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Extended Abstract 

Overview 

A combined meshless-Lagrangian ’particle transport model is used to predict pollutant transport over 
irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach 
utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random 
walk procedure to depict the advection and dispersion of pollutants over any type of surface, including 
street and city canyons. 

Introduction 

An enormous amount of effort has been devoted to the development of efficient algorithms for the 
numerical solution of partial differential equations. For decades, the finite element method (FEM) and 
the finite difference/finite volume methods (FDM/FVM) have been the dominant numerical schemes 
employed in most scientific computation. These methods have been used to solve technical problems 
from aircraft and auto design to medical imaging. Even so, there are often substantial difficulties in 
applying these techniques, particularly for complicated domain and/or. three-dimensional problems. A 
common difficulty in the FEM and the FDM/FVM is the considerable amount of time and effort 
required to discretize and index the domain elements. This is often the most time consuming part of the 
solution process and is far from being fully automated, particularly in 3D. One method for alleviating 
this difficulty is to use the boundary element method (BEM). The major advantage of the BEM is that 
only boundary discretization is required rather than domain. Efficiency is significantly improved over 
these more traditional methods. However, the BEM involves sophisticated mathematics beyond the 
FEM and FDM/FVM and some difficult numerical integration of singular functions. Furthermore, the 
discritization of surfaces in 3-D can still be a complex process even for simple shapes. In addition, all 
these traditional methods are often slowly convergent, frequently requiring the solution of 10’s- 100’s of 
thousands of equations in order to get acceptable accuracy. 

In recent years, a novel numerical technique called “meshless methods” (or “mesh-free methods”) has 
been undergoing strong development and has attracted considerable attention from both science and 
engineering communities. Currently, meshless methods now being developed in many research 
institutions all over the world. 

A common feature of meshless methods is that neither domain nor surface meshing is required during 
the solution process. These methods are designed to handle problems with large deformation, moving 
boundaries, and complicated geometry. Recently, advances in the development and application of 
meshless techniques show they can be strong competitors to the more classical finite difference/volume 
and finite element approaches [l, 21. Indeed, research in meshless methods has continued to grow at a 
rapid pace over the past few years. It is expected that meshless methods will become a dominant 
numerical method for solving science and engineering problems in the 2 1 st century. 



A recent book by Liu [3] discusses meshfree methods, implementation, algorithms, and coding issues for 
stress-strain problems, and includes Mfree2D, an adaptive stress analysis software package available for 
free from the web [4]. Atluri and Shen [5] also recently produced a research monograph that deskribes 
the meshless method in detail, including much in-depth mathematical basis. 

The Meshless Method using RBFs 

Various types of meshless methods exist with each method having its advantages and disadvantages. 
Intensive research conducted in many major research institutions all over the world are now working to 
improve the performance of these approaches. In this work, we focus on the use of radial basis functions 
(RBFs) - which are simple to implement. Currently, there are two major approaches in this direction: (i) 
a domain-type meshless method that was developed by Kansa [6] in 1990; (ii) a boundary-type meshless 
method that has evolved from the BEM. 

Radial basis finctions are the natural generalization of univariate polynomial splines to a multivariate 
setting. The main advantage of this type of approximation is that it works for arbitrary geometry with 
high dimensions and it does not require a mesh at all. A RBF is a function whose value depends only on 
the distance from some center point. Using distance functions, RBFs can be easily implemented to 
reconstruct a plane or surface using scattered data in 2-D, 3-D or higher dimensional spaces. 

From the theory of radial basis functions, the given function is approximated by a linear combination of 
radial functions centered in points scattered throughout the domain of interest; i.e., 

. ” 

where {cI, c2, ..., c,] is the unknown coefficient to be determined, @ the trial function and 1.1 the 
Euclidean distance. For convenience, we denote v = 1.1. Some popular choices of trial function @ include 
linear (v), cubic (r3), multiquadrics (MQ) ((?+c2)’”), polyharmonic splines (J””1ogr in 2-D, ?”+I in 3- 
D), and Gaussian (ap(-cg)). The unknown coefficients can be computed by a collocation method, 
which means the s(x) reproduces the original given data set; Le., 

N 

f ( x i )  =s (x i )  =CcJ4( lx i -x , l ) ,  i=1,2, ... N .  (2) 
/=1 

The above expression implies a linear system whose size is equal to the number of scattered data points. 
Once the unknown coefficients are obtained by solving above linear system of equations, one can 
approximatef(x) by s(x) at any point x in Q. For further details, we refer readers to the theory of RBFs 
discussed in Powell [7]. 

In 1990, Kansa [6]  extended the idea of interpolation scheme using RBFs to solving various types of 
engineering problems. The method is simple and direct and is becoming very popular in the engineering 
community. The boundary type meshless methods indicated in the last section is rather technical and we 
will only focus on a brief introduction of Kansa’s method in this section. 

To illustrate the application of the meshless method using Kansa’s method, we first consider the elliptic 
problems. For simplicity, we consider the 2D Poisson problem with Dirichlet boundary condition 
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Figure 1. Interior points and boundary points using Kansa's method. 

For time dependent problems, we consider the following heat equation as an example: 

aT aT aT --a V ~ T  = f(x,y,~,-,-) 
at ax ay 

An implicit time marching scheme can be used and (9) becomes 
Tn+l -T" 

At 

(9) 

where At denotes the time step and superscript n+l is the unknown (or next time step) value to be solved 
and superscript n is the current known value. The approximate solution can be expressed as 

f(x,y,  tn+') = CTY'$j(x,y) 
N 

9 
Substituting Eq. (1 1) into Eq. (1 0), one obtains 

N 
cTj"+'$(xi, yi) = g(xi, yi, tn+l) i = N, +1,..., N 
i l  

which produces an NxN linear system of equations for the unknown qn+*. Note that the right hand side 
of the first equation in Eq. (12) can updated before the next time step is proceed as follows: 



Notice that the solution of Eq. (3) is in fact nothing but a surface. The technique in surface interpolation 
shown in the last section can be applied to solve Eq. (3). To approximate T, Kansa [6] proposed to 
assume the approximate solution can be approximated by a linear combination of RBFs 

where {T1,T2, ..., TN} are the unknown coefficients to be determined, $(rj) is some form of RBF (trial 
function), and r is defined as 

rj =J(x-xjlZ +(y-yj)’. ( 5 )  

Since MQ is an infinitely smooth function, it is often chosen as the trial function for $, i.e., 

Q(rj) = ,/v = d(x  - x j)z + ( y - y j)2 + cz (6) 

where c is a shape parameter provided by the user. The optimal value of c is still a subject of outstanding 
research. We will not further elaborate it here. Other trial function such as polyharmonic splines can also 
be chosen as the trial function. 

By direct differentiation of Eq. (6), the first and second derivatives of $ with respect to x and y can be 
expressed as 

a@ x-x j  a$ Y - Y j  

az$ (y - yj)z + c2 az+ (X - x j)z + cZ 

-- - 
X - J W ’  a Y - J p  

ax2 JW ’ JY2 JIv -= -= 

Substituting (7) into (1) and by collocation method, one obtains 

., 
3,z =f(xi,yi) ,  i=l,2,...,N, 1 (Xi - x j y  +(Yi -yj)2 +2c2 

(<xi -xj)’ +(yi -yjlZ +c2)  

(7) 

N 
~ T j , / ( x , - x , ) 2 + ( y l - y J ) z + c 2  =g(xi,yl), i=N,+1,N1+2,. . . ,N 

where NI denotes the total number of interior points and N,+l, . . ., N are the boundary points. Figure 1 
shows two sets of interpolation points: interior and boundary points. Note that Eq. (8) is a linear system 
of NxN equations and can be solved by direct Gaussian elimination. Once the unknown coefficients 
{T1,T2,. . .,TN} are found, the solution of T in (3) can be approximated by (4) at any point in the domain. 

J=1 . ?  



Meshless Method for Pollutant Transport 

Successful prediction of hazardous material trajectories requires accuracy in depicting the wind field. 
Past efforts have been spent in examining various numerical methods for simulating atmospheric flows, 
especially those methods that automatically maintain dispersion error control [ 8,9]. Recent and accurate 
scheme that is capable of dealing with highly irregular terrain including city buildings is the meshless 
method. 

Meshless Method for Diagnostic Analysis 

Meteorological data obtained from observations and tower measurements help create a 3-D wind field 
over complex’ terrain. Surface wind fields are constructed from the meteorological tower data and 
interpolated to the initial node points using the meshless method. The method uses the tower data points 
as nodes from which to interpolate. The process utilizes a collocation method as given by 

where , 

and c is a free parameter dependent on the domain, usually between 0.2 and 2. 

Y = 11. - x; 11 

For example, the function f ( x , y ) = V 2  u in 2-D is discretized as 
n 

(1 6 )  
(x  - x;)2 + c2 (Y -Yh2  +c2 

( x - x ; ) 2  + (y -y i )2  +c2 
f ( x  V )  =C ai 

;=I (J(x - x i y  + ( y - y; ) + c2 ) 

Solving the resultant linear system of equations, we obtain {ai}  . With the coefficients ‘ a; ’ known, 
values for ‘u’ can be obtained from 

at any point in the domain [6] .  

A weighting of r-’ is used for the upper level velocity and temperature measurements. This weighting 
produces a smooth field, as opposed to r-* weighting. Mixing depth is also interpolated using the r-’ 
procedure. Once the surface level flow field has been established and the upper level wind data 
interpolated, the horizontal divergence is removed with an interative process. A final refinement using 
an Euler-Lagrange optimization, which is subject to mass continuity, reduces the remaining divergence 
globally over the entire 3-D domain [8,9]. 

Lagrangian Particle Transport 

For point sources, Lagrangian particles are used to depict the transport of contaminant. These particles 
can be sized to specific radii and for density to account for deposition. The trajectories for the 
Lagrangian particles are either interpolated using the finite element approximation functions or global 
interpolation functions. The particle trajectories are calculated in the global coordinate system. Distance 
of travel is determined by the time increment. This increment is calculated by limiting particle advection 



to be no further than its neighboring element. Particulate diffusivities are determined by a Monte 
Carlohandom walk method [ 10 , l l  , 121. 

Results 

Figure 2 shows transient dispersion of PMlo and larger particles released from near ground level sources 
around buildings. The distance a particle travels is dependent on it aerodynamic diameter and the 
effectiveness of gravitational settling. As the flow slows and swirls in the proximity of buildings or 
natural obstructions, concentrations increase. Deposition of the entrained particles occurs by impact with 
surfaces and by settling. Entrained particles shown in Fig. 2 are being transported and deposited around 
several buildings typical of structures. 

.. *... 
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Figure 2: Transport and deposition of particles around buildings. 
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