equilibrium states, from A = (A4,T) to B = (Ap,T). In carrying out such a reversible
process, the external work which we perform on the system will be equal to the free energy
difference between the initial and final equilibrium states A and B:

W =AF=Fg— Fy4 (reversible). (2)

Now consider an irreversible process from A to B: after preparing the system in equi-
librium state A we pull the toothpicks apart at a rapid rate, and when the distance reaches
Ap we hold the toothpicks fixed and allow the system to relax to state B. We thus have
a process in which the system begins and ends in equililbrium states, but at intermediate
times, as we rapidly stretch the rubber band, it is driven out of equilibrium. Physically, this
excursion away from equilibrium manifests itself in two ways: (1) the rubber band heats up,
and (2) its tension increases relative to the room-temperature value. As a result, more work
is required to stretch the rubber band than in the case of slow pulling, i.e.

W > AF (irreversible). (3)

This is a good point to insert a comment about nomenclature. Throughout this lecture
I will be concerned primarily with processes (as the one describe above) in which a system
is driven out of equilibrium in the presence of a single heat reservoir prepared at a given
temperature. I will refer to these as irreversible-isothermal processes. It is important to
stress that the word “isothermal” here is not meant to imply that the temperature of the
system remains fixed (if even well-defined!) during the process, but rather to indicate the
presence of only one reservoir. Eq.3 applies universally to irreversible-isothermal processes
connecting two equilibrium states.

During a more general thermodynamic process from one equilibrium state to another, the
system might be brought into contact with a sequence of reservoirs at different temperatures.
In that case the Clausius inequality applies:

T < AS. (4)
The left side is the integrated heat absorbed by the system over the course of the process,
inversely weighted by the temperature of the reservoir from which that heat is absorbed,
and the right side is the entropy difference between the initial and final equilibrium states.
As with Egs.2 and 3, the equality holds if the process is reversible, whereas for irreversible
processes we get a strict inequality. Eqs.2 and 3 represent a special case (one reservoir) of
the the Clausius inequality.



II. STATISTICAL MECHANICS — NOTATION AND REVIEW

Moving now from the macroscopic level of thermodynamics to the microscopic level of
statistical mechanics, consider the following experimental set-up described in a recent paper
by Liphardt et al*. In room-temperature water, one end of a strand of RNA is attached to a
small polystyrene bead, the other to a micromechanical cantilever, and a laser trap is used
to capture the bead. Using piezo-electric techniques to move the cantilever back and forth,
the experimentalists are able to cause the RNA strand to unravel as it is stretched, or coil up
as the end-to-end distance is made smaller; moreover, they can measure the work performed
on the system as this micro-manipulation is carried out! This experimental arrangement is
a molecular-level analogue of the rubber band between the toothpicks, and serves as a nice
example to illustrate the theoretical analysis that will make up the main part of this lecture.

Fig.1 depicts a cartoon version of the above-mentioned experiment, where for simplicity
we consider a chain of atoms (rather than nucleotides) and no beads. The N atoms, of
equal mass m, are linked by covalent bonds, and we imagine that the two ends of this chain
are trapped by confining harmonic potentials. These N atoms constitute the system in this
set-up — we will refer to this simply as the “polymer” — the distance between the traps
represents an external parameter A, and surrounding water molecules provide a heat bath
at a temperature 7. We will use the variable I' to denote a microstate of the system, in this
case a point in the 6/ N-dimensional phase space specifying the position and momentum of
each of the N atoms:

F:<r17"'7rN;p17"'7pN>- (5)

Now let H(I", \) be the parameter-dependent Hamiltonian which gives the internal energy
of the system as a function of its microstate, for a given value of A. According to the central
assertion of equilibrium statistical mechanics, if we hold A\ fixed and allow our polymer to
come to thermal equilibrium then the probability distribution for finding the system in a
particular microstate I' is given by the Boltzmann-Gibbs distribution:

1
f(r) = e P, (®

where 3 = (kgT)™!, and the partition function Z is given by
Zy = / dl e~ PHTN), (7)

The Boltzmann-Gibbs distribution can be viewed as the microscopic counterpart of the
equilibrium state of macroscopic thermodynamics. For later reference, it is useful to note
here that the free energy associated with such an equilibrium state is given by the relation

F)\ = —ﬁil h’lZ)\, (8)

which (under the appropriate microscopic definition of E and S) can easily be shown to be
equivalent to Eq.1.

Since the focus of this lecture is the behavior of systems driven away from an initial
state of equilibrium, we will generally be interested in the evolution of our system over some
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interval of time, with the system assumed to be in equilibrium at the start of that interval.
This evolution is described by a trajectory I'; in the 6 N-dimensional phase space, which
can be viewed as a “microscopic history” chronicling the time-dependence of every degree
of freedom of the system over the specified interval. From such a trajectory we can compute
various quantities of interest. One which will play a central role in the analysis to follow
is the work performed on the system. Suppose that we externally vary the parameter A,
beginning at time 0 (for specificity), and we simultaneously observe the evolution of the
system. In acting thus on the system, we perform external work, and the amount of work
performed from the initial time up to some later time ¢, is given by®

t.

wp = /0 dt' v %Ij(rt,, ). 9)
Here )\; denotes the (externally imposed) time-dependence of A, and I'; is the observed
trajectory. The dot denotes, as usual, a total time derivative. (I will not here try to justify
the expression for work given in Eq.9, beyond observing that the rate of change of the
internal energy of the system is given by

: .OH . 0H

H_)\8A+F8F' (10)
If we identify the two terms on the right as the rate of work performed on the system, and
heat absorbed by the system, respectively, then this equation for H amounts to the First
Law of Thermodynamics.)

In an experiment involving a system such as the polymer described above, we are typ-
ically neither able to prepare the system in a precisely specified initial microstate I', nor
interested in predicting the subsequent evolution of every degree of freedom. Therefore we
adopt a statistical attitude when analysing such a situation: instead of posing the question,
“How exactly will each atom evolve?” | we ask, “What are the possible microscopic histories
consistent with the known preparation and manipulation of the system?” We refer to these
potential microscopic histories as realizations, and the set of them as a statistical ensemble.

We can picture this ensemble of realizations as a swarm of points moving about in
6/N-dimensional phase space. A natural description of such an evolving swarm is the time-
dependent density f(I',t), which can be defined by the usual box-counting prescription, as
follows. Imagine R > 1 trajectories I'; (i = 1,-- -, R) evolving independently in phase space,
each representing a single realization of our N-body system. At any time ¢, a “snapshot”
of this ensemble of trajectories would appear as a set of R points scattered throughout
some region of phase space. Now imagine a tiny box B, of volume dI', centered around a
microstate I'. The density f(I',¢), multiplied by the volume dI', gives us the fraction of the
ensemble found inside this box at time ¢:

F(T,4)dl ~ ; )R (11)

IieB

The sum on the right is taken over all realizations which happen to be found inside the box B
at time ¢, and this sum is equal to the total number of such realizations. The approximation
in Eq.11 becomes an equality in the double limit, R — oo and dI' — 0, taken in that order.
We then obtain



. S
1) = Jim lim o 37 1= (60 =), (12)
rieB
where T'; denotes the microstate (at time t) of one particular realization in our infinite
ensemble, and the angular brackets denote an average over the ensemble.

III. CENTRAL RESULT — A PREDICTION

We now have in place the basic theoretical elements required to address the central
issue of this talk, namely, the response of a system driven (arbitrarily far!) away from
equilibrium. Consider the following thought experiment. We prepare the system depicted
in Fig.1 in thermal equilibrium with a reservoir at temperature 7', with the parameter fixed
at some initial value. Then, beginning at ¢ = 0, we vary the parameter according to some
pre-determined “protocol”, );, and we observe the resulting microscopic trajectory I';. For
instance, we start with the traps separated by a distance A 4, then we stretch our polymer by
pulling the traps apart at a constant rate A while observing the motion of each atom. Here,
the protocol for varying the parameter, \;, represents “what we do to the system”, whereas
the trajectory I'; specifies “how the system responds” to this external manipulation.

Since we want to analyze this situation statistically, let us imagine that we repeat the
above experiment R times, always starting in equilibrium, and always subsequently varying
the external parameter according to the same protocol, A\;. We will then observe R different
trajectories

ry,r2... Tk (13)
In the limit of infinitely many realizations (R — o), we can construct the time-dependent
density f(T',t) describing the statistical response of the system (Eqs.11,12). By the assump-
tion of equilibrium, the initial density is
FT,t = 0) = pO(T) = S0, (14)
Za
(I will often use the symbol A as compact notation for A4, and similarly B for A\g.) Now,
if we happen to vary A very slowly (quasistatically), then we expect the system to remain
in equilibrium. More precisely, the ensemble of realizations continuously responds so as to
“keep up” with the slowly changing value of A:

FT, 1) = e PHEN) (quasistatic). (15)
I,
However, if we vary A at a finite rate — possibly very rapidly — then we will drive the
system out of equilibrium, and for ¢ > 0 the density f(I',¢) will not be the Boltzmann-Gibbs
distribution corresponding to the current value of \.

Thus, as long as our system remains in equilibrium, we have simple, universal expressions
for its statistical state (Egs.14,15.) Can we write down a comparably simple and general
formula for f(I",¢) when the system is driven out of equilibrium by the rapid variation of A?
Probably not: the phase space density can evolve in a horribly complicated way, moreover
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this evolution will likely depend on details of the environment, and of the coupling between
system and environment. In other words, if we insist on using f(I',¢) to represent the
evolving state of our system, then we are stuck with a complicated, non-universal description.
However, there exists another statistical representation of the state of our system — which I
will call g(T",t) — which does indeed evolve according to a simple, general formula.

Given our ensemble of realizations, we can use the phase space trajectories (Eq.13) to
obtain a set of evolving values,

wtlawfv"'awfu (16)
by Eq.9. Let us think of w! as an evolving auxiliary variable, recording of the work performed

on the system during the i’th realization. By transforming these auxiliary variables into
statistical weights, Q}, Q2 ... QF defined by

Qf = ¢t (17)

we can construct the following weighted phase space density:

11
g(I';t) = lim lim —

i —Bwt
dl'—0 R—oo dI' R Z % = <6 o(T" — Ft)>‘ (18)

I'ieB

As in Eq.11, the above sum is taken over all realizations which happen to be found within
a box B of volume dI' around the phase space point I', at time t; the difference is that the
unity in the sum in Eq.11 has been replaced by the weight €!. The function ¢(T',t) is a
kind of “undemocratic” phase space density, in which the contribution of each realization at
time ¢ depends, by Eq.17, on the work performed on the system up to that time. [We can
also interpret ¢g(I',¢) as a “mass density” in phase space, by assigning to each realization a
fictitious and time-dependent mass m} = Qi.] By contrast, f(T',t) is a “democratic” phase
space density, as each realization contributes equally (Eq.11). Note that at ¢ = 0 the two
statistical descriptions are the same, since Q) = 1:

o(T,0) = f(,0) = e P10, (19)
Za
Recall that f(I',¢) was introduced as a natural description of the evolving state of our
ensemble. We can view ¢(I',t) as simply an alternative statistical representation (which
happens to incorporate information about the work performed during each realization) of
the same ensemble. What makes this alternative description interesting is the following
prediction. Fwven if the system is driven far from equilibrium by rapidly varying X\, the
weighted density g(I',t) evolves in a very simple way:

1
g(D,t) = Z—Ae—ﬁfﬂ“ﬂ t>0. (20)

This statement is the central result around which this lecture is organized, and represents
an answer to the question posed by the title.



IV. DERIVATIONS

A number of derivations of Eq.20 (and closely related results) have by now appeared
in the literature® '°. These differ from one another in the underlying assumptions that are
made regarding the dynamics of the system. Here I will go through the details of three such
derivations. The first of these, based on Hamiltonian evolution, applies to the special case of
isolated systems. In the second derivation, the presence of a heat reservoir is modeled with
Langevin dynamics (white noise plus dissipation). The third derivation applies to arbitrary
thermal Markov processes.

In each case the analysis will begin with an evolution equation for the ordinary phase
space distribution f(I',t), e.g. the Liouville equation for Hamiltonian dynamics (Eq.21), the
Smoluchowski equation for Langevin dynamics (Eq.34), etc. Following that, we will consider
h(T',w,t), the joint probability distribution for observing a microstate I" and work value w
at time ¢, and the evolution equation for h will be obtained from that for f by the simple
addition of a continuity term —wdh/Ow. Finally, the “undemocratic” distribution g¢(T',¢)
will be expressed as a weighted projection of h(I',w,t) (Eq.26), and an explicit evolution
equation for g will be obtained. In all three cases we will find that Eq.20 is an exact
solution of the evolution equation for g, thus proving our central assertion for the dynamics
considered.

A. Hamiltonian evolution

Let us modify the thought experiment described above, by assuming that the polymer
in Fig.1 is isolated from any thermal environments as we pull apart the laser traps. Thus,
we first equilibrate the system with a reservoir at temperature 7', holding A\ = A fixed,
and then we remove the reservoir, start the clock running, and implement the protocol A;.
The trajectory I'; then evolves under Hamilton’s equations — as appropriate for an isolated
classical system — with a time-dependent Hamiltonian H (I", \;). Given a statistical ensemble
of realizations, the phase space density f(I',¢) satisfies the Liouville equation,

TN,
G = ) = —ags — b 1)

with initial conditions given by the Boltzmann-Gibbs distribution, Eq.14. In the above
equation, {-,-} represents the Poisson bracket; H = H(I', \;); and I' = (q, p), where

q:(rla"'er) and p:(plv"'va) (22)
specify the configurations and corresponding momenta, satisfying Hamilton’s equations:
a=oH/op .,  p—-0H/a, (23)

If we keep track of the work w; performed during each realization, then we can repre-
sent the evolution of the system by a trajectory (I';,w;) evolving in an “expanded phase
space” which includes the auxiliary variable w. A statistical ensemble of such trajectories is
described by joint probability distribution h(I',w,t), defined as



(I, w, 1) = (30 = Ty) 6w — wy) ), (24)

by analogy with Eq.12. Making use of the fact that w;, = X@H/@)\ (from Eq.9), we can
immediately write down the evolution equation

oh OHOh . Oh . Oh . Oh

(H R - AT g —p— —
U0y = A 5350 Yq  Pop ~ “ouw

T (25)

Just as Eq.21 is simply a continuity equation in phase space — describing the deterministic
flow generated by Hamilton’s equations — so Eq.25 is a continuity equation in the expanded
phase space.

Generically, we will not be able to obtain simple expressions for either f(I",¢) or A(T", w, ).
Indeed, if the underlying classical dynamics shows evidence of chaos, then these distributions
will become stretched and folded with time in a very complicated manner. However, let us
now consider the following function:

glw, 1) = / dw h(T, w, t) e, (26)

This is exactly the weighted distribution defined earlier (see Eqs.18 and 24). With this
expression, the equation of motion for ¢ follows after a single integration by parts from
Eq.25:

dg .OH

— ={H, g} — f\——9g. 27

2~ {H.g) - 3 (27)
In sharp contrast with the equations of motion for f and h, Eq.27 affords a simple solution,
namely,

1
g(T,t) = ——e P2, (28)

Za
as predicted. Here we have assumed initial equilibrium (Eq.19), and have made use of the
identity {H,e P#} = 0, which follows from the chain rule for Poisson brackets:

{H,e™P"} = —pe ™ PH{H H} = 0. (29)

Eq.20 is thus satisfied for isolated Hamiltonian systems.

B. Langevin evolution

Let us now assume that the system of interest is in thermal contact with a heat reservoir
while we vary A, and let us model the evolution of the system as a Langevin process'®. In
other words, instead of explicitly including the water molecules in the analysis, we mock up
their presence by incorporating randomness into the evolution of the polymer. Specifically,
we assume that the Hamiltonian for the polymer itself takes has the usual kinetic + potential
form,

H(q,p,\) = 213; +V(a,A) (30)



(where p? = Y | p?, and the potential energy V includes the confining harmonic traps for
atoms 1 and N) and we model the evolution of the polymer with the following equations of
motion:

oV
, = — , )y = ——— — + &, 31
Gu e TR €u (31)
Here, g, and p, are the p’th components of the 3/N-dimensional vectors q and p, v is a
friction coefficient, and ¢, represents white noise, with an autocorrelation function

fu(tl) Eu(t2) = Dd;w 5(t2 - tl)- (32)

These evolution equations (Eq.31) are just Hamilton’s equations, modified by the addition of
friction (—vp,) and noise (§,). These terms represent a straightforward method for modeling
the “random kicks” received by the polymer from the surrounding water molecules, and are
related by a fluctuation-dissipation relation,

= B8D/2m. (33)

A statistical ensemble of trajectories evolving under Eq.31 is described by the Smolu-
chowski equation for the time-dependent phase space distribution'®

D
U1+ (0f) + 5V (34)
where V2 =32, 0°/0p’,, and H = H(q, p, A), as always.

We now proceed exactly as we did in Section IV A. That is, given an ensemble of
trajectories I'y governed by this stochastic process, we imagine that we keep track of the
work w; for each realization, and we construct the joint probability distribution h(T',w,t)
defined by Eq.24. This distribution satisfies the evolution equation

oh 0 OH Oh
— ={H,h — - (ph 2h— A 35
As before, we have simply added a continuity term, —wdh/0w, to account for the auxiliary
variable w;.

Since neither the evolution of f nor that of h is simple’, we consider g = [ dw he P*
(Eq.26), and we use Eq.35 to obtain:

dg

5 = ,g}+’va@ (pg)+§V§ _ (36)

O 3o
Simple inspection reveals that a solution of this equation is given by g = Z ;' exp —BH (T, \;).

fexcept in the quasistatic limit, where we get f = piG(F) and h = piG(F) S(w — Fy,).
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C. Thermal Markov dynamics

The Langevin evolution considered above is an example of a thermal Markov process.
In this section I briefly discuss the defining features of Markov processes in general'’, and
then establish the validity of Eq.20 for arbitrary thermal Markov processes. An alternative
approach in this context has been taken by Hummer and Szabo'*, who have recently pointed
out that Eq.20 follows directly from the Feynman-Kac theorem!®.

A stochastic process is simply one which contains an element of randomness. When
modeling a system in contact with a thermal environment, this randomness acts as a sub-
stitute for explicitly including the degrees of freedom of the reservoir. Thus, acknowledging
that the atoms in Fig.1 are continuously buffeted by water molecules, we can model these
collisions as random “kicks” and attempt to construct a reasonable prescription for gener-
ating them. Langevin dynamics (Eq.31) represents one approach, with the kicks modeled
as a combination of white noise and friction. Another approach would be to occasion-
ally — with probability-per-unit-time o — select one of the atoms (i) at random and re-
place its momentum with one sampled randomly from the Maxwell-Boltzmann distribution
(o< exp —fp?/2m); between such “thermalizing collisions”, the evolution obeys Hamilton’s
equations. This scheme is known as the Andersen thermostat".

The Markov assumption is easily illustrated in the context of a numerical simulation,
which inherently involves some prescription for obtaining a new microstate [' at time ¢ +
dt, from an old microstate I at time ¢, where dt is the small but finite numerical time
step. Typically this prescription utilizes some deterministic integrator (such as the Runge-
Kutta algorithm?), but if the process being simulated is stochastic, then there will be
additional terms requiring the generation of random numbers. The process is Markovian if
the new microstate I' is uniquely determined from the old microstate I, along with whatever
random numbers are generated at time t. In particular, the random numbers generated
at previous time steps must not enter directly into the determination of I'. For instance,
the Andersen thermostat might be implemented as follows. At time t we first integrate
Hamilton’s equations for a time step dt, and then we generate a random number (; between
0 and 1. If ¢; < avdt, then this signifies a thermalizing collision, in which case we generate
further random numbers to choose a specific atom and assign its new momentum. However,
if we were to impose a “dead time” after every collision, e.g. by prohibiting two collisions at
successive time steps, then this would violate the Markov assumption, since the probability
for generating a collision at time ¢ would depend explicitly on whether or not (;_4 < a/dt.

Formally, a Markov process occurring in discrete time steps dt is completely specified by
a function P(T',t + dt|I”,t), which gives the probability distribution of obtaining I" at time
t+dt, given I' at time t. A continuous-time Markov process is obtained in the limiting case
of infinitesimal time steps, and is specified by a transition function

1
LI —T) = lim — [P(T,t+ dt|T, 1) — P(D,H]T, 1)) (37)

which gives the instantaneous rate for making transitions to microstate I', starting from I"
at time ¢. [Note that P(T",¢|T",t) = 6(I' = I").] The evolution of an ensemble of trajectories
governed by such a Markov process is described by the following equation for the time-
dependent phase space density:
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or more compactly,

of 4
a_ﬁtfv (39>

where £, is a time-dependent linear operator acting on the space of distributions f.

In the context of the problem we are considering, Eq.39 represents — statistically — the
evolution of our system as we vary the parameter A in the presence of a heat reservoir.
Assuming the characteristics of the reservoir itself (e.g. its temperature, density, etc.) are
constant, the time-dependence of the transition operator L, enters only through the value
of A\. Hence, we will change notation slightly and write

of 4

a - L}\t fﬁ (40)

where EAA is a parameter-dependent transition operator. Eq.40 is a master equation: given
an initial distribution f(I",0) and a protocol \; for varying the external paramter, Eq.40
determines the subsequent evolution of the distribution f(T',?).

The transition operator formalism is quite generally applicable to Markov processes.
However, in order to obtain any meaningful results from the application of this formalism
to the problem at hand, we must incorporate the specifically thermal nature of the random
forces acting on the system. We do so by imposing the following constraint on our transition
operator:

Lye PHTN — (41)

or, equivalently, ﬁApr = 0. Combined with Eq.40, this simply says that if we begin with
our ensemble in the Boltzmann-Gibbs distribution corresponding to a given value of A, and
then we keep the external parameter fixed at that value, then the ensemble will not change
with time. In other words, the Boltzmann-Gibbs distribution is stationary when X is held
fized. 1f a Markov process satisfies Eq.41, then we will call it a thermal Markov process.

With these definitions in place, we now proceed to derive Eq.20 for arbitrary thermal
Markov dynamics. As in Sections IV A and IV B, for an ensemble of trajectories I'; evolving
under this stochastic process, we write down an evolution equation for the joint probability
distribution h(T", w,t):

oh . OH h
5 = Lnh—Agoor

ot
The first term on the right describes the evolution of the ensemble of trajectories I';, the
second is a continuity term accounting for the auxiliary variable w,. *

(42)

ntegrating both sides of Eq.42, and then performing an integration by parts on the last term,
we recover Eq.39.
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Given Eq.42, the weighted distribution g = [ dw he %" satisfies

99 _ Oh —pw
5 /dw 5 ¢ (43)
4 . OH Oh
_ IO pw
—/dw (L&h AT 8w>e (44)
. OH
= (ﬁm - 5/\a)\>9- (45)

Now making use of Eq.41, we once again find that a solution of this evolution equation is
given by g(T',t) = Z; exp —BH(T, \,).

D. Other derivations

In addition to the derivations presented above, two other approaches to establishing the
validity of Eq.20 deserve mention, although details of the analyses will not be provide here.

In the dynamics considered above, time was taken to be a continuous variable. However,
it is common to model thermal processes as occurring in discrete time steps. The discreteness
of time is not to be viewed here as a necessary evil related to practical issues of numerical
simulation, but rather as intrinsic to the process. Assuming that this evolution is Markovian,
a given realization of the process is specified by a Markov chain (an ordered sequence of
microstates, ' — I'; — - +). For such discrete-time Markov processes, the validity of Eq.20
is easily established”'*!5 given an appropriate definition of work, along with a thermal
assumption akin to Eq.41.

As mentioned earlier, stochastic processes (Markovian or otherwise) are ultimately con-
venient models which allow us to avoid explicitly dealing with the degrees of freedom of the
heat reservoir. As such, these models are only approximations of physical reality, and it
would be desirable to have a derivation of Eq.20 based on more fundamental equations of
motion. An obvious approach is to proceed along the lines taken in Section IV A, but to
drop the assumption that the system is isolated, and instead include all microscopic degrees
of freedom — e.g. of both the polymer and the surrounding water — in the analysis. This
is in fact not very difficult: treating the system and reservoir together as a large, isolated
system, one can simply apply the analysis of Section IV A to this larger system, and then
project out the reservoir degrees of freedom?!. A certain amount of care is needed if the
physical interaction between the system and reservoir is non-negligible in magnitude (in
effect, the Hamiltonian of the polymer needs to be “renormalized” to include a free energy
of solvation®?), but at the end of the day one again obtains Eq.20. Moreover, this approach
can be extended to more general (non-isothermal) irreversible processes'!.

V. THE NONEQUILIBRIUM WORK RELATION

The central prediction of this lecture, Eq.20, is admittedly somewhat abstract, not the
sort of result which typically inspires experimentalists to rush off to the laboratory to test
its validity! Let us now assume (for specificity) that from ¢ = 0 to t = 7 we vary our
parameter from the initial value A4 to a final value Ag, and let W = w, denote the total
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work we perform during this process. By setting ¢ = 7 in Eq.20, integrating both sides of
the equation over all of phase space, and invoking Eq.8, we obtain the nonequilibrium work
relation:

() =e 080, (46)

where AF = Fg — F4. This result relates irreversible work (Lh.s.) to an equilibrium free
energy difference (r.h.s.), and — as with Eq.20 — remains valid no matter how quickly or
slowly we vary A.

As formulated above, the nonequilibrium work relation applies regardless of whether or
not the system itself ever reaches equilibrium state B: if we simply pull the laser traps apart
at a constant, finite rate, then at the moment we reach Ag the polymer will be in some
nonequilibrium state.5 However, we are perfectly within our rights to consider a process
whereby A is first varied rapidly from A4 to Ap, and then held fixed until the system relaxes
to equilibrium state B, over a total time interval from ¢t = 0 to ¢ = 7. In this scenario
we have an irreversible process from one equilibrium state to another (A — B), and Eq.46
relates the work performed during this process to the free energy difference between the
initial and final states of the system.

The nonequilibrium work relation is both easier to state and experimentally more acces-
sible than the more abstract result from which it was derived. Fundamentally, while Eq.20
makes a prediction regarding a (weighted) distribution in a 6/N-dimensional phase space,
Eq.46 involves a distribution on the one-dimensional work axis, in the following sense. Given
infinitely many repetitions of our pulling experiment with the polymer, let p(W) denote the
distribution of values of work: p(W)dW is the fraction of realizations for which the work
value fell between W and W + dW. Then the nonequilibrium work relation predicts that

/ AW p(W) e PW = ¢=PAF (47)

even if the system is driven far from equilibrium as we vary the parameter from A4 to Ap.
To test this prediction experimentally, of course, one does not need to actually construct
p(W). Rather, given R repetitions of the pulling experiment, we expect

1 & i
= d e WV e PR (48)
i=1

where W' is the work performed during the i’th realization. There is a catch, however:
because the quantity whose average is being taken is highly nonlinear, very many repetitions
might be needed in order for this approximation to be a good one. Specifically, if p(WV) is
much wider than 37!, then the above average will be dominated by values of work which
are in the far left tail of the distribution®. In that case R must be extremely large in order
to sample that region of the W axis with good statistics, making Eq.46 experimentally
inaccessible, though formally correct.

§We should in this case interpret Fp as a free energy associated with the final value of A (Eqs.7
and 8), rather than as “the final free energy of the system”.
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While these considerations seem to rule out laboratory tests using macroscopic systems
(roughly speaking, we can expect the dispersion of work values to grow with the size of the
system), microscopic systems are a different story. In recent experiments using a laser trap
and a micromechanical cantilever to pull on the two ends of an RNA strand, as described
briefly in Section II, Liphardt et al* have found good agreement with Eq.46. These results
have provided the first experimental evidence of the validity of the nonequilibrium work
relation, and by extension of Eq.20, suggesting that these theoretical predictions might
ultimately become offer useful tools in the analysis of experimental data. Indeed, Hummer
and Szabo!'? had earlier proposed a scheme, based on Eq.20, for extracting equilibrium
free energy information — specifically a potential of mean force — from micromanipulation
experiments.

The nonequilibrium work relation might also provide a useful tool for estimating free
energy differences from numerical simulations. A traditional method of computing AF
involves simulating the system under consideration, at fixed temperature, as an external
parameter A is varied from and initial value (A) to a final value (B). If the simulation
proceeds sufficiently slowly that the system remains very close to equilibrium from start
to finish, then the work performed on the system gives a good estimate of AF (Eq.2).
However, for many systems of practical interest — such as large biomolecules, where the
estimation of free energy differences plays a central role in rational drug design®® — such
nearly-reversible simulations are prohibitively time-consuming. The nonequilibrium work
relation offers a potential method for getting around this problem, by using a number of
irreversible simulations and then either directly taking the “exponential average” of the
work, (e7#W), to obtain AF, or else using an approximation derived from Eq.46. Recent
results have suggested that this may indeed be a practical approach to numerical free energy
estimation®* 28,

VI. RELATION TO SECOND LAW OF THERMODYNAMICS

Both the nonequilibrium work relation and the Second Law of Thermodynamics have
something to say about irreversible-isothermal processes connecting two equilibrium states
A and B. The former claims that (e W) = e PAF the latter that W > AF (Eq.3).
What is the relationship between these two statements? Indeed, are they even compatible?
On the face of it, the answer to the second question seems to be negative: if W > AF
for every realization, then the (e7®") would necessarily be less than e #2F. However,
we know that the Second Law must ultimately be interpreted statistically, thus allowing
for the possibility that occasionally (though extremely rarely, for macroscopic systems) we
will observe a realization for which W < AF. With this in mind we now show that the
nonequilibrium work relation implies two inequalities which are closely related to the Second
Law.

Jensen’s inequality® states that expz > exp®, where the overbar denotes an average
over any set of values of a real variable x. If we combine this mathematical result with
Eq.46, we get exp —FAF = (exp — (W) > exp —3(W), i.e.

(W) > AF. (49)
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In other words, the nonequilibrium work relation immediately and rigorously implies that
the average work performed, over an ensemble of realizations of an irreversible-isothermal
process, is no less than AF. This is certainly consistent with the Second Law, but in fact
we can say more, as we now show.

Given a particular irreversible-isothermal process, suppose we observe a realization for
which W = AF — ¢, where ¢ > 0 has units of energy. The value of € is a measure of the
degree to which the Second Law was “violated” for this particular realization. Using the
nonequilibrium work relation, we now rigorously derive a prediction regarding the probability
distribution of such putatively illegal events. With p(W) as defined as in Section V| let

AF—¢
Prob(W < AF — ¢) = / AW p(W) (50)
denote the probability of observing a work value less than AF — e. Using the chain of
inequalities,

AF—¢ AF—e¢ +oo
/ AW p(W) < / AW p(W)eP A= W) < oAAI=) / AW p(W)e= 7", (51)

— 00 —0o0

and then invoking Eq.47, we get
Prob(W < AF —¢) < e (52)

This result states that the probability of observing a violation of at least magnitude ¢, decays
exponentially (or faster) with ¢/kgT. This in turn implies that the chance of observing a
macroscopic violation (¢ > kgT) is fantastically small, in complete agreement with the
empirical evidence.

VII. NONEQUILIBRIUM STATIONARY STATES

Up to this point, this lecture has concerned systems driven away from equilibrium by
the external variation of some parameter. The underlying assumption has been that, if
the parameter is held fixed, the system relaxes to and then remains in a state of thermal
equilibrium. However, recent work by Hatano and Sasa®’3! has revealed that much of the
above formalism can be generalized to arbitrary stationary states, as I now briefly discuss.

Suppose we have a system whose dynamics is a Markov process specified by a parameter-
dependent transition function £, (I'" — T"). If the parameter « is held fixed, then a statistical
ensemble of realizations of this process obeys the master equation

af 4
a—ﬁaf‘ (53)

Let us assume that this Markov process has a unique stationary distribution, fJ(I"), for any
value of a. This stationary distribution satisfies

~

LofS =0, (54)

but we do mot assume that this distribution is a Boltzmann-Gibbs distribution. Rather,
f3(T) represents a nonequilibrium stationary state of the system.
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Let us now define ¢(I", @) by
fAT) = e, (55)

and introduce an auxiliary variable

t 0
Yy = /0 dt, dt/ az(Ft/, Oéy), (56)

by analogy with our earlier definition of work (Eq.9). Here we have assumed some protocol
oy for varying the external parameter.
Now consider the following situation. Beginning with the system in some stationary state
o .» we change the parameter from a4 to a new value ap according to a protocol ay; we
observe the evolution of the system, I';; and from this trajectory we construct the evolution
of the auxiliary variable, 1;. Then we repeat this experiment infinitely many times, always
employing the same protocol «;. From this data, assigning a time-dependent statistical
weight e™¥* to each trajectory, we finally construct the weighted distribution

g(l,t) = (e 5(I = T)). (57)

You can probably guess what I will now tell you: no matter how slowly or quickly we vary
a, the evolution of this weighted distribution obeys a very simple equation, namely,

g(T,t) = e~@Me), (58)

(Since the derivation of this result is essentially identical to that presented in Section IV C,
I won’t reproduce it here.)

From this result we can obtain predictions entirely analogous to the nonequilibrium work
relation®!, as well as the inequalities given by Eqs.49 and 52. Thus, the entire mathematical
structure of Sections IV C, V, and VI carries over to the context considered here. Unfor-
tunately, a serious obstacle currently prevents us from transforming this abstract analysis
into predictions which might be tested experimentally: there exists no general microscopic
statistical theory of nonequilibrium stationary states. In other words, for a specific physical
situation, we will not generally have an explicit expression for f2(I'), hence we will not
know ¢(I', ), and will not be able to deduce the evolution of the auxiliary variable y; from
knowledge of the trajectory I'.

VIII. CONCLUSIONS

In this lecture I have tried to summarize recent research related to the statistical physics
of systems driven away from an initial state of thermal equilibrium. The central point which
I have stressed is that there exists a particular statistical representation of such processes
which is simple, largely independent of the details of the process, and valid even far from
equilibrium. Moreover, this formalism leads to predictions which are both potentially useful
and experimentally testable.

The extension of these results to the regime of quantum mechanics represents an obvious
potential avenue for future research. Yukawa!? has made progress in this direction with
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respect to the nonequilibrium relation, but the existence of a quantal version of Eq.20
remains an open question.

Finally, the generalization discussed in Section VII is, in my opinion, very intriguing. It
tells us that if some day a statistical theory of nonequilibrium stationary states (analogous
to the Boltzmann-Gibbs formalism for thermal equilibrium) will be constructed, then we will
automatically be able to make concrete predictions about systems driven away from such
states. In particular, the generalization of Eqs.49 and 52 suggests that transitions between
nonequilibrium stationary states obey an inequality analogous to the Clausius inequality
(Eq.4) for transitions between equilibrium states. Indeed, Hatano and Sasa3! have related
their work in along these lines to the phenomenological, macroscopic framework introduced
by Oono and Paniconi®? for the study of nonequilibrium stationary states. However, the story
will not really be complete until, as suggested above, a genuine microscopic undertanding
of such states is developed.
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FIGURES

FIG. 1. A toy model of a system (polymer) in contact with a heat reservoir (water). See text
for details.
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