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We present a sequence-based probabilistic formalism that directly 

addresses co-operative effects in networks of interacting positions 

in proteins, providing significantly improved contact prediction, as 

well as accurate quantitative prediction of free energy changes due 

to non-additive effects of mUltiple mutations. In addition to these 

practical considerations, the agreement of our sequence-based cal-

culations with experimental data for both structure and stability 

demonstrates a strong relation between the statistical distribution 

of protein sequences produced by natural evolutionary processes, 

and the thermodynamic stability of the structures to which these 

sequences fold. 

1 



Our approach is analagous to solving an inverse problem of statistical mechanics: 

determine the physical interaction parameters of a twenty-state spin system given a set of 

sequences drawn from the Boltzmann equilibrium distribution. The sequences we consider 

are sets of aligned protein sequences drawn from variable sequence families defined in the 

Pfam database [1]. We assume that within each family the sequences adopt a common 

(but in principle unknown) fold whose underlying structure is reasonably conserved across 

the family. Each sequence of length L of a given family can be viewed as a different 

global state of an L-site, twenty-state (for twenty amino acids) spin system, with spin­

spin (i.e. residue-residue) interactions determined by (1) the (unknown) structure of the 

associated fold, and (2) the physico-chemical characteristics of the residues. Solving the 

inverse problem to determine the underlying physical interactions addresses "correlation 

at a distance", in which correlations between locally connected sites in an interacting 

network such as a spin system, or a protein, can propagate throughout the network, 

leading to observed correlations between sites that have no direct physical interaction 

[2]. Such propagated correlations can be even greater than correlations between any 

directly connected sites in the system [3]. Previous computational work on abstract 

models of proteins [4], as well as a statistical analysis of the frequency of ion-pairs in 

crystal structures of real proteins [5], provided early hints that Boltzmann-like statistics 

are associated with aspects of protein architecture. In view of complicated evolutionary 

pressures acting on naturally evolved protein sequences it is surprising that developing 

a strictly thermodynamic approach can, as we demonstrate below, lead to an accurate 

predictive methodology for both protein structure and stability. 

Other work relating sequence statistics to physical interactions, but restricted to as­

suming independent (non-interacting) sites, successfully characterized protein-DNA bind­

ing interactions given sequence data [6, 7, 8]. "Semi-rational" protein sequence design, see 
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e.g. [9], also assumes independent sites, and analyzes natural sequence variation to suggest 

mutations leading to greater thermodynamic stability. However, analysis of mutations in 

sets of aligned sequences, first for RNA sequences [10] and later for protein sequences 

[11], has shown that mutations in pairs of sequence positions are often correlated. Such 

pairwise correlations have been used in attempts to predict spatially proximate residues 

(contacts) in folded proteins [12, 13, 14, 15, 16, 17, 18]. The hypothesis is that pairs of 

variable residue positions, possibly distant along the sequence but spatially proximate in 

the folded molecule, will display significant covariation. Published approaches analyze 

correlations between at most two sequence positions at a time, hence they inherently as­

sume that each potentially interacting pair of positions under consideration is physically 

isolated from all other positions [19] . This assumption is reasonable for RNA molecules, 

given the saturating hydrogen bond interaction between base-pairs, and accuracy of con­

tact prediction for RNA using pairwise covariation formulae is relatively high [10]. This 

assumption is not reasonable for the typically diffuse and networked interactions among 

amino acids, and accuracy of contact prediction for proteins using pairwise covariation 

formulae is relatively poor. Pairwise covariation formulae were recently used for a quali­

tative description of stability changes upon mutations in the SH3 domain, as well as for 

contact prediction [18]. Attempts to chain together separate pairwise analyses to approxi­

mate interaction networks in proteins [21] can be illuminating, suggesting that a complete 

formalism to address network effects would be fruitful. 

The Boltzmann network method presented here does not treat each individual pair 

of sites of interest as isolated from other residues. Instead, we construct a probability 

distribution describing full length sequences of length L for each protein sequence family. 

Any given sequence alignment typically contains enough data to estimate only single and 

pairwise amino acid frequencies with reasonable accuracy. One point of departure from 
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previous analyses using single and pairwise frequencies is that we adopt an information 

theoretic viewpoint, and ask for the least biased probability distribution, defined over 

all L sites, whose first and second order moments match the single and pairwise amino 

acid frequencies of the given data. "Least biased" is defined to be the maximum entropy 

distribution [20], which in our context may be intuitively viewed as the flattest distribution 

among the many distributions that have first and second order moments matching the 

amino acid frequencies in the given data [22]. 

The maximum entropy distribution whose moments match a given set of single and 

pairwise amino acid frequencies may be written in the following form [23], reminiscent of 

thermal Boltzmann statistics 

P(X) = exp[-:(X)] , (1) 

where E is a sum of single and pairwise interactions among potentially all amino acids 

E(X) = L >'f/xfx1 + L >.fxf . (2) 
a{3ij ai 

xi denotes the residue present at position i in sequence X, it has the value 1 if amino acid a 

is present at sequence position i, and is 0 otherwise. The X s are adjustable parameters (to 

be determined) such that the calculated first and second order moments of this distribution 

match the single and pairwise amino acid frequencies in the given sequence alignment. 

i and j label sequence positions (1 to L), and a and {3 label the twenty possible amino 

acids. Z is a normalization factor. It can be shown [25] that matching the moments of 

the maximum entropy distribution to the given sequence data is equivalent to maximizing 

the loglikelihood of the given sequence data given the parametric form, Eqns. (1,2), for 

the probability distribution. This formalism is related to Boltzmann Machines [27] and 

Graphical Models [28], used in other contexts. 
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So far, E is merely a suggestive symbol appearing in a probability distribution, Eqns. 

(1,2), describing sequence statistics of an alignment. However, it is shown below if the 

)..' s are adjusted so that the moments of the distribution match the given amino acid 

frequencies, then E is highly correlated with a real, physical, thermodynamic free energy 

of unfolding. Furthermore, we use the probability distribution over all L sites, Eqns. 

(1,2), to resolve issues of correlation at a distance (network effects) in proteins, resulting 

in significantly improved contact prediction from sequence information. 

We consider aligned sequences for eleven domains [29] taken from the Pfam [1] database, 

with associated x-ray crystal structures taken from the Protein Data Bank[30]. These do­

mains were chosen to be diverse in sequence (Jess than 50% pairwise sequence identity) 

and to have more than 200 sequences per family. The distance between a pair of residues 

was defined to be the distance between their carbon {3 atoms, and pairs of residues with 

carbon {3 distance of less than 7 Angstroms were defined to be in contact (carbon a coor­

dinates were used for glycines). Results reported below are robust to changes in definition 

of contact. 

Prediction of which residues are directly interacting (i.e. in physical contact) uses the 

concept of conditional mutual information [20] applied to P(X) after the)..' s have been 

determined for each sequence family. In our context, conditional mutual information, 

eM I, measures the degree of covariation between residues at sequence positions i and j 

that is solely due to direct effects of i on j (and vice versa), factoring out contributions to 

the correlation between i and j caused by interaction of both i and j with the rest of the 

network of resid ues. It is a discrete (and nonlinear) analogue of linear partial correlation 

analysis [31, 32] and is intuitively described by this process: (a) freeze all residues other 

than those at i and j to a fixed state, thus preventing information propagation through 

the rest of the network, (b) calculate the mutual information between i and j, using P(X), 
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above, with the rest of the network frozen, and (c) average this result over all possible 

frozen states of the rest of the network [33]. Pairs of sites with high C M I (over a user 

defined threshold) are predicted to be in contact. 

Two quantities, specificity and sensitivity, are typically used to characterize predictive 

ability. Specificity is defined as the fraction of predicted contacts that are actual contacts 

(as defined by carbon (3 distances) i.e. the overall probability that a predicted contact 

is correct. Sensitivity is defined as the fraction of actual contacts that are correctly pre­

dicted. High specificity is more desirable than high sensitivity, because in our context 

predicting even a small number of contacts with high accuracy provides extremely valu­

able constraints on ab initio protein structure calculations [34, 35]. Hereafter we refer to 

specifici ty as "accuracy". To survey accuracy as a function of C M I threshold we succes­

sively lowered the CM I threshold, in effect walking down a list of predicted contact pairs 

ordered by CM I value, for each domain. This process yields accuracy of prediction as a 

function of the number of pairs predicted to be in contact [36]. 

To compare our method to others we also analyzed contact prediction accuracy using 

(a) a pairwise covariation measure [18] (denoted as cl>AM for cl> Association Method [37], 

which we believe to be the most accurate of pu blished methods), (b) conventional pairwise 

mutual information [19] (denoted as M 1) and (c) a baseline reference resulting from ran­

dom selection of posi tion pairs (denoted as Random). The measure used in ( a) above also 

incorporates some correction for phylogenetic artifacts. Fig. (1) shows overlaid curves 

for accuracy of contact prediction via the different methods, versus number of predicted 

contacts , for the SH3 domain. The most accurate method is the Boltzmann network 

method, which uses conditional mutual information to predict contact pairs. Accuracy 

varies somewhat from family to family, therefore we show the averaged accuracy over 

eleven domains in Fig. (2) using the same four predictive methods. The Boltzmann 
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Figure 1: Accuracy of Conta~~rwiJJVc~m~ict~~sc8rt~Mbag~r of Predicted Con­
tacts: Accuracy of prediction (y-axis) vs. number of predicted contact pairs (x-axis) for 
the SH3 domain is shown. Boltzmann, the top curve, is the result of the Boltzmann net­
work method. <PAM is the result of what we believe to be the most accurate published 
pairwise covariation method [18] (does not address network interactions, does address 
phylogenetic artifacts), M I is the result of pairwise mutual information (does not address 
network interactions), and Random is the average result of picking at random a specified 
number of contacts. The inset blows up the region from 1 to 50 predicted contacts. The 
accuracy of contact prediction using the Boltzmann network method, which incorporates 
co-operative effects among residues, significantly exceeds that of other methods. 
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network method has on average consistently higher accuracy for a greater number of pre­

dicted contacts. Predicted contacts for the eleven domains using the Boltzmann network 

method are available in the supplemental material [38]. 
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Contacts: An Average over eleven domain families , for the same predictive methods of 
Fig. (1). Boltzmann, the top curve, is the result of the Boltzmann network method pre­
sented here and has significantly higher average accuracy, demonstrating the importance 
of addressing co-operative effects within proteins. 

The maximum entropy probability distribution, Eqn. (1), has a thermal, Boltzmann 

form with exponent E(X). After the)..' s have been determined for a given sequence 

alignment, E(X) assigns an "energy" value to any sequence X. Interpreting E(X) as 

an effective free energy relative to the unfolded state allows a free energy of unfolding 

[39], ~G = -E(X), to be predicted using our formalism. Changes in sequence, X, will 
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change E(X) and hence the 6.G of sequence mutants can be calculated and compared to 

experiment. Experimentally determined melting temperatures (assumed proportional to 

the free energy of unfolding) for wildtype Fyn SH3 sequence, and for a set of single, double 

and triple mutants of the wildtype were reported in [18]. To assess how well co-operative 

non-additive effects are captured by our formalism, we calculated 6.G values after the 

X s had been determined in two different ways: (1) the interaction parameters, Aft, were 

allowed to adjust during the determination of the probability distribution P(X), (2) the 

interaction parameters, Aft, were held fixed to zero, allowing only additive effects to be 

captured by the remaining adjustable single site A? parameters [40]. As will be seen below, 

the correct prediction of the effects of even single site mutants requires consideration of the 

other sites with which it interacts. The eleven residues identified by a structural analysis 

[18] to be in the hydrophobic core of the SH3 domain were selected for use in assessing 6.G 

prediction, i.e. the A parameters used for computing 6.G allowed potential interaction 

among all eleven sites of the hydrophobic core. Significant sequence variation is necessary 

input information for our method, and so within this set of eleven core positions we report 

6.G values for mutations involving the three positions (26, 39 and 50 in the numbering 

scheme of [18]) that displayed the highest mutual information. 

Experimentally determined melting temperatures were reported [18] for four single, 

four double, and three triple mutants, in addition to the wildtype for these three positions. 

In Fig. (3) the difference of the mutant and wild type 6.G's as computed by our method for 

these mutant domains is shown to be highly correlated (absolute value of correlation 0.91) 

with the experimentally measured melting temperatures. If non-additive and co-operative 

effects are disallowed by holding the interaction terms to zero then the correlation is poor 

(absolute value of correlation 0.02) and the signs of the predicted 6.G are incorrect, Fig. 

( 4). 
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Figure 3: Measured Melting Temperature versus Predicted Free Energy of Un­
folding: Network Interactions Allowed The free energy of unfolding, ~G, computed 
using the Boltzmann network method versus experimentally measured melting tempera­
ture for eleven mutants of the SH3 domain (four singles, four doubles, three triples) as 
well as the the wild type. Co-operative and non-additive effects were allowed, resulting 
in a good correlation of computation with experiment (absolute value of the correlation 
is 0.91). The single site mutant, 150F, as discussed by Larson, involves mutating to 
a residue more frequent in the alignment and yet is measured to be quite destabilizing 
with a measured melting temperature of 45.3. Only if network interactions are allowed 
is this single site mutant correctly predicted as quite destabilizing. The triple mutant 
F261 / A39G / 150F, with a measured melting temperature of 73.7, involves 150F with 
additional compensatory second site mutations. It is correctly predicted as just mildly 
destabilizing compared to wild type only if network interactions are allowed. Comparison 
of this figure (network interactions included) to Fig. (4) (network interactions excluded), 
shows in general the importance of network interactions. 
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Figure 4: Measured Melting Temperature versus Predicted Free Energy of 
Unfolding: Network Interactions Not Allowed The free energy of unfolding, 6.G, 
versus experimentally measured melting temperature for the same eleven mutants of the 
SH3 domain and for wildtype, as Fig. (3), but when co-operative and non-additive effects 
are disallowed by holding the interaction parameters, Af!, to zero. There is a dramatic 
decrease in correlation of computation with experiment (absolute value of the correlation 
is now 0.01), and even the signs of the stability changes are incorrect when network 
interactions are disallowed. 
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The high correlation of predicted and measured 6.G shown in Fig. (3) suggests per­

forming a computational survey of all possible (203 ) mutations to search for other inter­

esting single, double and triple mutants. We found no statistically significant prediction 

of a mutant considerably more stable than wildtype, although the single site mutant F26L 

has a predicted melting temperature similar to wildtype with a value of 84.9. Predictions 

of melting temperature for other interesting three site mutants are available in the sup­

plemental material [38]. Results of an extensive computational search among all (20 11 ) 

possible sequences defining a total redesign of the eleven site hydrophobic core of the SH3 

domain are also presented [38] . 

The success of the Boltzmann network formalism in predicting free energy changes 

upon mutation clearly demonstrates a deep relationship between the statistics of sequences 

selected by natural evolutionary processes and the thermal stability of the structures to 

which these sequences fold. However, such a strong relationship would not necessarily 

be expected given that protein sequences produced by evolution are strongly affected by 

functional constraints in addition to stability constraints [41] . A possible explanation 

of the statistics-stability relation is that functional properties are typically confined to 

localized regions of a protein, e.g. binding sites, and that optimization of small local 

regions for functional fitness occurs after global selection for sequences that stably fold. 

An independent, computational investigation of the extent to which sequences are shaped 

by natural selection for stability was published recently [42] although contact prediction 

and prediction of free energy changes was not explicitly addressed . In contrast to our 

sequence based approach, this work used structural information, combined with an all­

atom free energy function incorporating a variety of physical effects to computationally 

design sequences for a variety of domains. The native, naturally occurring sequence for 

each structure considered was found to be close to optimal for each structure, and for SH3, 
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the pairwise correlations between sites in a set of computationally designed sequences 

recapitulated the correlations observed in a set of native SH3 core sequences. The extent 

to which the Boltzmann network's energy function, E(X), involving empirical parameters 

determined solely from sequence information for each domain family, can be identified 

with the physical/structural effects defining the energy function of this structure-based 

complementary study remains an interesting issue. 

Limiting factors in application of the Boltzmann network algorithm include (1) the 

amount of naturally evolved sequence data currently available per family (size of the 

sequence alignment), and (2) the phylogenetic relatedness (and associated selection arti­

facts) of these sequences. Modifications to the algorithm presented here, e.g. (1) consider­

ation of statistical significance of the fitted A parameters, and (2) addressing phylogenetic 

relationships of sequences in an alignment, have the potential to further increase accuracy 

using naturally evolved sequence sets. 

However, the ability to create in the laboratory totally novel sequences for protein 

domains via artificial evolution techniques such as phage display [43] [44], promises new, 

rich, and diverse sequence sets with well characterized in vitro selection pressures. Such 

sequence data, when available in greater quantity, and analyzed with the methods herein, 

offer a new paradigm for sequence based structure prediction, and for the computational 

design of sequences with preferred properties. 
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Appendix: Supporting Online Material 

1 Determining the A Parameters by Maximum Like­
lihood Analysis 

The maximum entropy probability distribution subject to constraints on the first and 

second order moments, has an exponential form 

P(X) = exp -1E (X)] , 

where E is a sum of single and pairwise interactions, 

E(X) = ~ )..0{3 XO X{3 + ~ )..0 Xo 
L..J 1J 1 J L..J 1 1 

o{3ij oi 

and 

Z = L exp - [E(X)] 
x 

is a sum over all possible (20L) sequences of length L which normalizes the distribution [1]. 

The )..'8 are Lagrange multipliers implementing the constraints that the first and second 

order moments of the distribution match the single and pairwise amino acid frequencies in 

a given sequence alignment. Each sequence X of the alignment may therefore be assigned 

a probability, P(X), which is a function of the X8. 

For each sequence alignment considered one may write the joint probability of all S 

sequences of the alignment as a function of the)..' 8 (assuming that the sequences are 

independent) as 

P(S )
. 8n=S exp - [E(X (8))] 

equence8 = Z 
8=1 

where 8 references each sequence of the alignment. Although naturally evolved sequences 

that are related by a phylogenetic tree are not independent, making the assumption 

of independence, for simplicity, still yields results of high accuracy (this assumption of 

21 



sequence independence is of course unrelated to issues of site independence within a 

sequence). Properly addressing the phylogenetic relatedness of sequences is complicated, 

but has the potential to increase accuracy still further. 

Taking logs of both sides yields 

log[P(5equences)] = -[ L )..ft Xf(s)X1(s) + L)..f xf(s) + 5 * log(Z)] 
o{3ij S ois 

= -5 * [L )..ft xf xf + L)..f * xf + log(Z)] 
o{3ij oi 

Here, Xf and Xf Xf represent, respectively, the single and pairwise amino acid frequencies 

obtained by simple counting in the given aligned sequence data set. 

A steepest ascent step, maximizing log[P(5equences)], changes the).. parameters by 

an amount proportional to the gradient of log[P(5equences)] with respect to the A's 

!:::.)..of3 rv 8l0g[P(5equences)] rv (X~ X{3 - < X? X{3 » 
1) 0).. ~f3 t) 1) 

1) 

!:::.)..o rv 8l0g[P(5equences)] rv (XO_ < X? » 
1 0)..0 1 1 

1 

where 

X ox{3 __ 8l0g(Z) 
< i j >- o{3 

O)..ij 

X
o __ 8l0g(Z) 

< i >- 0)..0 
t 

represent the second and first order moments of the distribution, respectively. In princi­

ple, evaluating these moments involves (20L) summations, however since they are simple 

averages they may be efficiently estimated in practice via Monte Carlo [2]. Once the 

moments have been estimated at a current setting of the A's, the A's are changed by an 

amount proportional to !:::.).. and the process is iterated to convergence. This procedure is 

essentially the "training" algorithm for a Boltzmann machine [3] when there are no hidden 
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units. Note that at the maximum of log[P(Sequences)], i.e., when 6)..f! = 0, 6)..f = 0, 

the single and pairwise moments of the distribution match the single and pairwise amino 

acid frequencies of the given sequence alignment. Furthermore, it is possible to show by 

·d . f· d d d·· h 8 2log[P(Sequence)] 8 2 log [P(Sequence)) h conSl eratlOn 0 mlxe sec on envatlves, suc as 8>.o{38>.'Y
k

(\/ ' 8>.?{38>.'Y
k 

t at 
t] I) 

log[P(Sequence)] is a convex function and that there are no local maxima. 

For the results reported in the main text, the)..' s were initialized with the )..f! inter­

action terms set to zero, and the Xt terms chosen to match the single site amino acid 

frequencies of each given sequence alignment. To evaluate moments of the distribution 

given some current values of the)..' s, 400, 000 sequence configurations were obtained by 

generating a Monte Carlo chain of 4, 000, 000 steps, and keeping every tenth configuration 

of this chain when estimating the <> moments. Change in the )..' s, 6)", are zero, and 

the iterative process converges, when the moments exactly match the amino acid frequen­

cies. This occurs when the likelihood is a maximum and the gradient is zero. Effective 

convergence was reached in (very roughly) on the order of 10, 000 - 15, 000 changes of 

6)..' s or 40 - 60 hours of computer time (depending on domain size), on a dedicated single 

processor 1 ghz cpu with 500 megbytes of memory. No significant effort was made to 

optimize code beyond addressing the most obvious inefficiencies. 

2 Predicted Contacts for Eleven Families 

The top 50 predicted contact pairs, using the Boltzmann network method (see main text), 

for each of the 11 Pfam families follows. Each column, representing one protein family, is 

ordered by descending value of conditional mutual information. The numbering scheme 

for specifying position pairs of each predicted contact uses the residue number appearing 

on the "ATOM" lines in the PDB files listed at the top of each column. 
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1 ubi 1fjl l shg 3icb 6pti 1awc 1mdy lsha 5fd1 1a17 1be9 
19, 24 6, 13 44 , 53 56, 58 20,44 72,101 139, 141 6, 33 24 , 25 34,50 367, 375 
19, 57 24 , 29 31,44 50,66 24,31 79,82 125, 135 18,31 3,4 43,46 329,33 
24,57 3,7 25,31 49,50 13,36 94,95 129, 155 56,80 4,.7 35,51 336,37 
20, 22 17, 52 31,53 49,66 21,48 91,97 136, 148 33,86 12,17 31,50 353,39 
28, 57 6, 7 53,58 45,70 21,31 96,98 120, 125 65,86 17,18 53,56 366, 36 
16,22 28, 30 17, 24 58,60 7,42 80,101 119, 149 79,82 7,10 34,38 346,35 
20,25 29,43 21,22 50,53 27,52 77,81 141 , 161 56,84 6, 7 32,36 319,32 
23,26 2,7 25,53 63 , 66 14,38 72,80 125,151 11,45 5,22 46,49 316,35 
19,25 27, 29 35,43 50,52 9,16 82, 83 123, 129 10,14 1, 7 42,44 350, 35 
20,26 24,45 15, 55 46, 58 48,52 79,80 125,148 80,84 1, 10 29,33 325,37 
23, 31 29,36 42 , 55 58,67 23,54 77,80 135, 155 6,28 22 , 23 38, 46 366, 36 
16,24 31 , 55 15,21 48, 70 21,52 80,83 151 , 153 31,84 13, 18 33,36 323, 36 
22, 24 8, 43 44,58 62,63 27,54 81,83 124, 136 7,28 7,18 58,61 338, 35 
19, 20 27,30 14,26 50, 70 44 , 52 97, 98 116,131 59,60 1,4 36,51 323,37 
23, 25 10, 13 15, 42 69,70 15, 21 80,81 129, 145 14,61 3, 10 39,51 322,38 
24,28 28, 34 9, 33 45 , 73 8,25 79,87 125,147 42,46 5,9 58,60 335,33 
20, 24 21 , 24 13, 57 60, 62 27, 48 88,92 123, 125 49, 86 1, 26 59,61 341 , 35 
19, 28 23, 27 24 , 25 58, 64 22,31 83,86 147, 161 84 , 85 1, 22 38,43 369,37 
16,18 28, 33 13, 56 66, 67 46,48 99, 101 139, 142 79,86 5, 7 41,43 338, 34 
16, 56 8,58 33,39 53,69 36,39 81 ,87 152, 154 6,10 10,13 37,40 358,39 
16, 20 34,39 25,52 49,53 16,34 89, 93 110,114 31,33 9,13 33,51 330,371 
26, 28 29, 45 10, 29 63, 67 23, 24 83, 87 116, 124 28, 80 2, 22 37,41 345,350 
25, 54 33,34 17, 33 53, 66 22,53 72 , 86 120, 136 6,55 5,26 35, 50 316,325 
22 , 56 30,43 17,34 53, 63 21,24 77 , 101 122, 125 14,43 1,3 32,33 367, 370 
3,18 15,45 12,13 46,47 7,11 79,97 145,157 10,36 1,2 39,44 323,346 
54, 64 36,39 34,45 46,67 17,36 72 ,77 136,140 36,79 2,4 58,59 314, 325 
25, 26 4,7 35, 37 62,69 16, 36 77, 83 113, 116 28, 46 10,22 48 , 52 314, 338 
20,54 21,34 7,36 62,67 9,34 72,82 131, 141 25,28 2,18 29,30 361,367 
18,22 28,54 39,52 58, 72 6,23 93,101 113, 136 10, 78 5,10 54,57 322,327 
12,25 29,39 10,59 57, 70 10,13 72,83 153,157 10,28 10,26 30,36 362,376 
23,28 7,10 38,52 56, 57 8,26 85, 88 116, 138 7,10 17,25 28, 61 329, 371 
3, 16 15,17 22,52 46, 72 8, 46 97, 101 144, 152 9, 33 19,22 28, 32 379, 380 
19,54 29,34 10,52 50,63 27,31 97,100 124,145 9,11 3,5 38,50 330,372 
12,20 23,34 33, 37 45 , 48 23,26 86,87 147, 152 78,82 4,5 32,51 367,378 
16, 57 7,41 31,52 58, 62 29 , 49 77, 97 114, 122 14, 74 7, 13 28, 54 337, 382 
19, 22 7, 13 12, 39 56, 61 44 , 46 77, 82 134, 138 61 , 74 1, 23 33,37 372,376 
60,64 34,45 22 , 53 56, 62 28, 29 70, 80 128, 133 41,82 1,13 33,61 325,337 
23, 39 41 , 43 9, 60 49 , 73 8,16 93 , 100 148,151 47, 61 1, 5 32, 61 362,386 
22 , 25 8, 14 33, 34 46, 53 6, 28 79, 81 136, 159 11 , 46 2, 13 48, 57 322,345 
54, 60 26, 44 10, 30 49, 52 15, 36 70, 72 125,154 36,41 5, 13 50, 53 341 ,348 
20,23 32,36 9,18 66 , 73 16,28 87,S»! 110, 149 11,59 4,6 31,53 354 ,388 
23,32 26,46 9,17 67, 71 10,42 80,97 136,151 31,40 6,10 32,55 314,350 
25, 28 2, 33 11 , 25 53, 70 21 , 39 70, 85 113,120 10, 60 24 , 26 30, 33 361 , 375 
18, 26 24 , 39 24 , 57 49 , 61 31 , 48 74 , 80 116, 127 37,41 25, 26 49 , 53 345,346 

. . - . - . - .. -_ ... 



3 A Computational Survey of (203) Mutants of the 
Hydrophobic Core of Fyn SH3 

The high correlation reported in the main text for calculated 6G values with measured 

melting temperatures, for mutations in positions 26, 39 and 50 (numbering scheme of 

reference [4]), suggests performing a computational survey of all (203) possible mutants in 

these positions. Using the regression line of Fig. (3) of the main text enables conversion 

of any calculated 6G toa predicted melting temperature. We surveyed all (203) possible 

mutants in these three positions and selected those mutant sequences with predicted 

melting temperatures within the range of measured melting temperatures of Fig.(3), in 

effect interpolating new sequences between existing sequences with measured melting 

temperatures. Regarding sequences outside of this range: sequences with significantly 

higher melting temperatures were not found; on the other end of the temperature range, 

sequences utilizing amino acids that were rare in the initial sequence alignment depend on 

A parameters that are poorly determined, and were eliminated from the set of significant 

predictions. 50 such triple mutants, ordered by predicted melting temperature, are listed 

below. The numbering scheme is that of reference [4]: residues listed correspond to 

positions 4,6,10,18,20,26,28,37,39,50,55. 
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Sequence Temperature 
FAY LF LIW AIV 84.9 
FAYLFFIWAIV 78.7 
FAYLFIIWAIV 71.6 
FAYLFIIWGFV 69.8 
FAYLFIIWGIV 69.6 
FAYLFLIWAVV 69.3 
FAYLFMIWAIV 69.2 
FAYLFLIWGIV 67.7 
FAYLFFIWGIV 64.7 
FAY LF LIWV IV 63.5 
FAYLFFIWAVV 60.8 
FAYLFLIWCIV 60.7 
FAYLFFIWVIV 60.1 
FAYLFLIWALV 59.6 
FAYLFIIWGVV 58.0 
FAYLFIIWGLV 57.8 
FAYLFCIWAIV 57.6 
FAYLFIIWAVV 57.3 
FAY LF LIW AFV 56.6 
FAYLFMIWGIV 56.3 
FAYLFFIWCIV 56.3 
FAYLFLIWIIV 56.0 
FAYLFLIWGFV 55.7 
FAYLFIIWAFV 55.3 
FAYLFIIWVIV 55.0 
FAYLFLIWGVV 54.8 
FAY LF LIWVVV 54.7 
FAYLFFIWGFV 54.7 
FAY LF LIW AYV 54.7 
FAYLFMIWAVV 54.5 
FAY LF LIW AAV 54 .1 
FAYLFFIWALV 54.1 
FAYLFIIWCIV 53.2 
FAYLFIIWALV 52.8 
FAYLFIIWGYV 52.8 
FAYLFAIWAIV 52.7 
FAY LF FIW IIV 52.4 
FAYLFFIWAFV 52.3 
FAYLFLIWCVV 52.0 
FAYLFMIWVIV 50.7 
FAYLFIIWGAV 50.7 
FAY LF IIW IIV 49.6 
FAY LF SIW AIV 49.6 
FAYLFFIWG'2~ 49.5 
FAYLFMIWCIV 49.5 
FAYLFLIWGLV 49.4 
FAY LF F IWVVV 49.0 
PAVT.PPTl'" AVl1 .1~ ~ 



4 A Computational Survey of (2011 ) Hydrophobic Core 
Sequences of Fyn SH3 

A computational survey of sequence space can also be performed using the Boltzmann 
network formalism, even when the number of potential sequences in the survey precludes 
exhaustive enumeration. We illustrate this by suggesting complete redesigns for the eleven 
residue hydrophobic core sequence of SH3, for which an exhaustive survey of (20 11

) pos­
sible core sequences is infeasible. A stochastic search via simulated annealing, using 
the modified Lam schedule for temperature changes [5,6], was used to compile a list 
of the 50 most stable sequences identified during the annealing process. Of these pre­
dicted core sequences, 26 occur in the initial sequence alignment, i.e . occur in naturally 
evolved proteins, and constitute predictions of the melting temperatures of these nat­
ural sequences. The remaining 24 sequences constitute predictions of new stable core 
sequences. Residues listed below correspond to positions 4,6,10,18,20,26,28,37,39,50,55 in 
the numbering scheme of reference [4]. 
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Sequence Temperature 
FAY LF LIW AIV 84.9 
VAYLFIVWGFV 84 .6 
V AY LF LIW AIV 79.3 
VAY LFLVWAIV 79.0 
FAYLFFIWAIV 78.7 
AAYLFIVWGFV 77.6 
VAFLFIVWGFV 77.3 
FAY LFLVW AIV 76.8 
VAYLFIIWGFV 76.7 
VAYLFILWGFV 76.3 
F AF LF LIW AIV 76.3 
AAFLFIIWGFV 76.0 
AAY LFIIWGFV 75.9 
VAYLLIVWGFV 75.7 
YAYLFIVWGFV 75.4 
VAYLFINWGFV 75.4 
AAFLFIVWGFV 75.2 
AAY LF LIW AIV 74.0 
AAF LF IVY G FV 73.6 
VAY LFIV LGFV 73.3 
VAYIFIVWGFV 73.1 
VAY LFIVWGIV 72.8 
AAFLFIIYGFV 72.7 
VAYLFIVYGFV 72.6 
V AY LLVVWGFV 72 .3 
VAYLFIIWGIV 72.0 
V AF LF LIW AIV 71.9 
VAFLFIIWGFV 71.9 
V AFLFIVYGFV 71.8 
FAY LFIIW AIV 71.6 
AAYLF'INWGFV 71.5 
AAF LF LIW AIV 71.5 
VAFLFILWGFV 71.5 
AAFLFILWGFV 71.3 
AAYLFILWGFV 71.3 
FAYLFLIWAII 71.0 
AAFLFILYGFV 71.0 
VAYLFFIWAIV 71.0 
VAYLFLVWGIV 70.8 
VAYLFLVWGFV 70.4 
CAYLFIVWGFV 70.2 
V AY LFVVWGFV 70.2 
AAY LLIVWGFV 70.2 
FAYLFLIWAIis 70.1 
AAF LLI IW G FV 70.0 
CAY LFLIWAIV 69.9 
FAYLFIVWGFV 69.9 
H' AV T. H' T TlA! r. H'll flQ ~ 
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