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ABSTRACT 
The data redistribut#ion or remapping functions, ga.ther and 
scatter, are of long-standing in high-performance comput- 
ing, having been included in Cray Fortran for deca.des. 'In 
this lmper, we present a highly-general array operator with 
powerful ga.ther and scatter capa.bilities unma,t,ched in other 
array languages. We discuss an efficient parallel implemen- 
tation, introducing several new optimizations-run length en- 
coding, dead army reuse, a.nd direct conimunica.tion-that 
lessen the costs associa.ted with the operator's wide a.pp1i- 
ca,bilit,y. In our implementa,tion of this operator in ZPL? we 
demonstrade compa.ra.ble performance to  the highly-tuned, 
ha.nd-coded Fortran plus MPI versions of the NAS FT and 
NAS CG benchmarks. 

1. INTRODUCTION 
Gather and scat,ter operations are noticeably absent from 

most parallel programming systems. Instead, inadequate 
mechanisms serve to mitigate the difficult task of the sci- 
entist who must arbitrarily redistribute data across proces- 
sors. ZPL [13], a parallel array programming language for 
scientific and engineering computations, provides the func- 
tionality necessary to solve the scientist's problem. 

Gather and scatter are data redistribution or remapping 
functions of long standing in high performance computing, 
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having been included in Cray Fortran for decades. Being 
data transfer operations, gather and scatter require a source 
array, S, a destination array, D, and a specification of how 
the elements are to  be rearranged. As the names imply, 
gather describes where a sequence of elements comes from 
and scatter describes where a sequence of elements goes to. 
Accordingly, gather can be thought of logically as operating 
on the right hand side of an assignment statement-gather 
ilie items-and so is written in ZPL as 

D := S#[<specification of index positions>]; 

Syn~metrically, scatter can be thought of logically as operat- 
ing on the left hand side of an assignment statement-scatter 
the items-and so is written in ZPL as 

D#[<specification of index positions>] := S; 

Almost all aspects of the gather and scatter operations are 
symmetric. 

Specifying the remapped positions is particularly easy for 
linear arrays since another linear array defining the remapped 
index positions can be given. Accordingly, if S and D are five 
element, arrays, and Rev is an array containing the integers 
5, 4, 3, 2, 1 in that order, then both 

D := S#[Revl j and D#CRevl := S; 

result in assigning D the elements of S in reverse order. 
For higher rank arrays, say rank k, k-element index vec- 

tors are required to specify the positions of the new arrange- 
ment. This can be cumbersome, and so it is common for 
gather and scatter to be implemented only for linear arrays, 
implying that higher dimensional arrays must first be flat- 
tened. ZPL takes the view that a gather or scatter between 
rank k arrays can be specified by a sequence of k rank IC 
arrays, each giving the index values for a specific dimen- 
sion. For example, the built-in constant arrays, Indexl and 
Index2, may be thought of as 3 x 3 arrays given by 

Indexl = 1 1 1 Index2 = 1 2 3 
2 2 2  1 2 3  
3 3 3  1 2 3  

implying that the transpose in ZPL is expressed with either 
of the following lines: 
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D := S#[Index2, Index11 ; 

D#[Index2, Index11 := S ;  

That  is, the arrays of index values for the two dimensions are 
simply interchanged. Arbitrary remappings merely require 
that  the position-specifying arrays be set up properly. 

(a) Gather: D := S#IMI, MZ]; 

MI 
"one-lo-muny" &y 

(h)Scatter: D#[MI,MZ] :=s; 

MI 
"inunv-io-onc' +! 

F i g u r e  1: A n  i l lustrat ion of a n  a rb i t r a ry  (a) gather 
a n d  (b)  scatter be tween 2D arrays.  I n  t h e  ga the r ,  
a 0 is repl icated in  t h e  first co lumn of t h e  dest ina-  
t ion  a r r a y  as specified b y  t h e  gather 's  one-to-many 
mapping.  In the scatter, a 4 is placed in  the first 
posi t ion of t h e  des t ina t ion  a r r a y  as an a rb i t r a ry  res- 
olut ion to t h e  scatter's many-to-one mapping.  N o t e ,  
also, that n o t  every  e l e m e n t  in  t h e  dest inat ion a r r a y  
is assigned a value based o n  t h e  scatter. 

A problem arises for gather and scatter if the index spec- 
ification is not a permutation, ie . ,  not a one-to-one map- 
ping. (Such cases are often forbidden.) If the indices are 
not unique, then a gather fetches multiple elements from a 
single position. On the other hand, a scatter maps multiple 
elements to  the same position. Figure 1 illustrates a general 
two dimensional gather and scatter operation based on two 
map arrays showing that  gathers may result in many-to-one 
mappings and scatters in one-to-many mappings. The exact 
behavior depends on how the remap is used in ZPL. If the 
scatter is given as a simple assignment as shown in all previ- 
ous examples, the behavior is undefined, but still legal-the 
element assigned last "wins." The scatter may be written 
with operator assignment statements like += in which case 
the sum of the elements mapped to  the same position would 
be stored in that  position. Thus 

D # [ l ]  += S; 
is an inefficient way to  add up the items of S and store them 
in the first position of D. 

The remap operator is clearly powerful, but implementing 
such a communication operator in a high-level language such 
as ZPL is a concern because of its potential expense. Specif- 
ically, t o  implement a gather (the problems are identical for 
scatter) of the form 

D := S#CMl, M2, . . . ,  Mkl; 
implies potential for considerable data motion. Even pre- 
suming that all k + 2 arrays are allocated to processors iden- 
tically, an all-to-all communication is potentially required to  

specify where the elements are to be moved to. A second all- 
to-all communication is potentially required to  transfer the 
elements. Further, because the data is coming from or going 
to  arbitrary positions in the memory, considerable memory 
management is necessary to  marshal and distribute the data. 
Such generality is required in the most complex cases, but in 
many common cases much less communication and memory 
management are possible. The technical problem considered 
in this paper is: How can the remap operator for gather and 
scatter be amplemented eficaently an a hagh-level language? 
The research goals are first to understand where the costs 
are for remapping. and second to discover ways to  optimize 
those portions of the implementation so that  they approxi- 
mate the performance of hand-coded gather and scatter. 

This paper's contributions are as follows: 

We present an operator for arbitrary gathers and scat- 
ters that  has a unique semantics and provides power 
unmatched by other array languages including APL, 
resulting in cleaner. more understandable code. More- 
over, the operat,or is general enough to  apply to  most 
array languages. 

We discuss a parallel implementation for the opera- 
tor and introduce optimizations for run length encod- 
ing, dead array reuse, and direct, communication that 
lessen the costs of the operatork generality. 

We demonstrate comparable performance to  highly- 
tuned, hand-coded Fortran + MPI benchmarks. 

This paper is organized as follows. In the next section, we 
show how programmers typically write arbitrary gather and 
scatter operations using array languages like APL and For- 
tran 90 or communication libraries like MPI and SHMEM. 
In Section 3, we introduce the ZPL language. In Section 4, 
we describe the remap operator through a series of examples 
that illustrates its power, and we discuss our implementa- 
tion of the operator in ZPL. In Section 5, we evaluate the 
performance of the remap operator in the context of the 
NAS FT and NAS CG benchmarks, and, in Section 6, we 
conclude. 

2. BACKGROUND AND MOTIVATION 
In this section we examine ways in which programmers 

write arbitrary gathers and scatters when using systems 
other than ZPL. These methods include communication li- 
braries like MPI and SHMEM as well as array languages like 
APL and Fortran 90195. 

2.1 Array Languages 
ZPL is a parallel array language, and, from the beginning, 

i t  was designed with the parallel implementation in mind. In 
many ways, this forced us to place more constraints on the 
programmer than other developers of array languages would 
have had to. However, in the case of the gather and scatter, 
the remap operator provides unmatched functionality. 

2.1.1 APL 
APL 110, 111 is a well-known array language first intro- 

duced in the 1960's and still in use today. It provides about 
100 built-in operators, and in addition to  having special op- 
erators for transpose and rotate (cases of gather and scat- 
ter), APL provides a relatively powerful form of arbitrary 



gather and scatter based on indexing. For destination and 
source vectors, D and S, a vector map array, M, produces 
the standard gather a.nd scatter operations: 

D +- S ( M ]  

D[A4] - S 

A way to perform gather for higher dimensional arrays in 
APL is first t,o fla.tt,en the source array to :produce a vector 
and then to construct an array of indices of the same shape 
its the destimtion array specifying for each posittion where 
the item is to be found in the fla.ttened source. Thus, if A4 
is the two dimensional array 

A 4 = 1 4 7  
2 6 8  
3 6 9  

and S contains the flatt,ened (row major order) elements of 
a 3x3 source array, S2, then the @her written a.bove pro- 
duces the transpose of S2, an alternative to  using the built,- 
in operator. Similarly, for the scatter we would produce a 
flattened destination array. 

Interestingly, APL lets the programmer specify more than 
one multi-dimensional map array? but the seimntics are 
very different from ZPL’s remap operator. Considering only 
ga.ther, though these concepts apply to the sca.tter as well: 
let A41 be an m x n. array and let M 2  be a, p x g array. Then 
the statement 

D +-- SIA41; A421 

implies that  the destimtion array, W,  is an m x n x p x q 
array and the source a.rray, S ,  is of rank two. Then for all 
permutakions of i ,  j. I C ,  and 1, D i ? i , k ~ ,  would be assigned 
S n d i , , j  , A d z k , ,  . These ideas extend to  arbitra.ry dimensions. 
In the 2D case, using two vectors of lengths m and n for the 
map arrays would result, in m x n assignments froin a 2D 
source array to a 2D destination array. 

2.1.2 Fortran 90 
Fortran 90 [I] can implement the sta.ndard ga.tlier and 

scatt>er operat;ions using array subscripting. If the destina- 
tion array, D ,  source array, S, and map array, Ad,  are all 
one-dimensional, then gather and scatter are expressed as 

D = S(M) 

D(M) = S 

Higher-dimensional arrays must be treated as 1D vectors in 
order t o  scatter or gather data bdween them. For multiple 
map arrays, the semantics are similar to APL, but the map 
arrays must be 1D vectors. 

2.2 Commuiiication Libraries 
The de-facto standard for scientific parallel programming 

remains a sequential language like Fortran or C and a com- 
munication library. This combination provides performance 
currently unmatched by other approaches to parallel pro- 
gramming. Unfortunately, i t  is often difficult to write codes 
and is always ii time-consuming endeavor. 

2.2.1 MPI 

gramming. 
MPI [12] is arguably the most used tool of parallel pro- 

A t  its core, the programmer is left t o  write 

matching “send” and “receive” function calls throughout the 
program. Building on top of this base, the MPI standard 
provides the programmer with several higher-level functions 
for collective conimunica.t,ion. These functions may serve to 
implement, an arbitrasy gather and scatter, but not without 
significa.nt work on the part of the progra,mmer. 

The MPX-Gather and MPI-Scatter functions are logical 
choices. However, these functions lack the generality of 
ZPL’s remap opera.t,or and other language facilities of Sec- 
tion 2.1 which let. the programmer take a global view of the 
comput,ation. In a global view, progra,mniers do not need 
to  concentrate on t,he da.ta movement between specific pro- 
cessors. These h4PI f~nct~ions force the progra.mmer to be 
fully explicit. Wit,h the MPI-Gather function, a programmer 
specifies a root processor, a receiving buffer on the root pro- 
cessor, and a sending buffer on every processor (including 
the root). The execution entails that  the sending buffers 
are conca,tenated a.nd p1a.ced in the receiving buffer on the 
root processor. Thus the root processor @hers the smaller 
buffers on every processor a.nd pla,ces the results in its larger 
receiving buffer. Similarly, in a, sca.tter, the root processor 
sca.tters segments of its larger sending buffer to the smaller 
receiving buffers on the other processors. 

We can implementr the arbitrary scatter and gather opera- 
tions by writing per-processor code to copy data for sending 
t,o other processors into buffers and then use up to p calls of 
either MPI-Gather or MPI-Scatter, where p is the number of 
processors. An alternative function that may be more appro- 
pria.te i s  the MPI-Alltoall function. In this function, each 
processor specifies a receiving buffer and a sending buffer 
that  are partitioned into sections for receiving da.ta. from 
each processor and sending data to each processor. The 
sa.me per-processor copying code needs to be written to im- 
plement our a.rbitrary gat,her and scatter operations. Notre 
there are numerous varia.t,ions on these functions that may 
be used by the MPI progra.mmer. 

2.2.2 SHMEM 
SHMEM 141 is a. proprieta,ry message-passing library im- 

plement,ed on various CRAY and SGI systems. Again, the 
programmer cannot take a. global view of the computation 
and must specify w1ia.t da.ta is going to which processors. 
In SIIMEM, ra.ther than writing two-sided “send” and “re- 
ceive” functions, the programmer specifies one-sided “get” 
or ‘‘put“ functions. On top of these standard functions, 
the SHMEh4 st,anda.rd supplies functions called shmsm-ixget 
and shmem-ixput. In these functions, the programmer spec- 
ifies the indices for where the data is to be gathered from 
or scattered to  on the remote processor. To implement an 
arbitrary gather or sca.tter, the programmer must specify 
up to  p calls t o  sham-ixget or shmem-ixput, where p is the 
number of processors. Note that the arrays must be treated 
as one-dimensional for the indices. 

3. ZPL 
ZPL is a da,t,a-parallel array programming language de- 

veloped at the University of Washington. It provides the 
programmer with a global view of the computation as well 
as complete control over communication. The current ZPL 
implementation is based on a compiler that  translates the 
ZPL code to  a C program with calls t o  a chosen message- 
passing library including MPI and SHMEM. In this section 
we introduce aspects of ZPL relevant to this paper. The 



interested reader is referred t o  the literature for more infor- 
mation [5, 131. 

3.1 Regions and Parallel Arrays 
Central to  ZPL is the concept of the region. A region 

is an index set with no associa.ted data. The region serves 
two funda.menta1 purposes in ZPL: declaring parallel arrays 
and controlling computa.tion. To declare a parallel array, 
the programmer specifies its shape and size using a region; 
alterna~tively, in the case of dynamic parallel arrays, the pro- 
grammer specifies the region in the program. In the follow- 
ing exa.mple, we (1) declare a region R to  be the index set 
containing ( i , j)  for all i and j such that  1 5 i , j  5 n, (2) 
declare a region IntR to  contain the interior indices of R, 
1 < i, j ,  < n, (3) declare arrays A, B, and C over region R, 
and (4) assign the interior elements in C the sum of the cor- 
responding elements in A and B: 

1 region R = [l. .n, 1. .n]; 
2 IntR = [2 .  .n-1, 2. .n - l ] ;  
3 var A ,  B, C : [R] double; 

4 [IntR] C := A + B; 
. . .  

Since A, B, and C are defined over the same region, they 
are distributed in the sa.me way over the processors, and no 
communication is required to  compute the sta.tement in line 
4 of the above exa.mple. Had A ?  B, and C been declared in 
such a way as to be distributed in different ways, the code 
in line 4 would result in either a compiler or runtime error. 
lnstead the statement, would need to be rewritten using one 
of ZPL's several array opera.t,ors that  induce communication. 

3.2 Communication Operators 
In ZPL, all communication directly results from the use 

of several array operators that induce it. Programmers are 
thus provided with a synta.ctic clue as to  the type and amount 
of conimunica.tion occurring in parallel executions of their 
codes. This synta.ctic clue provides a. simple, yet powerful, 
performance model [GI that further distinguishes ZPL from 
parallel programming languages like HPF and UPC in which 
the programmer may not always see syntax indica.ting that  
a. code segment requires communication. In this section, 
we provide a. brief introduction to  the reduction and flood 
operators. The remap operator, which also induces conimu- 
nication, is the subject of this paper; we provide an in-depth 
introduction to  its usage in Section 4.  

3.2.1 The Reduction Operator 
The reduction operator, op<<, reduces the values in an ar- 

ray to a lower-rank slice of the array or a single scalar value. 
A common use of the reduction operator is to  compute the 
minimum of all the elements in  an array. We might also use 
a. reduction to  find the sums of the elements in every row of 
an array and store these sums in the first column of another 
array. These examples follow: 

1 [Rl val := min<< A ;  
2 [lean, 11 B := +<< [Rl C; 

We assume for line 1 of the above example that val is de- 
clared as a scalar double. In line l ,  then, we take the mini- 
mum of every element in A that  exists in R and store the re- 
sult in Val. Since A was declared over R, this is every element 

in A. In line 2, we use two regions to control the computa- 
tion. The dynamically specified region controls where the 
result is stored in B. The first dimensions of the two regions 
match, so we only reduce over the second dimension. As a 
rule, we reduce over each dimension that is collapsed. We 
use + to  find the sum of the elements in every row. Reduc- 
tions may use a number of built-in operators or user-defined 
ones 191. 

3.2.2 The Flood Operator 
The flood operator, >>, provides nearly the opposite be- 

havior of the reduction operator. With this operator, the 
programmer is able to  replicate a value throughout an array 
or values in a slice of the array to  a larger slice. Its name 
implies the dramatic visualization of the replication taking 
place. For example; suppose the programmer wants to  mul- 
tiply the value in the (1, l )  position of array A with every 
value in array B and store the result in array C. One way to 
accomplish this is to replicate that  value in A throughout A 
as in the following lines of code: 

1 [R] A := >>[1, 11 A ;  
2 CR1 C := A * B; 

Clearly there is an inefficiency in this code. While a 
smart compiler might perform optimizations, the program- 
mer should not have to  write this. In the next section, we 
discuss another type of region that allows for the efficient 
storage and computation of the result of the flood operator. 
To close this section, we mention that the previous code can 
be optimally rewritten as the following single line: 

[R] C := (>>[1, 11 A) * B ;  

3.3 Flooded Dimensions 
The flood operator results in potentially redundant stor- 

age on any given processor. In the example from the last 
section in which we replicate one value throughout A, we end 
up storing the same value $ times. The flooded dimension 
solves this problem. 

A flooded damensaon, *, is one in which every value in that 
dimension is constrained to  have the same value. Each pro- 
cessor owning a piece of that  dimension stores only a single 
copy of that value. Consider the example of multiplying an 
n x 1 column matrix by a 1 x n row matrix to  form an n x n 
square matrix. Take the first column of array A as our col- 
umn matrix and the first row of array B as our row matrix. 
We want to  store the product in C. Since the region factors 
out the indices in a computation so there is no communica- 
tion without the use of communication operators and since 
there must be communication if A, B, and C are distributed 
in the same way, we need to  use a communication operator. 
The flood operator is a perfect choice. 

In the following code which performs the matrix multipli- 
cation; we declare (1) a column array and (2) a row array 
using flooded dimensions, use the flood operator to fill the 
(3) column array and (4) row array, and (5) compute the 
multiplication: 

1 var Col : [l..n, *] double; 
2 Row : [*, 1. .n] double; 

3 [l..n, *I Col := >>[ l . . n ,  13 A ;  
4 [*, l . . n l  Row := >>[I ,  1..nl B;  
5 [Rl C := Col * Row; 

. . .  



All communication occurs in lines 3 and 4. The storage 
needed for the partial values, Col and Row, is minimized. 
We could also write the same computation without explic- 
itly declaring the flooded arrays. There is no change in the 
computation since the result of the flood operator is an array 
with flooded dimensions. This code is &s follows: 

[R] C := > > [ l . . n ,  11 A * >>[1, l . . n I  B ;  

As an aside, flooded dimension are important, for defining 
t,he arrays, Indexi and Index2, that  were infornially men- 
tioned in the introduction. These built-in constant arrays 
belong to a series of arrays. Indexz, where the it11 Indexa ar- 
ray cont,ains the values of the indices in the zth dimension of 
any array and all dimensions other than the zth are flooded. 
Because all but one of the diniensions is flooded, one should 
assume that the niemory required for the implementation of 
these arrays is minimal. In practkc, we do even better: no 
memory is needed. 

4. THE REMAP OPERATOR 
ZPL’s remap operator, #, performs either gather or scatter 

operations on arrays. The general form of the gather is 

[R] D := S#[Ml, M2, . . . ,  Mkl; 
where the region. R. the destination array, D, and the map 
arrays, M 1 ,  M2, ,... Mk:. are of the same rank and the source 
array, S. is of rank k. In addition. D must be writable over 
R and M i ,  M2, ..., Mk must contain valid indices for S. The 
general form of the scatter is 

[RI D # [ M l ,  MZ, . . . ,  Mkl := S ;  

where the region, R, the source array, S. and the map arrays, 
M i ,  M2. ..., Mk, are of the same rank and the destination array, 
D, is of rank k. In addition, S must, be readable over R and 
M 1 ,  M2, ..., Mk must contain valid indices for D. 

In this section we demonstrate the power of the remap 
operator with a number of telling examples, examine the 
use of the remap operator in ZI’Z versions of the NAS FT 
and NAS CG benchmarks. and dihcuss the implementation 
of this operator in ZPL. 

4.1 Some Basic Examples 
For the followjng examples, let R be a yegion containing 

the indices (i, j )  for all z and such that 1 5 2, j 5 n and let 
A and B be arrays of double-precision floating-point numbers 
declared over the region R. 

4.1.1 Skew 
A conimon use of the remap operator is for permuting data 

in an array. The skew permutation shows up frequently in 
numerical algorithms. The idea is t o  cyclically shift each 
successive row an increasing number of times. To permute 
the data in array A so that the elements in row a are cyclically 
shifted to  the right i - 1 times, we write (note the use of the 
modulus operator, %) 

[R] A := A# [Indexi,  ((Index2+Indexl--2)%n)+l] ; 

We may do the same computation with a scatter. Alterna- 
tively, we can keep the same maps and write 

[R] A#[Indexl, ((Index2+Indexl-2)%n)+1] := A ;  

in which case the direction of the shift is reversed. 

4.1.2 Redistribution 
In t,his example we assume A and B are distributed across 

the processors in different ways. Then the following line of 
code would result in an error: 

[R] B := A ;  

Communica.t,ion is necessary so the programmer must use a. 
communica.tion opera,tor. Since no logical remapping is tak- 
ing pla,ce, only a. physical redistribution, the identity gather 
suffices: 

[R] B := A#[Indexl, Index21 ; 

4.1.3 Diagonal Replication 
In t,he following contrived example, we wish to  replicate 

t,he values along the major diagonal of array A leaving the 
result, in B such tha.t, Bi, , j  = Bj,i = AQ for all i and j. The 
following single line of code does what we want: 

[R] B := A# [min(Indexl, Index2), 
min(Index1, Index2)l;  

This may not be done.with a scatter since it requires the 
one-to-many mapping provided only by gathers. 

4.1.4 Diagonal Reduction 
Consider a nearly opposite problem from the previous ex- 

ample. Suppose we want, to’set  the,values in the major 
diagonal of array B such that Bi,+ = i q l A i , !  + iL:Aj ,+ for 
all i .  The following line of code is su ctent. 

[R] B# [min(Indexl, Index2) , 
min(Index1, Index2)I += A; 

Notice t,he use of the += assignment operator to resolve col- 
lisions. Regular assignment, :=, is legal as well and, as dis- 
cussed in the introduction, has the semantics of resolving 
collisions arbitrarily. Synlnietrically to  the example in Sec- 
tion 4.1.3, a gather would be insufficient. 

4.1.5 Rank Change 
One well-known t,echnique for matrix multiplication in 

which synchronization is minimized may be written in ZPL 
using Problem Space Promotion (PSP) [7]. The basic idea 
behind PSP is t o  compute with arrays of rank higher than 
the initial arrays and use flooded dimensions to  make the 
coniputa,tion efficient. The PSP matrix multiplication algo- 
rithm is written in ZPL as 

8 
9 
io 
ii 

region I J  = [l..n, 1. .n,  * I ;  
JK = [*, l . . n ,  l . . n ] ;  
IK = [ i . . n .  1, l . . n l ;  
IJK = [ i . . n ,  i..n, l . . n l ;  

var  C : [IKI double; 
A3 : [ IJ]  double; 
B3 : [JK] double; 

. . .  
[IJ] A3 := A# [Indexl, Index21 ; 
[JK] B3 := B#[Index3, Index21; 
[ I K ]  C := +<< [IJKI ( A 3  * B3); 
[R] A := C#[Indexl, 1, Index21 ; 

Since arrays of different rank in ZPL are distributed across 
the processors differently, programmers must use the remap 
operatlor to copy data between such arrays. In the above 
code, each 2D array is promoted into 3D space by replicating 



it in a single dimension (lines 8 and 9). These flooded arrays 
are multiplied and accumulated in the final dimension to  
form the product (line 10). The product is then remapped 
to  a 2D array (line 11). 

4.2 NAS FT 3D Transpose 
The NAS FT benchmark [2, 31 numerically solves a. 3D 

partial differential equa.tion using forward and backward 
Fast Fourier Transforms (FFT’s). The computation centers 
around 1D FFT’s on each dimension of a 3D array. The ba- 
sic idea is to  always leave a.t least one dimension of the array 
local to  a processor in order to  keep the complica,ted a.ccess 
pa.t,terns required by a ID FFT from inducing communi- 
cation. After computing an FFT on the local dimension, 
transpose the array, if necessary, so that another dimension 
is local. In the 2D layout, there are four transposes, one 
bet,ween each of the three FFT’s in both the forward a.nd 
ba.&ward directions, In the 1D layout, we need only trans- 
pose the array twice since two of the dimensions are kept. 
local. 

In the NAS FT benchmark, the array on which we com- 
pute the FFTk is not a cube. Thus, to achieve a. load- 
balanced program, we use arrays that are distributed in dif- 
ferent ways. The remap operator is a perfect choice for 
transposing from one array to another especially given the 
different distributions. 

In the case of a 1D layout, we distribute only the first 
dimension. Note that in the Fortran code the opposite is 
done because of the column-major layout choice. Given the 
region declara.tions 

1 region MYZ * [ I . . n x ,  1. .ny, 1. . nz l ;  
2 RYZX = [ l . . n y ,  1. .nz,  1. .nx]; 

and knowing that X1 is allocated first over RXYZ and then 
over RYZX while X2 is alloca.ted first over RYZX and then over 
RXYZ, the ba.ckward and forward transposes in ZPL are given 
by 

1 [RYZX] X2 := Xl#[Index3, Indexl,  Index21 ; 

2 [RXYZ] X 2  := Xl#[Index2, Index3, Indexl]; 

These same two lines of code require well over fifty for the 
Fortran + MPI implementation (shown in Appendix A.2). 
In Fortran + MPI, instead of regions, loops guide the com- 
putation and the 3 x 3 array dims stores the different di- 
mension lengths for the transposed arrays. Communication 
is not induced by operators, but is specified with MPI func- 
tion calls. 

The 3D transpose in the NAS FT benchmark is not an 
obvious piece of code. Even the ZPL version requires some 
thought! Consider the following reasonable attempt to  write 
the first transpose: 

[RYZXI X2 : = X1# [Index2, Index3, Index11 ; 

At first glance, this code may appear correct. The region of 
the statement is the region over which X1 is allocated and 
specifies the new layout: 2 , 3 ,  1. The index maps match this 
layout. However, since X 1  is allocated over RXYZ we must in- 
dex into its first dimension using indices ranging over one to 
nx. In the region that applies to the statement, these indices 
are in the third dimension. The same reasoning applies to 
the other two dimensions. Note that this line of reasoning 
must also be followed by the Fortran programmer although 
the result is more convoluted. 

... 

4.3 NAS CG Row Column Transpose 

F i g u r e  2: A n  i l lustrat ion of three a l te rna t ive  com- 
munica t ion  p a t t e r n s  on a 2 x 4 processor grid,  each 
induced  by a different implementa t ion  of the trans- 
posi t ion of a flooded co lumn vector  to a flooded row 
vector in  t h e  N A S  CG benchmark:  (a) a n  implemen- 
ta t ion  w h e r e  t h e  m a p  a r r ays  are readable  over the 
region of computa t ion ,  (b) a n  implementa t ion  using 
t h e  Indexl a r r a y  t h a t  looks m o r e  like the s t a n d a r d  
transpose, a n d  (c) a n  opt imal  implementa t ion  w h e r e  
t h e  index  is chosen so  as to  dupl ica te  the clever t r ick 
in  which each  processor communica tes  w i t h  at most 
o n e  o t h e r  processor. 

The NAS CG benchmark [2, 31 estimates the largest eigen- 
value of a symmetric positive definite sparse matrix by the 
inverse power method. The main iteration loop contains a 
sparse matrix vector multiplication, several reductions, and 
a column to row transpose. It is in this transpose that  we 
are primarily interested. A clever trick is used in the For- 
tran + MPI code (shown in Appendix B.2) in which each 
processor needs only to  communicate with at most one other 
processor when using a k x k or k x 2k processor grid where 
k is a power of 2. In ZPL, we duplicate this trick, but it is 
worthwhile to  consider more basic alternatives first. 

We start with the following definitions: 
1 region Row = E*, 1. .nl  ; 
2 Col = [1..n, * I ;  
3 var W : [Row] dcomplex; 
4 P : [Coll dcomplex; 

We can transpose the values in P to W using the following 
line of code: 

[Row] W := P#[IndexZ, Index21 ; 

Since the second dimension of P is flooded, the second map 
array is irrelevant. The transpose stems from using the in- 
dices ranging over the second dimension of region Row to  
index into the first dimension of P. Using Index2 in the sec- 
ond dimension may appear to be a reasonable choice because 
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[R] D := S#[Ml, M2, . . . )  Mk]; 

Lcnt [ l  . .PROCSl := 0 
f o r a l l  i = (il, i 2 ,  ..., i k )  i n  R 

M := (Ml[ i l ,  M2[i3, ..,, Mk[i]) 
p := proc-owns (M) 
Pmap[il := p 
Lind [PI [L.cnt [PI 1 : = M 
Lcnt[pl := Lcn~;[pl + 1 

f o r a l l  p i n  1. .PROCS 
send Lcnt[p] t o  p 
rece ive  k n t [ p l  from p 
send LindEpI El. .Lcnt [p l l  t o  p 
rece ive  RindEpl [ l .  .Rcnt[pJ] from p 

Ldata [PI [e l  = S [Rind [pl [e l  1 

send LdataCp] [I. .Rcnt [PI] t o  p 
rece ive  Rdata[p] [ l .  .Lcnt,[p]] from p 

Lcnt [ l .  . PROCS] : = 0 
f o r a l l  i = (il,  i 2 ,  . , . ,  i k )  i n  R 

f o r a l l  p i n  l..PROCS and e i n  l . .Rcnt[pI  

forall p i n  1. .PROCS 

p := PmapCil 
D [i l  := Rdata [p] [Lcnt [p] I 
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[R] D#[M1, M2, . . . ,  Mkl := S; 

Lcnt[l..PROCS] := 0 
f o r a l l  i = (i l ,  i 2 ,  ..., ik) i n  R 

M := (Ml[i], M Z [ i ] ,  ..., Mk[il) 
p := proc-owns(M) 
Pmap[il := p 
Lind [p] [Lcnt [PI] : = M 
Lcnt [p] := Lcnt [PI + 1 

f o r a l l  p i n  l..PROCS 
send Lcnt[p] t o  p 
rece ive  Rcnt [p] from p 
send Lind [PI [ l .  . Lcnt [PI] to p 
rece ive  Rind[p] [ l .  .Rcnt[pll from p 

Lcnt [l. .PROCS] := 0 
f o r a l l  i = (il,  i 2 ,  . . . ,  i k )  i n  R 

p := Pmap[il 
Ldata [PI [Lcnt [PI] : = S [il 
LcntCpI := LcntCpl + 1 

f o r a l l  p i n  l..PROCS 
send LdataEpI [l. .Lcnt[pl l  t o  p 
rece ive  Rdata[pl [l. .Rcnt [PI] from p 

f o r a l l  p i n  1. .PROCS and e i n  1 I .Rcnt [PI 
D[Rind[p] [e]] := RdataLp] [el 

Figure 3: The basic  impleinentat ion of the G a t h e r  and Scatter operators. 

- Lcnt[pl := Lcntlpl  + 1 22  

it. takes on different values as we tra:verse the region. Fig- 
ure 2(a) illustra.tes this t,ra.nspose assuming a 2 x 4 processor 
grid. Note the inefficient, communication pattern in which 
t,here is no one-t,o-one mapping bet,ween processors. As we 
increase the number of processors, this pattern becomes sig- 
nificantly worse. We ca.n do better with the following code: 

[Row] W := P#[Indox2, Index11 ; 
Figure 2(b) illustrates this second approe.ch. Here is the 
distinct,ion. Since W is flooded in the first, dimension, ev- 
ery processor must write the same value to its represent,a- 
tive element. Thus the map arrays must also, in general, 
be flooded in the firsl. dimension. Ot,lierwise different pro- 
cessors would potentially rea.d different values i n  the map 
a.rrays and might, ultima,t,ely get different. values from the 
source array. However, since the source array is flooded in 
the second dimension, the value of the second map is irrele- 
vant; it affects only performance. using Index1 results in a 
communication pa.ttern t,hat more closely achieves a one-to- 
one communication pa.ttern, and does a.chieve just this with 
a IC x k processor grid. 

If each processor specifies an index in place of the sec- 
ond map that  would point it to the processor with which it. 
should communicat,e, then we can duplica.te the clever one- 
t,o-one comniunication pa,tt,ern implemented by the Fortran 
+ h4PI benchmark writers. The ZPL code is as follows: 

[Row] W : = Ptf [IndexZ, exch..procl ; 
The scalar varia,ble, exch-proc, is set so that on each pro- 
cessor it contains an index specifying a. position on a. unique 
processor. If TOWS and cols equal the number of row and 
column processors and row and col identify the computing 
~xocessor, then we set exch-proc with the formula 

TOW x - -t col mod -- x -- + 1. 
n rows 12 

cols cols rows 

The conimunicat,ion pa.t,tern induced by this approach is il- 
lustrated in Figure 2(c). 

4.4 Implementation 
The implementation of the general remap operator is non- 

trivial. There is the potential for all-to-all communication 
and, before the actual data can be transmitted between pro- 
cessors, the pattern of communication must first be estab- 
lished. In the case of the gather, the processors do not ini- 
tially know where they must send data  and, in the case of 
the scatter, the processors do not initially know from where 
they must, receive data. 

Figure 3 illustrates the base-line implementation of both 
gather and scatter versions of the remap operator. These 
iniplementations are identical through line 12. In the ini- 
tial loop, lines 2 to 7, we compute the processor map, per- 
processor buckets of local indices, and local counts. The 
processor map contains the processor number that owns the 
value pointed to  by the map arrays. The buckets of local 
indices are filled with the indices specified by the map arrays 
such that the bucket for the processor owning a given index 
contains that index. The local counts are set t o  the number 
of indices in each bucket of local indices. 

We communicate betlween the processors in lines 8 to  12 of 
Figure 3. The local counts are sent to the other processors’ 
remote counts so the remote count of processor q on pro- 
cessor r equals the local count of processor r on processor q. 
Similarly, the buckets of local indices are sent to correspond- 
ing buckets of remote indices. The counts are sent before 
the indices so t,hat the buckets for the remote indices may 
be allocated to  the proper size. 

The gather and scatter differ in lines 13 to  22. We discuss 
the gather first. In the loop of lines 13 to  14, we fill per- 
processor buckets of local data from the source array. We use 



the buckets of remote indices to  read from the source array 
in an arbitrary order. The buckets of local data  are filled 
in order. Then, in lines 15 to  17? the local data  is sent to  
remote data buckets. The last step, lines 18 to 22: is to  copy 
the remote data into the destination array. Here we read 
from the remote data. buckets in order a.nd, by traversing the 
region, write to the destina,tion array also in order. We use 
the processor map to  select which remote data. bucket to  read 
from. Since the indices used by the remote processor were 
in the order of the region traversal, we obtain the correct 
result. 

The sca,tter is symmetric to  the gather, differing in the fol- 
lowing way. We fill the local data. buckets, rea.ding from the 
source array in order. We then write t,o the destination arra.1’ 
in an arbitrary order. Note there are some funda.menta1 dif- 
ferences between the scatter and the ga.ther. In the gather, 
we read from an array in a. ca.che-unfriendly way whereas, i n  
the sca.t,ter, we writ,e to a.n array in a cache-unfriendly way. 

These distinctions ext,end to  the parallel imp1ementa.tion. 
In the scatter, we rea.d from the source arra,y before requir- 
ing the remote counts and indices; in the gather, we need the 
remote counts and indices before reading from the source ar- 
ray. In a clever implement,a.tion of the ga.ther we could start. 
to  rea.d from the source array as soon as we have t.he indices 
from any processor. Likewise in the sca,t,ter we could start 
to write to  the dest,inat,ion array as soon as we have data 
from any processor. These distinctions 1ea.d us to  believe 
that we should be a.ble to tell whether to  prefer t,he scatter 
or the gather based on certain rules of thumb if we are in 
a situa.tion where either applies. For exa.mple: we could use 
either the scatter or the gather to  write the 2D transpose 
of Section 1, the redistribution of Section 4.1.2, and the 3D 
transpose of Section 4.2. However, it is unclear which is 
preferable in these sit,ua.tions. Nonetheless, the importance 
of the optimization discussed in Section 4.5.4 suggests we 
favor the ga.ther since t,his optimiza.tion is less rea.dily a.ppli- 
cable to  the scatter. 

4.5 Optimizations 
The generality of the remap operator and its wide appli- 

cability make it slower than the other conimunicat,ion opera- 
tors in ZPL. Indeed, it is the communication operator of last 
resort. Even so, there are a number of optimizations that 
greatly improve its efficiency. In this section, we discuss 
a number of general opt,imizations. We have not focused 
on specific idiomatic optimizations in our implementation. 
though it is easy to  imagine several that could further im- 
prove our results. 

4.5. I Map Saviizg/Sharing 
The remap operator is commonly used to perform stylized 

collective communication. Examples include transposing ar- 
rays or slices of arrays, rotating arrays or slices of arrays. 
translating arrays or slices of arrays, etc. Moreover, such 
uses might occur within the main repeated computation of 
a program. Great benefit may be reaped by caching copies 
of the counts, indices. and processor map so that they do 
not need to be recalculated. We call this optimization map 
sawing since we save the map used to remap the data. 

If the region and map arrays remain unchanged between 
two instances of the same remap operator, we can skip lines 
1 to  12 of Figure 3 for both the scatter and gather. There 
are two ways to  implement this optimization; either we may 

use static analysis or we may use a more dynamic approach. 
The static approach is more conservative but may result in 
cleaner and faster code. We opt for the dynamic approach 
due to  the optimiza.tion’s importance and beca.use the addi- 
tional runtime support is not substantial. 

The optimiza.tion is as follows. If the map information 
exists when we come to the start of the gather or scatter, 
we use i t .  Otherwise, we recompute the map. Additionally, 
wherever the region or map arrays change in the program, we 
destroy the map informa.tion. Care is ta.ken to  assure that if 
the map arrays are changed on any processor, the map infor- 
ma.tion is destroyed on all processors. ZPL’s programming 
model lets us do this wit,hout the need for communication. 

Another benefit, of the dynamic scheme is that it aids with 
a.not,her Optimization called map sharing. In this optimiza- 
tion: the ma.p information is shared between remap oper- 
a.t,ors tha.t a,ccess the same region and set of map arrays 
at, different static points in the program. In the NAS CG 
benchmark, for exa.mple, the sa.me remap occurs inside and 
outside of the main loop. 

4.5.2 Coiiiputa tioidComnzun ication Overlap 
A common optimiza.tion parallel programmers often em- 

ploy is to  overlap communica,tion with computation in order 
to  hide la.t,ency. This optimiza.tion applies to the remap op- 
erator in ZPL. The compiler will automatically push inde- 
pendent computa.tions between lines 16 and 17 of the gather 
implementation and between lines 19 and 20 of the sca.tter 
implementation as detailed in Figure 3. In addition, the 
compiler will push independent computations between lines 
11 and 12 of both remap forms. This a.dditiona1 push is done 
with a. lower priority beca.use the map saving optimiza.t.ion 
may eliminate this conimunica.tion altogether and there is 
typically less to communicate. 

This optimiza,tion cannot be applied by the MPI program- 
mer using the monolithic MPI-Alltoall, MPIScatter,  and 
MPI-Gather intrinsics. Of course, the optimization would 
have no effect if the ZPL implementation were based on 
these MPI routines. 

4.5.3 Run Length Encoding 
St,ylized collective communication patterns like those listed 

in Section 4.5.1 benefit from encoding the processor map and 
buckets of indices in such a way as to decrease the storage 
and communication requirements and improve the perfor- 
mance of indexing into the arrays when the potentially ar- 
bitrary access pattern is actually a strided sequence. We 
use a strided run length encoding to  store the processor map 
and buckets of indices. Through a careful implementation, 
we never need to  use the full amount of memory necessary to  
store unencoded representations. We use exactly the mem- 
ory required to  store the encoding plus a small constant 
amount of space for the work of actually encoding the se- 
quences. Moreover. our implementation is such that if the 
encoding does not appear t o  have a benefit, we will stop the 
encoding process early and use unencoded representations. 

We use a recursive strided run length encoding so we can 
encode the encoding if this will benefit, us. In our implemen- 
tation, by default, we base the number of recursive encod- 
ings on the rank of the remap operator. So if there are three 
map arrays, we encode an encoded encoding. This choice is 
based on the optimal number of encodings we would need 
for the basic redistribution pattern of Section 4.1.2. 



As a basic example of the strided run length encoding, 
consider the sequence: 1, 2, 3, 4, 5 ,  6.  Our run length 
encoder would stream in this sequence and output: 1, 1, G. 
The initial value is I ,  the stride is 1. and the length is 6. 

The 2D transpose implemented with the gather demon- 
strates the power of run length encoding the indices. As 
we t,raverse the array in row major order. the map arrays, 
Index2 and Indexl, provide pairs of integers used tlo index 
the source array. The stream of pairs 

is easily compressed. One level of encoding produces 

(1 1) (1 0 )  4 (1 2) ( I  0) 4 (1 3) ( I  0) 4 ( I  4) (1 0 )  4 

There are four sequences to decode. In the first. sequence, 
the initial pair is (l, 1): the stride is (1, 0), a.nd the 1engt.h 
is 4. The stride applies element-wise t*o the pair so the next. 
pair is (2, 1). Since we are working on a 2D array, we use 
two levels of encoding, and produce 

(1 I)  (:l 0 )  4 (0 1.) 4 

There is one sequence to  decode which stasts with the pair 
(1, l), the inner stride is (1, 0), the out,er stride is (0 ,  1): 
and the inner and outer lengths are 4. In producing t,liis re- 
cursive encoding, the level one encoding is never produced, 
not, even as an intermedia.te result. The total memory used 
to produce this encoding from the stream of indices is never 
more than enough memory to  store the final result, 8 ink-  
gers in this case, and some consta.nt amount, of a.dditional 
memory for the computa.tions. Eieca.use we encode multiple 
streanis of indices at, a. time, one stream for each processor 
we need to communica.t,e with, we cannot, simply use vi~ri- 
a.bles for this coinput,a.tion, but ra.t.her need a bufier array. 

4.5.4 Dead Source/Destiizarioiz Reuse 
The buckets of da.ta used in the implementa.t,ion of the 

remap opera.tor may consume significant, memory. To avoid 
this, we employ a.n opth imt ion  called dead source reuse 
and dead destination reuse. If the destinat-ion array is dead 
before the remap, we may use its memory for the local da,ta 
buckets. Note tha.t in the case of t,he gat,her, it is relatively 
easy to determine what data in the destimtion array will 
be overwritten. This is not the case for the sca,tt,er. If the 
source array is dead a.fter the remap, we may use its memory 
for the remote d a h  buckets. Then, in essence, we copy the 
source array to  the destina.tion array, locally wit,h possible 
rearrangements of the data, send the data in the dest,ina- 
tion array t o  the source array, and, lastly, copy the source 
array to the dest,inafion array, again locally with possible 
rearrangements of the data. 

This optimization is done by ha.nd in  the Fortran + h4PI 
implementation of the NAS FT 3D transpose shown in Ap- 
pendix A.2. I t  is easy for the ZPL compiler t o  determine 
t,hat both the source and destination arrays are dead, thus 
i t  is able t,o duplicate the work of the Fortran programmer. 

4.5.5 Direct Seizdiizg/Receiviizg 
Both dead source reuse and dea.d destination reuse de- 

crease the storage required to  implement the remap oper- 
a.tor, but an interesting case arises i f ,  during either of the 
local copies to  the destina,tion array or a. data bucket, no 

rearrangement of the data  takes place. If the data is copied 
in order from one array to another, a straight copy, there 
is no reason to  buffer the data. I t  may just be sent or re- 
ceived directly. The difficult task, then, is to detect whether 
a. straight copy will take pla.ce. For t,his detection, the run 
length encoding of Section 4.5.3 comes to  the rescue. 

A small, well-struct.ured, easily-detectable encoding of the 
indices is both necessary and sufficient to prove that the copy. 
from the source array to  the da,ta buckets in the case of the 
gather or from the da.ta buckets t80 t,he destination array 
in the case of the scatter is a straight copy when coupled 
with information &out where the first and last elements are 
pla.ced in memory: the size of ea.ch element, and the number 
of elements. It, is even easier to tell if the other copy is 
straight: we just, need t,lie informa.tion a.bout the first, and 
last elements, the size of ea.ch element, and the number of 
elements. If the copy is dense, we know it is straight beca.use, 
i n  these latt,er copies. we are copying tlhe data in order. 

This optimization, performed in the ZPL runtime, is equiv- 
alent, to the straight-forward approach taken by the Fortran 
+ LIP1 progra.nimer in t,he context of the NAS CG trans- 
pose. Due t,o the dynamic na,ture, the ZPL implementa.tion 
necessarily suffers from some overhead. More interestingly, 
t,liis optimization fired in cert,ain configurations of the NAS 
FT benchmark t,ha,t, we did not, expect. We discuss this fur- 
ther in Section 5 where we evalua.te our implementation of 
the remap operator. 

5. EVALUATION 
In this section, we evalua.i,e our impIement,a.tion of the 

remap operator in the context, of the NAS CG and NAS 
FT benchmarks. The NAS parallel benchmarks are a suite 
of scientific a.pplica,tions a.nd kernels representative of codes 
scientists write for parallel computers 12: 31. The Fortran 
and MPl provided implementations are highly-tuned. We 
compare the NAS codes qualitatively first, then exa.niine 
differences in memory usage a.nd execution time. 

5.1 Expressiveness 
Throughout, this paper, we have argued t>hat the remap 

opera.t,or and ZPL's high-level construct,s make the program- 
mer's job easier. Figure 4 contains a breakdown of the lines 
of code in the ZPL a.nd Fortran + MPI implementations. 
While lines of code is not, even close to  being a perfect metric 
for expressive power, it, does yield some useful informa.tion. 
The ZPL implementations of both the NAS FT and NAS CG 
benchmarks are writt>en with less than half the number of 
lines uses t o  write the Fortran + MPI versions. The figures 
show a. breakdown of the lines of code into those used for 
declara.t,ions, the actual computation, and communication. 
The high-level approa.ch of ZPL elimina.tes the need for the 
programmer t,o specify details of communication. The com- 
putation was written with significantly fewer lines because 
of ZPL's powerful array syntax based on the region. The 
reduction in lines is especially great for the NAS CG bench- 
mark bemuse of ZPL's support, for sparse arrays [8]. 

5.2 Memory Usage 
Execution time is not the only important metric. It is 

frequently the case that scientists would prefer to run their 
a.pplications using the largest possible data sets. Thus the 
implementatlion of their code should use as little memory as 
possible. Figure 5 shows the effect of the remap optirniza- 
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Figure  4: T h e  n u m b e r  of lines of code in t h e  For- 
t r a n  + MPI a n d  ZPL versions of t h e  NAS FT a n d  
NAS CG b e n c h m a r k s  broken  d o w n  into lines used 
for  communicat ion,  computa t ion ,  a n d  declarat ions.  
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F i g u r e  5: The effect of the various remap opt imiza-  
t ions  o n  t h e  p e a k  m e m o r y  usage d u r i n g  execut ion 
of a remap for class C of t h e  NAS FT b e n c h m a r k  
r u n  on 256 processors of a C r a y  T3E. T h e  m e m o r y  
is subdiv ided  in to  five uses: general  program d a t a ,  
t h e  t h r e e  large ar rays ,  t h e  r e m a p  processor map, 
t h e  r e m a p  indices, a n d  t h e  r e m a p  d a t a  buckets.  

tions discussed in this paper on the total memory usage for 
class C (512 x 512 x 512 arrays, the largest size) of the NAS 
FT benchmark running on 256 processors of a Cray T3E. 
The memory needed to  implement the remap in the NAS 
CG benchmark is insignificant regardless of the optimiza- 
tions because the amount of data movement is relatively in- 
significant. The optimized ZPL implementation (ZPL) uses 
nearly the same amount of memory as the Fortran + MPI 
(FSMPI);  the memory usage is broken down into the mem- 
ory needed for the three major arrays and for the rest of the 
program including a massive lookup table. The optimized 
ZPL overhead, on the order of 84K, is small enough so as to  
not show up in the chart. 

Disabling the map saving optimization (ZPL NM) saves 
the memory used for storing the map for the forward trans- 
pose. In the benchmark, we do a forward transpose followed 
by twenty backward transposes. The map is recalculated for 
the backward transposes, but is not saved for the forward 
transpose, a savings in memory on the order of 42K. 

Run length encoding proves crucial for reducing the mem- 
ory footprint. The three indices per position and the pro- 
cessor map use half the memory needed to  store the three 
major arrays of the computation. Disabling run length en- 

coding (ZPL NR) increases the memory needed to  save the 
two maps from about 84K to 24M. Compared to  disabling 
all the optimizations (ZPL NO), including map saving, we 
use significantly more memory for the map. We make up 
this loss with the dead source/destination reuse optimiza- 
tion which eliminates the data  buckets. Disabling this opti- 
inization (ZPL NB) increases the memory usage by 16M. 

As mentioned at the end of Section 4.5.5, the direct send- 
ing/receiving optimization works under certain conditions 
for the NAS FT benchmark. The processor grid used for 
this benchmark is a p x 1 x 1 grid if p is less than or equal 
to  nx, after which a p - nx x nx x 1 grid is used, where p 
is a power of two. When p 2 nx.  the copy from the source 
array is a straight copy, and the direct optimization applies. 
This optimization has no effect with less than 512 proces- 
sors for class C. but if it did, the direct optimization could 
be used at the expense of the dead source/destination reuse 
optimization. The memory use would increase by 8M (ZPL 
D) for the one bucket. In our current implementation, we 
give the direct optimization priority, however, we are look- 
ing into whether a scheme based on dynamic profiling or an 
inspector/executor model would be worthwhile. 

5.3 NAS FT Speedup 
Figures 6-9 show results for the NAS FT and NAS CG 

benchmarks for the class C problem size on increasing num- 
bers of processors of a Cray T3E. We use speedup graphs 
except where more information can be gleamed from a graph 
of execution times. We calculate the speedups over the best 
implementation time on the fewest number of processors for 
which any implementation could complete without exhaust- 
ing the memory or our time allotment. (Complete results for 
classes A, B. and C are in Appendix C; raw times are listed 
in Appendix D.) The ZPL implementation is based on C 
and MPI. Though ZPL would likely exhibit improved per- 
formance with the SHMEM library, time constraints have 
limited our work. 

Figure 6(a) compares the ZPL and Fortran + MPI imple- 
mentations of the NAS FT benchmark. The ZPL implemen- 
tation exhibits noticeable overhead stemming mostly from 
the transpose, shown in Figure 6(b). This overhead in the 
ZPL implementation can be attributed completely to  the 
cache blocking done by hand in the Fortran + MPI code. In 
Figure 6(c), we undo the cache blocking (F+MPI NB), and 
the ZPL implementation becomes noticeably faster. Now 
the overhead lies in the Fortran + MPI implementation's lo- 
cal copying between source and destination arrays. In ZPL, 
these copies are especially fast because of prior work done 
in computing the maps. 

In Figure 7(a) we look at the effect of the map saving op- 
timization on ZPL. Disabling this optimization (ZPL NM) 
decreases the execution time by nearly a factor of two. In 
this graph, ZPL AMORTIZED refers to an implementation 
of ZPL in which the maps are pre-computed. On the first 
transpose. the maps are initially calculated adding some 
overhead to the ZPL implementation. As the graph indi- 
cates. in only twenty iterations. the optimization is almost 
fully amortized. 

Disabling run length encoding (ZPL NR), Figure 7(b), 
slows execution time significantly. Further, if the indices 
are not encoded, the ZPL version cannot run on 64 proces- 
sors. The importance of the full suite of optimizations is 
shown in Figure 7(c) where we compare the ZPL implemen- 
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t,at,ion wit,liout. the remap optimiza.tions (ZPL NO). The di- 
rect sending/receiving opt,imizat,ions have no impact on class 
C unt,il there are 512 processors, but do show up for class A 
at  128 processors a.nd class B a.t 25G processors. The dead 
source/destina.t.ioii reuse opt,imiea.tion had a critical impa.ct. 
in decrea.sing t,he memory footprint, but did not affect exe- 
cution time. 

5.4 NAS CG Speedup 
The transpose iii NAS CG differs from the one in NAS 

FT in a. number of ways? two of which are worth mention- 
ing. First, the tra.nspose in NAS CG results in a. one-to-ont: 
communication pa.ttern as opposed t,o the all-to-all commu- 
nication of NAS FT. Second, there is little data. movement 
in NAS CG, but much in NAS FT. 

Figure 8(a) compares the ZP% and Fortran -t MPI imple- 
menta.tions. Nearly all the noticeable overhead in this graph 
stems from the sparse matrix-vector multiplication. In ZPL, 
the programmer’s job is made easier with tlie builbin sup- 
port for sparse armys, but the final code is slightly less effi- 
cient. For a discussion of this support, the rea.der is referred 
to the lit,era.ture [8] .  In this paper we focus on the relatively 
insignificant transp’osition. The transpose time of the ZPL 
and Fortran -t MPl implement,at,ions as well as that for the 
baseline ZPL (ZPL NO) is. charted in Figure 8(c). More 
overhead is exhibited in  the ZPL version t,han was seen for 
the NAS FT benchmark, a result of the crit,ical nature of the 
direct sending/receiving optimization which has inherently 
more overhea,d from the det,ection process a.nd the decreased 
data  motion which exposes more over1iea.d. As a. whole, the 

optimizations are seen to be more critical resulting in about 
a factor of 6 to  8 slowdown. 

Figure 8(b) shows tlie variations for the ZPL transpose 
discussed in Section 4.3. The simple method of using the 
Index2/Indexl transpose (ZPL 1211) shows comparable per- 
formance to  the more complicated scheme that results in an 
exactly one-to-one coniniunication pattern, and, of course, 
tlie performance is identical on a k x IC processor grid. The 
transpose using Index2 twice (ZPL 1212) has noticeably worse 
performance because the communication pattern is ineffi- 
cient. 

Figure 9 shows the effect of disabling any one of the (a) 
map saving (ZPL NM), (b) run length encoding (ZPL NR), 
and (c) direct sending/receiving (ZPL D) optimizations. Each 
of these optimizations is critical to performance. 

6, CONCLUSIONS 
ZPL’s remap operator possesses great power, yet retains 

an efficient implementation. The operator is more versa- 
tile than those provided even by APL, and is significantly 
more geiieral than ZPL’s other operators, including the re- 
duction and flood operators discussed in this paper. Remap 
arguably subsumes these other operators because we can 
easily rewrite any reduction or flood with a remap. How- 
ever, the purpose of ZPL is not only to communicate with 
the machine. but also with the programmer. The reduction 
and flood operators indicate, t o  both the programmer and 
the implementer, specific communication patterns with ef- 
ficient implementations that may be based on the parallel 
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prefix algorithm and/or special hardware. 
Rather than replace the other operators, remap compli- 

ments them in creating a small suite of parallel array opera- 
tors that  one could use to  write scalable, high-performance, 
parallel codes. In the end, though, remap remains a catch- 
all operator for ZPL, to  be used when other operators do 
not suffice. The implementation described in this paper 
lessens the cost of remap's wide applicability. Through opti- 
mizations such as map saving, communication/computation 
overlap, run length encoding, dead array reuse, and direct 
communication, our implementation produces code compa- 
rable in performance to  hand-tuned Fortran and MPI. 

7, REFERENCES 
111 J .  C. Adams. W. S. Brainerd. J. T. Martin, B. T. 
L 1  

Smith, and j. L. Wagener. Fortran 90 Handbook. 
McGraw-Hill, New York, NY, USA, 1992. 

[2] D. Bailey, E. Barszcz, J .  Barton, D. Browning, 
R. Carter, L. Dagum, R. Fatmoohi, S. Fineberg, 
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, 
V. Venkatakrishnan, and S. Weeratunga. The NAS 
parallel benchmarks. Technical report, NASA Ames 
Research Center (RNR-94-007), March 1994. 

[3] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, 
A. Woo, and M. Yarrow. The NAS parallel 
benchmarks 2.0. Technical report, NASA Ames 
Research Center (NAS-95-020), December 1995. 

[4] R. Barriuso and A. Knies. SHMEM userk guide. 
Technical report, May 1994. 

I51 

I61 

171 

181 

B. L. Chamberlain. The design and implementation of 
a region-based parallel language. Technical report, 
Universit,y of Washington (Ph.D. Thesis), November 
2001. 
B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, 
L. Snyder. and W. D. Weathersby. ZPL's WYSIWYG 
performance model. In Proceedangs of the IEEE 
Workshop on High- Level Parallel Programming Models 
and Supportive Environments, 1998. 
B. L. Chamberlain, E. C. Lewis, and L. Snyder. 
Problem space promotion and its evaluation as a 
technique for efficient parallel computation. In 
Proceedings of the A CM International Conference on 
Supercomputing, 1999. 
B. L. Chamberlain and L. Snyder. Array language 
support for parallel sparse computation. In 
Proceedings of the A CM International Conference on 
Supercomputinq, 2001. 

[9] S. J .  Deitz. B. L. Chamberlain, and L. Snyder. 
High-level language support for user-defined 
reductions. In Proceedings of the Los Alamos 
Computer Science Institute Symposium, 2001 I 

[lo] A. D. Falkott and K. E. Iverson. APL/360 User's 
Manual. IBM Corporation, 1968. 

[ll] K. E. Iverson. A Programming Language. Wiley, New 
York, NY, USA, 1968. 

[12] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. 
Walker, and J .  Dongarra. MPI: the complete reference. 



MIT Press, Cambridge, MA, USA, 1996. 

Cambridge, MA, USA, 1999. 
(131 L. Snyder. Programming Guide to ZPL. MIT Press, 



APPENDIX 

A. NAS FT 3D TRANSPOSE 
The ZPL and Fortran + MPI codes for implementing the 3D transpose in the NAS FT benchmark follow. 

A.l ZPL Version 
1 [RYZXI X2 := Xl#[Index3, Indexl, Index23; 

2 [RXYZ] X2 := Xl#[Index2, Index3, Indexl'l; 

A.2 
1 
2 
3 
4 
5 
6 

7 
8 

9 
10 

Fortran Version 
subroutine transpose-x-yz(l1, 12, xin, xout) 
implicit none 
include 'global .h' 
integer 11, 12 
double complex xin(ntotal/np) , xout (ntotal/np) 
call transpose2-local (dims (1,111, 

call transpose2-global(xout, xin) 
call transpose2-f inish(dims(l,ll), 

return 
end 

> dims(2, ll)*dims(3, ll), xin, xout) 

> dims(2, ll)*dims(3, 111, xin, xout) 

11 subroutine transpose-xyz(l1, 12, xin, xout) 
12 implicit none 
13 include 'g1obal.h' 
14 integer 11, 12 
15 double complex xin(ntotal/np) , xout (ntotalhp) 
16 call transpose2-local(dims(l,ll)*dims(2, 111, 

17 call transpose2-global(xout, xin) 
18 call transpose2-finish(dims(l,ll)*dims(2, ll), 

> dims(3, 111, xin, xout) 

> dims(3, ll), xin, xout) 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

return 
end 

subroutine transposel-local (nl, n2, xin, xout) 
implicit none 
include 'mpinpb.h' 
include 'g1obal.h' 
integer nl, n2 
double complex xin(n1, n2), xout(n2, nl) 
double complex z(transblockpad, transblock) 
integer i, j, ii, jj 
if (nl .It. transblock .or. n2 .It. transblock) then 

if (nl .ge. n2) then 
do j = 1, n2 

do i = 1, nl 

end do 
xout(j, i) = xin(i, j) 

end do 

do i = 1, nl 
else 

do j = 1, n2 

end do 
xout(j, i) = xin(i, j) 

end do 
endif 

do j = 0, n2-1, transblock 
else 

do i = 0, nl-1, transblock 

46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 

do jj = 1, transblock 
do ii = 1, transblock 

end do 
z(jj,ii) = xin(i+ii, j+jj) 

end do 
do ii = 1, transblock 

do jj = 1, transblock 

end do 
xout(j+jj, i+ii) = z(jj,ii) 

end do 
end do 

end do 
endif 
return 
end 

subroutine transpose2-global (xin, xout) 
implicit none 
include 'g1obal.h' 
include 'mpinpb.h' 
double complex xin(ntotal/np) 
double complex xout(ntotal/np) 
integer ierr 
call mpi-alltoall(xin, ntotal/(np*np) , dc-type, 

> xout , ntotal/ (np*np), dc-type, 
> commslicel, ierr) 

69 return 
70 end 

71 
72 implicit none 
73 include 'global .h' 
74 integer nl, n2, ioff 
75 

subroutine transposel-finishhl, n2, xin, xout) 

double complex xin(n2, nl/np2, O:np2-1), 
> xout (n2*np2, nl/np2) 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

87 

88 

integer i, j , p 
do p = 0, np2-1 

ioff = p*n2 
do j = 1, nl/np2 

do i = 1, n2 

end do 
xout(i+ioff, j )  = xin(i, j ,  p) 

end do 
end do 
return 
end 

call transpose-xyz(2, 3, XI, x2) 

call transpose-x-yz(3, 2, XI, x2) 

. . .  



B. NAS CG COLUMN ROW TRANSPOSE 
The ZPL and Fortran -+ MPl codes for implementing the column to row transpose in the NAS CG benchmark follow. 

B.l ZPL Version 
1 [Row] W := PJthdex2, exch-procl; 

B.2 
1 
2 

3 

Fortran Version 
i f (  12npcols .ne ,  0 )then 

> dp-type, exch-proc, 1 ,  
> mpi-corn-world, request., i err)  

> dp-type, exch-proc, 1 ,  

> rupi-corn-world, i err )  

c a l l  mpi-irecv(q, exchrecv-length, 

c a l l  mpi-send(w(send-start,), send len ,  

c a l l  rnpi-wait( request, s tatus ,  i err  ) 

do j=l,exch-recv-length 

enddo 

e l s e  

qCj) = w(j) 

endif 

C. EXPERIMENTAL RESULTS 
The following gra.phs show the complete results (classes A,  B, a.nd C) for our experiments discussed in Section 5. We 

show efficiency graphs except where more informa,tion can be gleamed from graphs of. execution times. We calculate the 
efficiencies against t,he perfectly-scaled time of the best, implementation time on the fewest. number of processors for which 
any imp1ementa.tion could complete without exha.usting tlie memory or our time allottment. 

'C.l NAS FT Results 
The graphs below compare the total execut,ion time of the ZPL and Fortran + MPI implementations. 
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The following graphs compare the performance of the transpose part of the benchmark. 
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The following graphs show the effect of the cache-blocking optimization in the Fortran + MPI implementation. 
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The following graphs show the effect of the map sa.ving optimization. 
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The following graphs show the effect of the run length encoding optimimtion. 
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The following graphs show the total effect of the optimizations discussed in this paper. 

-I- linear speedup 
-P- F+MPI 
-c ZPL 
IC 2PL NO 

FT Class A -- Clay T3E 
Transpose Time 

t o  I f Olbd2 $4 lb8 256 
Processors 

B 0 - 1 1  
$ 01632 64 128 256 

Processors 

FT Class C -- Crey T3E 
Transpose Time 

E o  
2 01632 84 128 256 

Procsssors 

FT CISSS C - Cray T3E 
Transpose Time 

E 

$ 01632 64 128 256 
Procsssors 



C.2 NAS CG Results 
The graphs below compare the total execution time of the ZPL and Fortran 4- MPI implementations. 
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The following graphs compare the performance of the transpose part, of t,he benchmark and show the total effect of the 
optimizations discussed in t,his paper. 
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The foollowing graphs compare the va.rjous ZPL jniplementations of t h e  transpose. 
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The following graphs show the effect of the map saving and sharing optimizations. 
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The following gra.phs show the effect of the run length encoding optiiniza.t,ion. 
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The following graph show the effect of the direct sending and receiving optimizations. 
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D. EXPERIMENTAL TIMINGS 
The following tables contain the minimum observed times for each configuration of the experiments reported on in Section 5 

and Appendix C. 

processors 

Fi-MPI 
F+MPI NE! 

ZPL 

ZPLNR 
ZPL NM 

2 4 8 16 32 64 128 256 
84.209’ 4 2 m  21.560 10.!%09 5.566 2.769 1.450 0.710 

100.841 50.283 24.997 12.619 6.394 3.170 1.642 0.789 
99.477 4 8 m  24.737 12.562 6.339 3.199 1.605 0.903 

-.- -.- 25.998 13.304 6.800 3.650 2.173 1.284 
115.429 56.775 28.885 14.505 7.383 3.752 1.876 1.228 - 

ZPLNO 
ZPL AMORTIZED 

FT Class 3 - Cray T3E (Total Time) 
I L 

v r o c - 8 - -  16 32 64 128 256 I 

-.-- 8.178 4.225 2.210 j 1.417 
6.169 3.112 1.550 1 0.816 

F+MPI 
FI-MPI NB 

ZPL 
l l  

ZPLNM ( 1  
ZPLNR I I  

330.907 167.841 84.769 42.862 21.665 11.183 
383.536 191.053 96.059 48.524 24.312 12.465 -E- -- 184.957 93.796 47.481 23.827 11.964 

._ 

ZPLNO 
ZPL Ah4ORTIZED zL---+--- 117.338 59.825 30.752 16.154 

184.691 93.222 47.194 23.662 11.835 

ZPL II -.- I 2!9.228 I 16 

\ p r o c e s s o r s  
F”+MPI 

F+MPl NB 

8 16 32 64 128 256 -. 
32.466 I 18.565 9.941 5.576 3.025 1.773 
85.364 141.963 21.278 11.233 5.703 3.085 

FT Class C - Cray T3E (Total Time) .__- 
processors 11 64 1 2 8 2 5 6 )  

-.053 8.566 4.381 _ _ _  I. , . . - - - , 

FT Class C - Cray T3E (Transpose Time) - 
processors \ I  64 128 256 I 

6.752 I F-tMPI 11 23.686 I 12.639 I 
c 

2.172 
ZPL NM 
ZPL NR 
ZPL NO 

ZPL AMORTIZED 

-.- 54.490 28.625 15.091 7.666 4.048 
-.-- --.- 19.186 10.464 6.318 3.980 
-:- --.- 39.513 20.983 11.250 6.356 
-.- 28.822 15.733 8.286 4.220 2.062 -.-- 

- 
F+MPI NB 46.922 23.829 12.107 

ZPL 36.751 18.915 10.123 
ZPL NM 62.315 31.656 17.135 
ZPLNR -.- 23.293 14.385 
ZPLNO -.- 44.703 24.907 

ZPL AMORTIZED 35.668 18.352 9.758 



I ZPL 1211 I( 0.200 1 0.196 I 0.149 I 0.155 1 0.146 I 0.134 I 0.177 I 0.160 I 0.216 I I 

CG Class B - Crav T3E (Total Time) 
processors 

F+MPI 
ZPL 

8 16 32 64 128 256 
858.405 1 440.781 1 133.984 I 
931.290 I 468.454 I 193.313 I 

78.033 I 28.934 I 19.279 
95.748 I 48.582 1 27.822 

I I 

ZPL NM 11 965.250 1 497.998 I 209.422 I 111.673 I 58.915 I 39.715 
ZPL NR II 951.269 I 475.753 I 195.777 1 98.758 I 50.054 1 29.803 
ZPL ND 
ZPL NO 
ZPL 1212 
ZPL I211 

952.145 475.015 198.186 99.031 50.999 29.187 
977.309 503.068 210.391 115.029 60.812 41.047 
952.405 479.898 200.653 106.481 54.699 37.979 
949.701 471.528 196.332 97.410 51.104 28.534 

CG Class B - Crav T3E (Transwose Time) 

F+R4PI 
ZPL 

ZPL NM 
ZPL NR 

1.264 1.258 0.780 0.757 0.521 0.494 
1.758 2.623 1.669 3.080 1.986 2.559 

26.865 27.117 14.782 17.119 10.900 13.479 
5.439 6.419 3.613 5.008 2.986 3.577 

processors 
F+R4PI 

ZPL 
ZPL NM 
ZPL NR 

8 16 32 64 128 256 
1.264 1.258 0.780 0.757 0.521 0.494 
1.758 2.623 1.669 3.080 1.986 2.559 

26.865 27.117 14.782 17.119 10.900 13.479 
5.439 6.419 3.613 5.008 2.986 3.577 

CG Class C - Crav T3E (Total Time) 

ZPL ND 
ZPL NO 
ZPL I212 
ZPL 1211 

4.961 5.936 4.038 4.844 2.902 3.521 
30.377 35.620 19.232 22.893 14.264 17.203 

5.124 9.906 5.641 10.446 6.194 11.401 
2.570 2.614 1.850 3.079 2.713 2.552 

ZPL NM 11 714.300 I 373.965 1 162.857 1 96.736 
ZPL NR. 11 690.091 I 348.150 I 149.784 I 83.218 

processors 
F+MPI 

ZPL 

. .._ _ _ _  _._ _ ~ .  ~~- . 

I ZPL ND /I 690.182 I 349.968 1 148.285 I 80.848 I 

32 64 128 256 
585.906 I 303.845 I 105.895 I 61.941 
678.068 I 343.936 1 143.390 I 77.602 

ZPL ND 
ZPL NO 
ZPL 1212 
ZPL I211 

CG Class C - Gray T3E (Transpose Time) 1 proces;;L 11 32 ~ 64 ~ 128 ~ 256 1 
F+MPI 1.158 1.244 0.799 0.777 

2.978 5.733 3.411 4.316 
ZPL NM 29.016 32.351 18.931 21.785 
ZPL NR 6.720 9.528 5.321 6.253 

6.358 9.082 5.113 6.116 
34.067 43.117 24.160 29.237 
10.837 19.741 11.417 20.890 
3.317 5.733 3.297 4.313 

ZPL NO 
ZPL 1212 
ZPL 1211 

716.261 378.467 164.740 102.905 
694.190 362.423 155.265 97.550 
686.806 346.857 146.884 79.143 


