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Abstract. Basic theoretical issues relating to the response of confined relativistic particles are considered 
including the scaling of t h e  response in spacelike and timelike regions of momentum transfer and the role 
of final state interactions. A simple single particle potential model incorporating relativity and linear con- 
finement is solved exactly and its response is calculated. The response is studied in common approximation 
schemes and it is found that final state interactions effects persist in the limit that the three-momentum 
transferred to the target is large. The fact that the particles are bound leads to a non-zero response in the 
timelike region of four-momentum transfer equal to about 10% of the total strength. The strength in the 
timelike region must be taken into account to fulfill the particle number sum rule. 

PACS. 13.60.Rb Total and inclusive cross sections (including deep-inelastic processes) - 12.39.Ki Rela- 
tivistic quark model - 12.39.Pn Potential models 

1 Introduction 

Deep inelastic scattering (DIS) of leptons by hadrons is 
generally discussed in the Eramework of the naive parton 
model and the QCD-improved parton model using the 
operator product expansion.[l] This approach has been 
very successful in determining the evolution of the struc- 
ture functions as a function of the square of the four- 
momentum transferred to the hadron.[2] In the leading 
order of the model the hadron is approximated by a col- 
lection of noninteracting quarks and gluons. The struck 
quark is assumed to be on the mass-shell both before and 
after its interaction with the electron. Basic theoretical 
considerations bring the validity of these assumptions into 
question. [3] 

Based on the assumption that the struck constituent 
is on the mass-shell before and after interaction with the 
probe, the response is predicted to be in the spacelike 
region for which the energy transfer v is less than the 
magnitude of momentum transfer, lq(, as a consequence 
of the inequality, 

Here k and m, are the momentum and mass of the struck 
quark, respectively. The predicted response is discontinu- 
ous at the boundary Iql = v between space and timelike 
regions. In fact interactions among the constituents in the 
initial state take the constituents off the mass-shell and 
move response of the target into the timelike region of 
four-momentum transfer. 

Send offprint requests to: parisQlanl.gov 
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In the many-body theory (MBT) one expects, at least 
naively, that final state interactions (FSI) should have 
an effect on inclusive scattering cross sections with elec- 
tromagnetic probes from systems whose constituents are 
confined. Scattering of high energy probes from compos- 
ite systems, such as electron scattering by nuclei [4] and 
nucleons [l], or neutron scattering by liquid helium [5], is 
often used to study the structure of the bound system. 
The common assumption is that in DIS at sufficiently 
high energy the probe is incoherently scattered by the 
constituents of the system. In the plane wave impulse ap- 
proximation (PWIA), which neglects FSI effects, DIS is 
directly related to the momentum and energy distribution 
of the constituents in the target. 

The role of FSI effects has been studied extensively 
in electron scattering from nuclear targets [6,7] and neu- 
tron scattering from liquid helium [5].  Recently it has been 
suggested that they may also influence DIS of leptons by 
hadrons [8]. In the present study we focus on scattering 
from targets with confined constituents. The correspond- 
ing physical case concerns DIS from nucleons where, in dis- 
tinction from the nuclear and liquid helium cases, the con- 
stituents are confined in both the initial and final states. 

2 The response and scaling variables 

We consider the response to a hypothetical scalar probe 
which couples to the density of a single scalar constituent. 
This allows us to ignore complications due to spin and the 
Lorentz structure of the response though it retains the 
qualitative features of a more realistic model where one 
considers the coupling of a spin-fr fermion to the conserved 



2 Mark W. Paris: Spacelike and timelike response of confined relativistic particles 

O r ’  2 I ’ 4 I ’ 6 I ‘ 8 I I 10 ’ 
v (GeV) 

Fig. 1. The Iql-v plane. The spacelike region is above the 
lql = v line and timelike is below. Lines of constant Q2 > 0 
axe parabolas which lie entirely in the spacelike region and 
approach lql = v as v + 00. The observed (Q2 > 0) response 
of the proton lies in the shaded area. 

electromagnetic current. The response is 

R(q, v) = \(I\ eiqrj)0)126(E~ - Eo - v) (2) 

I j 

where Cj is over all the particles and the XI over all 
energy eigenstates. It is viewed as the distribution of the 
strength of the state Cj eiq.=j 10) over the energy eigen- 
states of the system having momentum q. It is not neces- 
sarily zero in the timelike, v > 141 region. 

2.1 Scaling variables 

The conventional variables of the parton model, Q2 = 
lqI2 - v2 and the Bjorken x = Q2/2Mv ,  used to describe 
the DIS structure functions of a hadron of mass M ,  are 
confined to the spacelike region of the Jql-v plane for pos- 
itive values of Q2 accessible in lepton scattering experi- 
ments, as shown in Fig. 1. The observed ( Q 2  > 0) DIS 
response is limited to a narrow region in the Jql - v plane 
illustrated in Fig. 1. It is bounded by the elastic limit, 
vel = ,/- - M on one side, and by the photon 
line on the other. In the limit of large lql the width of the 
observed response at fixed lql is M .  Lines of constant Q2 
intersect the elastic limit curve at z = 1 and approach the 
photon line at small x. 

We wish to  study the full range of response possible 
for a system of bound constituents including the region 
of timelike momentum transfer. Therefore we study the 

response, R ( q , v )  as a function of v and lql in the rest 
frame of the system [9], as is common practice in the MBT. 
Lines of constant Iql in Fig. 1 cross the photon line (v = 
Iql) and go into the timelike region. The natural scaling 
variable in the MBT approach to DIS [9] is 6 = v - lql. At 
large Iql the response is expected to depend only on G, and 
not on q and v independently. This variable is equivalent 
to the Nachtmann variable t since [lo, 111 

i 1 

[ = ’([SI - v) = -- nfi6. 
M (3) 

In the limit of large Q2 the 5 = x, thus jj scaling includes 
Bjorken scaling. However, both jj and [ span both space- 
like and timelike regions at fixed lql unlike 2 at fixed Q2. 

3 Model calculation 

We have studied the exact response of a simple “toy” 
model which contains the basic features of relativity and 
confinement to obtain further insights on the possible re- 
sponse in the timelike region and it’s effects on the sum 
rules. In this model we assume that the response of the 
hadron is due to a single light valence quark confined 
within the hadron by its interaction with an infinitely mas- 
sive color charge. We model this interaction by a linear 
flux-tube potential, and use the single particle Hamilto- 
nian, 

containing the relativistic kinetic energy operator. In the 
limit m, = 0 used here, the H can be cast in the form: 

( 5 )  

where p’ = p / d 4 ,  and r‘ = d I 4 r  are dimensionless. The 
response R(lq1, v) of the model then depends only on the 
dimensionless variables Iq’l = and v’ = v/a1j4. 
The main conclusions of this work are independent of the 
assumed value of O;  however, we show results in familiar 
units using the typical value f i  = 1 GeV/fm. 

The model may be viewed as that of a meson with a 
heavy antiquark or that of a baryon with a heavy diquark. 
It is obviously too simple to address the observed response 
of hadrons. For example, it omits the sea quarks and ra- 
diative gluon effects contained in the DGLAP equations 
[l, 21 to describe scaling violations. Nevertheless its exact 
solutions are interesting and useful to study scaling, the 
approach to  scaling, and the contribution of the timelike 
region to sum rules. A similar model has been considered 
by Isgur et  al. [12]. 

The Hamiltonian is diagonalized in the spherical mo- 
mentum basis and the response is calculated to ensure 
that the full strength of the integrated response, 

R(q, v)dv = 1, (6) LW 
is obtained in the chosen basis for all values of the mo- 
mentum transfer considered in this work with < 0.02 % 



Mark W. Pa,ris: Spacelike and timelike response of confined relativistic particles 3 

Fig. 2. The response for values of lql 2 3 GeV versus the 
scaling variable, 0 = v - Iql. 

Fig. 3. The approach to scaling of the response for values 
of 141 <_ 2 GeV ancl lq/ = 10 GeV versus the scaling variable, - 
g y " v -  141. 

and deuteron [13] and interpreted as evidence for quark- 
hadron duality. Thus the toy model seems to describe 
some of the observed properties of the DIS response of 
nucleons. It exhibits !? or equivalently scaling at large 
(41 as observed [9], and an aPProach to scaling similar 
to that seen in recent, experiments. 

191 lw R(Q2 + 03, E ) @  = s, Nlsl -+ 00, v)dv 5 0.9, 

because the contribution of the timelike region is omitted. 
Here we have defined 5 = (ql - v without the conventional 
1/M scale [Eq.(3)]. 

(8) 

3.1 Particle number sum rule 4 Final state interaction effects 

In general the particle number sum rule in MBT is ob- We study the effects of the FSI of the struck particle on 
tained by integrating the response at large lql over all the response. Analytic calculations of the width of the 
Y > 0: response are presented for a general spherically symmet- 

ric potential and numerical results for a linear confin- Jdm R(q, v)dv = ~ ( 0 1  e-iq'rs I I ) ( I I  eiq*r j lo)  ing potential are given. These indicate that the FSI in- 
crease the width of the response beyond that predicted by I i j 
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PWIA. The analytic calculations also consider the nonrel- 
ativistic problem, in which q is large compared to all the 
momenta in the target, but smaller than the constituent 
mass m. The main differences between the nonrelativistic 
and the relativistic response are that the former peaks at 
v = lqI2/2m and has a width proportional to 191, while 
the latter peaks at Y N Iql, and has a constant width in 
the scaling limit. 

4.1 Moments of the response 

In the case of a single confined particle, the state of the 
system after the probe has struck the target is 

I x )  = eiq"lO), (9) 

where 10) denotes the ground state of the particle. The 
state IX)  is not an eigenstate of the Hamiltonian and 
therefore has a distribution in energy. It has a unit norm, 
( X l X )  = (O(e-iq'reiq'rlO) = 1. The total strength of the 
response, given by the static structure function 

S(lSl) = Srn dvR(lql,v), (10) 
0 

is therefore unity. In many-body systems S( Iql) is not nec- 
essarily equal to  one. Subsequent formulas pertain to the 
general case and show factors of S(lq1) explicitly. 

The mean excitation energy of the state IX)  is given 
by the first moment of the response: 

I 

The width of the distribution in energy is characterized 
by the second moment of the energy about the mean: 

Substitution of the Eq.(9) into the formulas for the first 
three moments of the response give the following results: 

(13) 

and width of the exact response is independent of lql in the 
limit lql -+ 00 as necessary for @ scaling. It also shows that 
the width has a kinematic contribution dependent upon 
the target momentum distribution, and an additional in- 
teraction contribution. 

As mentioned, the PWIA assumes that a constituent 
of momentum k, after being struck by the probe, may be 
described by a plane wave with momentum k + q in an 
assumed average potential chosen to give the exact P of 
Eq.(13). From the PWIA response we calculate 

* 

contains only the first term of the exact result [Eq.(14)] 
due to the target momentum distribution. The second 
term, (V2)0 - (V): of Eq.(14) represents the FSI contri- 
bution neglected in the PWIA. It does not vanish in the 
141 + 00 limit for relativistic kinematics. 

In the non-relativistic case, H N R  = + V ( r ) ,  the 
exact i j  is given by: 

For the width of the NR-PWIA response we obtain: 

Note that in Eqs.(l6) and (17) we have not taken the 
lql + 00 limit. 

The width of the exact NR response is: 

1 
A k R ( l q l )  = A k R - P W I A  + ( ( v k 2 ) o  - ( v ) o ( k 2 ) O )  

+ (V2)0 - (V)$ . (18) 

It differs from A N R - ~ W I A  in terms of order l/lql which 
can be neglected in the scaling limit. Thus, in contrast to 
the relativistic case, the FSI do not increase the width of 
the NR-PWIA response at large lql. 

Finally we consider the on-shell approximation (OSA) 
in which the energy of the struck constituent is that of 
a free relativistic particle before and after the interaction 
with probe, as assumed in the quark-parton model. The 
response in OSA depends only on the momentum distri- 
bution of target constituents and obeys scaling. The 
average excitation in OSA is 

Here 0 (&) denotes the neglected terms of that and 
higher order and the angle brackets with subscript '0' in- 
dicate averaging with respect to the ground state. Thus 
- v(lq1) = Jql - (T)o in the limit lql + 00, where T = 

and the width is given by: 

1 
A ~ S A  = , (k2)o + (k2)o  - (T)X + 0 

is the kinetic energy. The requirement that i7( Iql) - 
Iql becomes constant is naturally satisfied in this limit. 
These expression demonstrates that the average energy 

The exact value of i7 [Eq.(13)] is reproduced by the OSA 
for any potential. However, the A $ s A  has (rC2)o - (T): in 
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Fig. 4. The response versus 5 calculated exactly for .PO = 100 
MeV (thin solid curve) and ro = 50 MeV (dotted curve). The 
response in OSA are shown €or lql = 10 GeV (dashed) and 
Jql -+ 00 (dot-dashed). The PWIA rcsponse for Iy( = 10 GeV 
and Iql + 00 lie on essentially the same (thick solid) curve. 

place of the (V2)0 - (V); in the leading term of the exact 
A2 [Eq.(14)]. For a massless particle in a linear confining 
potential, i.e. for the Hamiltonian of Eq.(5), (T)o = (V),, 
and (k2)0 = (V2)o. Therefore for this particular Hamilto- 
nian the OSA reproduces the exact value of A; but the 
shape is wrong. 

4.2 Numerical results 

We first compare the response functions for lql = 10 GeV 
before comparing their moments. In Ref. [15] it has been 
shown that the scaling limit is obtained for such values of 
lqJ. The exact response, Eq.(2), is a sequence of 6 functions 
at v = EJ - EO. In order to obtain a smooth response we 
assume decay widths Ti, for all the excited states. Note 
that the energies of the states IJ) that contribute to the 
response at (ql = 10 GeV are large, therefore their decay 
widths are not affected by the energy dependent terms 
assumed in Ref. [151. The response including decay widths 
is given by: 

(21) 
The responses obtained with I;, = 100 and 50 MeV are 
shown in Fig. 4, along with the I'WIA and OSA responses 
for (ql = 10 GeV and for lql -b co. The difference between 
the exact, responses for = 100 and 50 MeV are much 
smaller than those between the exact and the approxi- 
mate. 

We note that the shape of the PWIA response is qual- 
itatively similar to that of the exact, however, its width 
is too small. This is a direct consequence of the neglect of 
interaction terms in A [E)q.(l4)] as discussed in the last 
section. The width A of the response is 409 MeV, while 
the APWIA = 326 MeV. 

The OSA results in the discontinuous curves shown in 
Fig. 4. They are discontinuous at the lightline (Iql = v) 
because the response of free particles is limited to the 
spacelike region u < lql. The discontinuity at ti = 0 is in 
clear conflict with the exact response which is continuous 
across the lightline and is non-zero in the timelike (g  > 0) 
region. Therefore the OSA appears to  be unsatisfactory 
even though for the special case of a linear potential it 
has the exact values of S(lql), F(lq1) and A(lq1). 
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