
The Design and Implementation of a Parallel
Array Operator far the Arbitrary Remapping of Data*

Steven J. Deitx
University of Washington

Seattle, WA 981 95
deitz @ cs.washington.edu

Sung-Eun Choi
Los Alamos National Laboratory

Los Alamas, NM 87545

sungeun @ lanl.gov

ABSTRACT
The data redistribut#ion or remapping functions, ga.ther and
scatter, are of long-standing in high-performance comput-
ing, having been included in Cray Fortran for deca.des. 'In
this lmper, we present a highly-general array operator with
powerful ga.ther and scatter capa.bilities unma,t,ched in other
array languages. We discuss an efficient parallel implemen-
tation, introducing several new optimizations-run length en-
coding, dead army reuse, a.nd direct conimunica.tion-that
lessen the costs associa.ted with the operator's wide a.pp1i-
ca,bilit,y. In our implementa,tion of this operator in ZPL? we
demonstrade compa.ra.ble performance to the highly-tuned,
ha.nd-coded Fortran plus MPI versions of the NAS FT and
NAS CG benchmarks.

1. INTRODUCTION
Gather and scat,ter operations are noticeably absent from

most parallel programming systems. Instead, inadequate
mechanisms serve to mitigate the difficult task of the sci-
entist who must arbitrarily redistribute data across proces-
sors. ZPL [13], a parallel array programming language for
scientific and engineering computations, provides the func-
tionality necessary to solve the scientist's problem.

Gather and scatter are data redistribution or remapping
functions of long standing in high performance computing,

*This work was supported in part by a grant of HPC re-
sources from the Arctic Region Supercomputing Center.
The first author is supported by a DOE High Performcznce
Computer Science Graduate Fellowship.
$This author is currently in the employ of Cray Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission andlor a fee.
PfoPf'O3, June 11-13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-581 33-588-2/03/0006 ... $5.00.

t Bradford L. Chamberlain
University of Washington

Seattle, WA 981 95
brad @cs.washington.edu

Lawrence Snyder
University of Washington

Seattle, WA 981 95

Snyder @cs.was hington.edu

having been included in Cray Fortran for decades. Being
data transfer operations, gather and scatter require a source
array, S, a destination array, D, and a specification of how
the elements are to be rearranged. As the names imply,
gather describes where a sequence of elements comes from
and scatter describes where a sequence of elements goes to.
Accordingly, gather can be thought of logically as operating
on the right hand side of an assignment statement-gather
ilie items-and so is written in ZPL as

D := S#[<specification of index positions>];

Syn~metrically, scatter can be thought of logically as operat-
ing on the left hand side of an assignment statement-scatter
the items-and so is written in ZPL as

D#[<specification of index positions>] := S;

Almost all aspects of the gather and scatter operations are
symmetric.

Specifying the remapped positions is particularly easy for
linear arrays since another linear array defining the remapped
index positions can be given. Accordingly, if S and D are five
element, arrays, and Rev is an array containing the integers
5, 4, 3, 2, 1 in that order, then both

D := S#[Revl j and D#CRevl := S;

result in assigning D the elements of S in reverse order.
For higher rank arrays, say rank k, k-element index vec-

tors are required to specify the positions of the new arrange-
ment. This can be cumbersome, and so it is common for
gather and scatter to be implemented only for linear arrays,
implying that higher dimensional arrays must first be flat-
tened. ZPL takes the view that a gather or scatter between
rank k arrays can be specified by a sequence of k rank IC
arrays, each giving the index values for a specific dimen-
sion. For example, the built-in constant arrays, Indexl and
Index2, may be thought of as 3 x 3 arrays given by

Indexl = 1 1 1 Index2 = 1 2 3
2 2 2 1 2 3
3 3 3 1 2 3

implying that the transpose in ZPL is expressed with either
of the following lines:

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

D := S#[Index2, Index11 ;

D#[Index2, Index11 := S ;

That is, the arrays of index values for the two dimensions are
simply interchanged. Arbitrary remappings merely require
that the position-specifying arrays be set up properly.

(a) Gather: D := S#IMI, MZ];

MI
"one-lo-muny" &y

(h)Scatter: D#[MI,MZ] :=s;

MI
"inunv-io-onc' +!

F i g u r e 1: A n i l lustrat ion of a n a rb i t r a ry (a) gather
a n d (b) scatter be tween 2D arrays. I n t h e ga the r ,
a 0 is repl icated in t h e first co lumn of t h e dest ina-
t ion a r r a y as specified b y t h e gather 's one-to-many
mapping. In the scatter, a 4 is placed in the first
posi t ion of t h e des t ina t ion a r r a y as an a rb i t r a ry res-
olut ion to t h e scatter's many-to-one mapping. N o t e ,
also, that n o t every e l e m e n t in t h e dest inat ion a r r a y
is assigned a value based o n t h e scatter.

A problem arises for gather and scatter if the index spec-
ification is not a permutation, ie . , not a one-to-one map-
ping. (Such cases are often forbidden.) If the indices are
not unique, then a gather fetches multiple elements from a
single position. On the other hand, a scatter maps multiple
elements to the same position. Figure 1 illustrates a general
two dimensional gather and scatter operation based on two
map arrays showing that gathers may result in many-to-one
mappings and scatters in one-to-many mappings. The exact
behavior depends on how the remap is used in ZPL. If the
scatter is given as a simple assignment as shown in all previ-
ous examples, the behavior is undefined, but still legal-the
element assigned last "wins." The scatter may be written
with operator assignment statements like += in which case
the sum of the elements mapped to the same position would
be stored in that position. Thus

D # [l] += S;
is an inefficient way to add up the items of S and store them
in the first position of D.

The remap operator is clearly powerful, but implementing
such a communication operator in a high-level language such
as ZPL is a concern because of its potential expense. Specif-
ically, t o implement a gather (the problems are identical for
scatter) of the form

D := S#CMl, M2, . . . , Mkl;
implies potential for considerable data motion. Even pre-
suming that all k + 2 arrays are allocated to processors iden-
tically, an all-to-all communication is potentially required to

specify where the elements are to be moved to. A second all-
to-all communication is potentially required to transfer the
elements. Further, because the data is coming from or going
to arbitrary positions in the memory, considerable memory
management is necessary to marshal and distribute the data.
Such generality is required in the most complex cases, but in
many common cases much less communication and memory
management are possible. The technical problem considered
in this paper is: How can the remap operator for gather and
scatter be amplemented eficaently an a hagh-level language?
The research goals are first to understand where the costs
are for remapping. and second to discover ways to optimize
those portions of the implementation so that they approxi-
mate the performance of hand-coded gather and scatter.

This paper's contributions are as follows:

We present an operator for arbitrary gathers and scat-
ters that has a unique semantics and provides power
unmatched by other array languages including APL,
resulting in cleaner. more understandable code. More-
over, the operat,or is general enough to apply to most
array languages.

We discuss a parallel implementation for the opera-
tor and introduce optimizations for run length encod-
ing, dead array reuse, and direct, communication that
lessen the costs of the operatork generality.

We demonstrate comparable performance to highly-
tuned, hand-coded Fortran + MPI benchmarks.

This paper is organized as follows. In the next section, we
show how programmers typically write arbitrary gather and
scatter operations using array languages like APL and For-
tran 90 or communication libraries like MPI and SHMEM.
In Section 3, we introduce the ZPL language. In Section 4,
we describe the remap operator through a series of examples
that illustrates its power, and we discuss our implementa-
tion of the operator in ZPL. In Section 5, we evaluate the
performance of the remap operator in the context of the
NAS FT and NAS CG benchmarks, and, in Section 6, we
conclude.

2. BACKGROUND AND MOTIVATION
In this section we examine ways in which programmers

write arbitrary gathers and scatters when using systems
other than ZPL. These methods include communication li-
braries like MPI and SHMEM as well as array languages like
APL and Fortran 90195.

2.1 Array Languages
ZPL is a parallel array language, and, from the beginning,

i t was designed with the parallel implementation in mind. In
many ways, this forced us to place more constraints on the
programmer than other developers of array languages would
have had to. However, in the case of the gather and scatter,
the remap operator provides unmatched functionality.

2.1.1 APL
APL 110, 111 is a well-known array language first intro-

duced in the 1960's and still in use today. It provides about
100 built-in operators, and in addition to having special op-
erators for transpose and rotate (cases of gather and scat-
ter), APL provides a relatively powerful form of arbitrary

gather and scatter based on indexing. For destination and
source vectors, D and S, a vector map array, M, produces
the standard gather a.nd scatter operations:

D +- S (M]

D[A4] - S

A way to perform gather for higher dimensional arrays in
APL is first t,o fla.tt,en the source array to :produce a vector
and then to construct an array of indices of the same shape
its the destimtion array specifying for each posittion where
the item is to be found in the fla.ttened source. Thus, if A4
is the two dimensional array

A 4 = 1 4 7
2 6 8
3 6 9

and S contains the flatt,ened (row major order) elements of
a 3x3 source array, S2, then the @her written a.bove pro-
duces the transpose of S2, an alternative to using the built,-
in operator. Similarly, for the scatter we would produce a
flattened destination array.

Interestingly, APL lets the programmer specify more than
one multi-dimensional map array? but the seimntics are
very different from ZPL’s remap operator. Considering only
ga.ther, though these concepts apply to the sca.tter as well:
let A41 be an m x n. array and let M 2 be a, p x g array. Then
the statement

D +-- SIA41; A421

implies that the destimtion array, W, is an m x n x p x q
array and the source a.rray, S , is of rank two. Then for all
permutakions of i , j. I C , and 1, D i ? i , k ~ , would be assigned
S n d i , , j , A d z k , , . These ideas extend to arbitra.ry dimensions.
In the 2D case, using two vectors of lengths m and n for the
map arrays would result, in m x n assignments froin a 2D
source array to a 2D destination array.

2.1.2 Fortran 90
Fortran 90 [I] can implement the sta.ndard ga.tlier and

scatt>er operat;ions using array subscripting. If the destina-
tion array, D , source array, S, and map array, Ad, are all
one-dimensional, then gather and scatter are expressed as

D = S(M)

D(M) = S

Higher-dimensional arrays must be treated as 1D vectors in
order t o scatter or gather data bdween them. For multiple
map arrays, the semantics are similar to APL, but the map
arrays must be 1D vectors.

2.2 Commuiiication Libraries
The de-facto standard for scientific parallel programming

remains a sequential language like Fortran or C and a com-
munication library. This combination provides performance
currently unmatched by other approaches to parallel pro-
gramming. Unfortunately, i t is often difficult to write codes
and is always ii time-consuming endeavor.

2.2.1 MPI

gramming.
MPI [12] is arguably the most used tool of parallel pro-

A t its core, the programmer is left t o write

matching “send” and “receive” function calls throughout the
program. Building on top of this base, the MPI standard
provides the programmer with several higher-level functions
for collective conimunica.t,ion. These functions may serve to
implement, an arbitrasy gather and scatter, but not without
significa.nt work on the part of the progra,mmer.

The MPX-Gather and MPI-Scatter functions are logical
choices. However, these functions lack the generality of
ZPL’s remap opera.t,or and other language facilities of Sec-
tion 2.1 which let. the programmer take a global view of the
comput,ation. In a global view, progra,mniers do not need
to concentrate on t,he da.ta movement between specific pro-
cessors. These h4PI f~nct~ions force the progra.mmer to be
fully explicit. Wit,h the MPI-Gather function, a programmer
specifies a root processor, a receiving buffer on the root pro-
cessor, and a sending buffer on every processor (including
the root). The execution entails that the sending buffers
are conca,tenated a.nd p1a.ced in the receiving buffer on the
root processor. Thus the root processor @hers the smaller
buffers on every processor a.nd pla,ces the results in its larger
receiving buffer. Similarly, in a, sca.tter, the root processor
sca.tters segments of its larger sending buffer to the smaller
receiving buffers on the other processors.

We can implementr the arbitrary scatter and gather opera-
tions by writing per-processor code to copy data for sending
t,o other processors into buffers and then use up to p calls of
either MPI-Gather or MPI-Scatter, where p is the number of
processors. An alternative function that may be more appro-
pria.te i s the MPI-Alltoall function. In this function, each
processor specifies a receiving buffer and a sending buffer
that are partitioned into sections for receiving da.ta. from
each processor and sending data to each processor. The
sa.me per-processor copying code needs to be written to im-
plement our a.rbitrary gat,her and scatter operations. Notre
there are numerous varia.t,ions on these functions that may
be used by the MPI progra.mmer.

2.2.2 SHMEM
SHMEM 141 is a. proprieta,ry message-passing library im-

plement,ed on various CRAY and SGI systems. Again, the
programmer cannot take a. global view of the computation
and must specify w1ia.t da.ta is going to which processors.
In SIIMEM, ra.ther than writing two-sided “send” and “re-
ceive” functions, the programmer specifies one-sided “get”
or ‘‘put“ functions. On top of these standard functions,
the SHMEh4 st,anda.rd supplies functions called shmsm-ixget
and shmem-ixput. In these functions, the programmer spec-
ifies the indices for where the data is to be gathered from
or scattered to on the remote processor. To implement an
arbitrary gather or sca.tter, the programmer must specify
up to p calls t o sham-ixget or shmem-ixput, where p is the
number of processors. Note that the arrays must be treated
as one-dimensional for the indices.

3. ZPL
ZPL is a da,t,a-parallel array programming language de-

veloped at the University of Washington. It provides the
programmer with a global view of the computation as well
as complete control over communication. The current ZPL
implementation is based on a compiler that translates the
ZPL code to a C program with calls t o a chosen message-
passing library including MPI and SHMEM. In this section
we introduce aspects of ZPL relevant to this paper. The

interested reader is referred t o the literature for more infor-
mation [5, 131.

3.1 Regions and Parallel Arrays
Central to ZPL is the concept of the region. A region

is an index set with no associa.ted data. The region serves
two funda.menta1 purposes in ZPL: declaring parallel arrays
and controlling computa.tion. To declare a parallel array,
the programmer specifies its shape and size using a region;
alterna~tively, in the case of dynamic parallel arrays, the pro-
grammer specifies the region in the program. In the follow-
ing exa.mple, we (1) declare a region R to be the index set
containing (i , j) for all i and j such that 1 5 i , j 5 n, (2)
declare a region IntR to contain the interior indices of R,
1 < i, j , < n, (3) declare arrays A, B, and C over region R,
and (4) assign the interior elements in C the sum of the cor-
responding elements in A and B:

1 region R = [l. .n, 1. .n];
2 IntR = [2 . .n-1, 2. .n - l] ;
3 var A , B, C : [R] double;

4 [IntR] C := A + B;
. . .

Since A, B, and C are defined over the same region, they
are distributed in the sa.me way over the processors, and no
communication is required to compute the sta.tement in line
4 of the above exa.mple. Had A ? B, and C been declared in
such a way as to be distributed in different ways, the code
in line 4 would result in either a compiler or runtime error.
lnstead the statement, would need to be rewritten using one
of ZPL's several array opera.t,ors that induce communication.

3.2 Communication Operators
In ZPL, all communication directly results from the use

of several array operators that induce it. Programmers are
thus provided with a synta.ctic clue as to the type and amount
of conimunica.tion occurring in parallel executions of their
codes. This synta.ctic clue provides a. simple, yet powerful,
performance model [GI that further distinguishes ZPL from
parallel programming languages like HPF and UPC in which
the programmer may not always see syntax indica.ting that
a. code segment requires communication. In this section,
we provide a. brief introduction to the reduction and flood
operators. The remap operator, which also induces conimu-
nication, is the subject of this paper; we provide an in-depth
introduction to its usage in Section 4.

3.2.1 The Reduction Operator
The reduction operator, op<<, reduces the values in an ar-

ray to a lower-rank slice of the array or a single scalar value.
A common use of the reduction operator is to compute the
minimum of all the elements in an array. We might also use
a. reduction to find the sums of the elements in every row of
an array and store these sums in the first column of another
array. These examples follow:

1 [Rl val := min<< A ;
2 [lean, 11 B := +<< [Rl C;

We assume for line 1 of the above example that val is de-
clared as a scalar double. In line l , then, we take the mini-
mum of every element in A that exists in R and store the re-
sult in Val. Since A was declared over R, this is every element

in A. In line 2, we use two regions to control the computa-
tion. The dynamically specified region controls where the
result is stored in B. The first dimensions of the two regions
match, so we only reduce over the second dimension. As a
rule, we reduce over each dimension that is collapsed. We
use + to find the sum of the elements in every row. Reduc-
tions may use a number of built-in operators or user-defined
ones 191.

3.2.2 The Flood Operator
The flood operator, >>, provides nearly the opposite be-

havior of the reduction operator. With this operator, the
programmer is able to replicate a value throughout an array
or values in a slice of the array to a larger slice. Its name
implies the dramatic visualization of the replication taking
place. For example; suppose the programmer wants to mul-
tiply the value in the (1, l) position of array A with every
value in array B and store the result in array C. One way to
accomplish this is to replicate that value in A throughout A
as in the following lines of code:

1 [R] A := >>[1, 11 A ;
2 CR1 C := A * B;

Clearly there is an inefficiency in this code. While a
smart compiler might perform optimizations, the program-
mer should not have to write this. In the next section, we
discuss another type of region that allows for the efficient
storage and computation of the result of the flood operator.
To close this section, we mention that the previous code can
be optimally rewritten as the following single line:

[R] C := (>>[1, 11 A) * B ;

3.3 Flooded Dimensions
The flood operator results in potentially redundant stor-

age on any given processor. In the example from the last
section in which we replicate one value throughout A, we end
up storing the same value $ times. The flooded dimension
solves this problem.

A flooded damensaon, *, is one in which every value in that
dimension is constrained to have the same value. Each pro-
cessor owning a piece of that dimension stores only a single
copy of that value. Consider the example of multiplying an
n x 1 column matrix by a 1 x n row matrix to form an n x n
square matrix. Take the first column of array A as our col-
umn matrix and the first row of array B as our row matrix.
We want to store the product in C. Since the region factors
out the indices in a computation so there is no communica-
tion without the use of communication operators and since
there must be communication if A, B, and C are distributed
in the same way, we need to use a communication operator.
The flood operator is a perfect choice.

In the following code which performs the matrix multipli-
cation; we declare (1) a column array and (2) a row array
using flooded dimensions, use the flood operator to fill the
(3) column array and (4) row array, and (5) compute the
multiplication:

1 var Col : [l..n, *] double;
2 Row : [*, 1. .n] double;

3 [l..n, *I Col := >>[l . . n , 13 A ;
4 [*, l . . n l Row := >>[I , 1..nl B;
5 [Rl C := Col * Row;

. . .

All communication occurs in lines 3 and 4. The storage
needed for the partial values, Col and Row, is minimized.
We could also write the same computation without explic-
itly declaring the flooded arrays. There is no change in the
computation since the result of the flood operator is an array
with flooded dimensions. This code is &s follows:

[R] C := > > [l . . n , 11 A * >>[1, l . . n I B ;

As an aside, flooded dimension are important, for defining
t,he arrays, Indexi and Index2, that were infornially men-
tioned in the introduction. These built-in constant arrays
belong to a series of arrays. Indexz, where the it11 Indexa ar-
ray cont,ains the values of the indices in the zth dimension of
any array and all dimensions other than the zth are flooded.
Because all but one of the diniensions is flooded, one should
assume that the niemory required for the implementation of
these arrays is minimal. In practkc, we do even better: no
memory is needed.

4. THE REMAP OPERATOR
ZPL’s remap operator, #, performs either gather or scatter

operations on arrays. The general form of the gather is

[R] D := S#[Ml, M2, . . . , Mkl;
where the region. R. the destination array, D, and the map
arrays, M 1 , M2, ,... Mk:. are of the same rank and the source
array, S. is of rank k. In addition. D must be writable over
R and M i , M2, ..., Mk must contain valid indices for S. The
general form of the scatter is

[RI D # [M l , MZ, . . . , Mkl := S ;

where the region, R, the source array, S. and the map arrays,
M i , M2. ..., Mk, are of the same rank and the destination array,
D, is of rank k. In addition, S must, be readable over R and
M 1 , M2, ..., Mk must contain valid indices for D.

In this section we demonstrate the power of the remap
operator with a number of telling examples, examine the
use of the remap operator in ZI’Z versions of the NAS FT
and NAS CG benchmarks. and dihcuss the implementation
of this operator in ZPL.

4.1 Some Basic Examples
For the followjng examples, let R be a yegion containing

the indices (i, j) for all z and such that 1 5 2, j 5 n and let
A and B be arrays of double-precision floating-point numbers
declared over the region R.

4.1.1 Skew
A conimon use of the remap operator is for permuting data

in an array. The skew permutation shows up frequently in
numerical algorithms. The idea is t o cyclically shift each
successive row an increasing number of times. To permute
the data in array A so that the elements in row a are cyclically
shifted to the right i - 1 times, we write (note the use of the
modulus operator, %)

[R] A := A# [Indexi, ((Index2+Indexl--2)%n)+l] ;

We may do the same computation with a scatter. Alterna-
tively, we can keep the same maps and write

[R] A#[Indexl, ((Index2+Indexl-2)%n)+1] := A ;

in which case the direction of the shift is reversed.

4.1.2 Redistribution
In t,his example we assume A and B are distributed across

the processors in different ways. Then the following line of
code would result in an error:

[R] B := A ;

Communica.t,ion is necessary so the programmer must use a.
communica.tion opera,tor. Since no logical remapping is tak-
ing pla,ce, only a. physical redistribution, the identity gather
suffices:

[R] B := A#[Indexl, Index21 ;

4.1.3 Diagonal Replication
In t,he following contrived example, we wish to replicate

t,he values along the major diagonal of array A leaving the
result, in B such tha.t, Bi, , j = Bj,i = AQ for all i and j. The
following single line of code does what we want:

[R] B := A# [min(Indexl, Index2),
min(Index1, Index2)l;

This may not be done.with a scatter since it requires the
one-to-many mapping provided only by gathers.

4.1.4 Diagonal Reduction
Consider a nearly opposite problem from the previous ex-

ample. Suppose we want, to’set the,values in the major
diagonal of array B such that Bi,+ = i q l A i , ! + iL:Aj ,+ for
all i . The following line of code is su ctent.

[R] B# [min(Indexl, Index2) ,
min(Index1, Index2)I += A;

Notice t,he use of the += assignment operator to resolve col-
lisions. Regular assignment, :=, is legal as well and, as dis-
cussed in the introduction, has the semantics of resolving
collisions arbitrarily. Synlnietrically to the example in Sec-
tion 4.1.3, a gather would be insufficient.

4.1.5 Rank Change
One well-known t,echnique for matrix multiplication in

which synchronization is minimized may be written in ZPL
using Problem Space Promotion (PSP) [7]. The basic idea
behind PSP is t o compute with arrays of rank higher than
the initial arrays and use flooded dimensions to make the
coniputa,tion efficient. The PSP matrix multiplication algo-
rithm is written in ZPL as

8
9
io
ii

region I J = [l..n, 1. .n, * I ;
JK = [*, l . . n , l . . n] ;
IK = [i . . n . 1, l . . n l ;
IJK = [i . . n , i..n, l . . n l ;

var C : [IKI double;
A3 : [IJ] double;
B3 : [JK] double;

. . .
[IJ] A3 := A# [Indexl, Index21 ;
[JK] B3 := B#[Index3, Index21;
[I K] C := +<< [IJKI (A 3 * B3);
[R] A := C#[Indexl, 1, Index21 ;

Since arrays of different rank in ZPL are distributed across
the processors differently, programmers must use the remap
operatlor to copy data between such arrays. In the above
code, each 2D array is promoted into 3D space by replicating

it in a single dimension (lines 8 and 9). These flooded arrays
are multiplied and accumulated in the final dimension to
form the product (line 10). The product is then remapped
to a 2D array (line 11).

4.2 NAS FT 3D Transpose
The NAS FT benchmark [2, 31 numerically solves a. 3D

partial differential equa.tion using forward and backward
Fast Fourier Transforms (FFT’s). The computation centers
around 1D FFT’s on each dimension of a 3D array. The ba-
sic idea is to always leave a.t least one dimension of the array
local to a processor in order to keep the complica,ted a.ccess
pa.t,terns required by a ID FFT from inducing communi-
cation. After computing an FFT on the local dimension,
transpose the array, if necessary, so that another dimension
is local. In the 2D layout, there are four transposes, one
bet,ween each of the three FFT’s in both the forward a.nd
ba.&ward directions, In the 1D layout, we need only trans-
pose the array twice since two of the dimensions are kept.
local.

In the NAS FT benchmark, the array on which we com-
pute the FFTk is not a cube. Thus, to achieve a. load-
balanced program, we use arrays that are distributed in dif-
ferent ways. The remap operator is a perfect choice for
transposing from one array to another especially given the
different distributions.

In the case of a 1D layout, we distribute only the first
dimension. Note that in the Fortran code the opposite is
done because of the column-major layout choice. Given the
region declara.tions

1 region MYZ * [I . . n x , 1. .ny, 1. . nz l ;
2 RYZX = [l . . n y , 1. .nz, 1. .nx];

and knowing that X1 is allocated first over RXYZ and then
over RYZX while X2 is alloca.ted first over RYZX and then over
RXYZ, the ba.ckward and forward transposes in ZPL are given
by

1 [RYZX] X2 := Xl#[Index3, Indexl, Index21 ;

2 [RXYZ] X 2 := Xl#[Index2, Index3, Indexl];

These same two lines of code require well over fifty for the
Fortran + MPI implementation (shown in Appendix A.2).
In Fortran + MPI, instead of regions, loops guide the com-
putation and the 3 x 3 array dims stores the different di-
mension lengths for the transposed arrays. Communication
is not induced by operators, but is specified with MPI func-
tion calls.

The 3D transpose in the NAS FT benchmark is not an
obvious piece of code. Even the ZPL version requires some
thought! Consider the following reasonable attempt to write
the first transpose:

[RYZXI X2 : = X1# [Index2, Index3, Index11 ;

At first glance, this code may appear correct. The region of
the statement is the region over which X1 is allocated and
specifies the new layout: 2 , 3 , 1. The index maps match this
layout. However, since X 1 is allocated over RXYZ we must in-
dex into its first dimension using indices ranging over one to
nx. In the region that applies to the statement, these indices
are in the third dimension. The same reasoning applies to
the other two dimensions. Note that this line of reasoning
must also be followed by the Fortran programmer although
the result is more convoluted.

...

4.3 NAS CG Row Column Transpose

F i g u r e 2: A n i l lustrat ion of three a l te rna t ive com-
munica t ion p a t t e r n s on a 2 x 4 processor grid, each
induced by a different implementa t ion of the trans-
posi t ion of a flooded co lumn vector to a flooded row
vector in t h e N A S CG benchmark: (a) a n implemen-
ta t ion w h e r e t h e m a p a r r ays are readable over the
region of computa t ion , (b) a n implementa t ion using
t h e Indexl a r r a y t h a t looks m o r e like the s t a n d a r d
transpose, a n d (c) a n opt imal implementa t ion w h e r e
t h e index is chosen so as to dupl ica te the clever t r ick
in which each processor communica tes w i t h at most
o n e o t h e r processor.

The NAS CG benchmark [2, 31 estimates the largest eigen-
value of a symmetric positive definite sparse matrix by the
inverse power method. The main iteration loop contains a
sparse matrix vector multiplication, several reductions, and
a column to row transpose. It is in this transpose that we
are primarily interested. A clever trick is used in the For-
tran + MPI code (shown in Appendix B.2) in which each
processor needs only to communicate with at most one other
processor when using a k x k or k x 2k processor grid where
k is a power of 2. In ZPL, we duplicate this trick, but it is
worthwhile to consider more basic alternatives first.

We start with the following definitions:
1 region Row = E*, 1. .nl ;
2 Col = [1..n, * I ;
3 var W : [Row] dcomplex;
4 P : [Coll dcomplex;

We can transpose the values in P to W using the following
line of code:

[Row] W := P#[IndexZ, Index21 ;

Since the second dimension of P is flooded, the second map
array is irrelevant. The transpose stems from using the in-
dices ranging over the second dimension of region Row to
index into the first dimension of P. Using Index2 in the sec-
ond dimension may appear to be a reasonable choice because

.-- --
Gather I m p l e m e n t a t i o n Scatter Implementa t ion

1
2

3
4
5

6

7
8
9
10
11
12

13
14
15

16
17
18
19
20

21
22

[R] D := S#[Ml, M2, . . .) Mk];

Lcnt [l . .PROCSl := 0
f o r a l l i = (il, i 2 , ..., i k) i n R

M := (Ml[i l , M2[i3, ..,, Mk[i])
p := proc-owns (M)
Pmap[il := p
Lind [PI [L.cnt [PI 1 : = M
Lcnt[pl := Lcn~;[pl + 1

f o r a l l p i n 1. .PROCS
send Lcnt[p] t o p
rece ive k n t [p l from p
send LindEpI El. .Lcnt [p l l t o p
rece ive RindEpl [l . .Rcnt[pJ] from p

Ldata [PI [e l = S [Rind [pl [e l 1

send LdataCp] [I. .Rcnt [PI] t o p
rece ive Rdata[p] [l . .Lcnt,[p]] from p

Lcnt [l . . PROCS] : = 0
f o r a l l i = (il, i 2 , . , . , i k) i n R

f o r a l l p i n l..PROCS and e i n l . .Rcnt[pI

forall p i n 1. .PROCS

p := PmapCil
D [i l := Rdata [p] [Lcnt [p] I

1
2

3
4
5

6

7
8
9
10
11
12

13
14
16
16
17
18
19

2 1
2 0

[R] D#[M1, M2, . . . , Mkl := S;

Lcnt[l..PROCS] := 0
f o r a l l i = (i l , i 2 , ..., ik) i n R

M := (Ml[i], M Z [i] , ..., Mk[il)
p := proc-owns(M)
Pmap[il := p
Lind [p] [Lcnt [PI] : = M
Lcnt [p] := Lcnt [PI + 1

f o r a l l p i n l..PROCS
send Lcnt[p] t o p
rece ive Rcnt [p] from p
send Lind [PI [l . . Lcnt [PI] to p
rece ive Rind[p] [l . .Rcnt[pll from p

Lcnt [l. .PROCS] := 0
f o r a l l i = (il, i 2 , . . . , i k) i n R

p := Pmap[il
Ldata [PI [Lcnt [PI] : = S [il
LcntCpI := LcntCpl + 1

f o r a l l p i n l..PROCS
send LdataEpI [l. .Lcnt[pl l t o p
rece ive Rdata[pl [l. .Rcnt [PI] from p

f o r a l l p i n 1. .PROCS and e i n 1 I .Rcnt [PI
D[Rind[p] [e]] := RdataLp] [el

Figure 3: The basic impleinentat ion of the G a t h e r and Scatter operators.

- Lcnt[pl := Lcntlpl + 1 22

it. takes on different values as we tra:verse the region. Fig-
ure 2(a) illustra.tes this t,ra.nspose assuming a 2 x 4 processor
grid. Note the inefficient, communication pattern in which
t,here is no one-t,o-one mapping bet,ween processors. As we
increase the number of processors, this pattern becomes sig-
nificantly worse. We ca.n do better with the following code:

[Row] W := P#[Indox2, Index11 ;
Figure 2(b) illustrates this second approe.ch. Here is the
distinct,ion. Since W is flooded in the first, dimension, ev-
ery processor must write the same value to its represent,a-
tive element. Thus the map arrays must also, in general,
be flooded in the firsl. dimension. Ot,lierwise different pro-
cessors would potentially rea.d different values i n the map
a.rrays and might, ultima,t,ely get different. values from the
source array. However, since the source array is flooded in
the second dimension, the value of the second map is irrele-
vant; it affects only performance. using Index1 results in a
communication pa.ttern t,hat more closely achieves a one-to-
one communication pa.ttern, and does a.chieve just this with
a IC x k processor grid.

If each processor specifies an index in place of the sec-
ond map that would point it to the processor with which it.
should communicat,e, then we can duplica.te the clever one-
t,o-one comniunication pa,tt,ern implemented by the Fortran
+ h4PI benchmark writers. The ZPL code is as follows:

[Row] W : = Ptf [IndexZ, exch..procl ;
The scalar varia,ble, exch-proc, is set so that on each pro-
cessor it contains an index specifying a. position on a. unique
processor. If TOWS and cols equal the number of row and
column processors and row and col identify the computing
~xocessor, then we set exch-proc with the formula

TOW x - -t col mod -- x -- + 1.
n rows 12

cols cols rows

The conimunicat,ion pa.t,tern induced by this approach is il-
lustrated in Figure 2(c).

4.4 Implementation
The implementation of the general remap operator is non-

trivial. There is the potential for all-to-all communication
and, before the actual data can be transmitted between pro-
cessors, the pattern of communication must first be estab-
lished. In the case of the gather, the processors do not ini-
tially know where they must send data and, in the case of
the scatter, the processors do not initially know from where
they must, receive data.

Figure 3 illustrates the base-line implementation of both
gather and scatter versions of the remap operator. These
iniplementations are identical through line 12. In the ini-
tial loop, lines 2 to 7, we compute the processor map, per-
processor buckets of local indices, and local counts. The
processor map contains the processor number that owns the
value pointed to by the map arrays. The buckets of local
indices are filled with the indices specified by the map arrays
such that the bucket for the processor owning a given index
contains that index. The local counts are set t o the number
of indices in each bucket of local indices.

We communicate betlween the processors in lines 8 to 12 of
Figure 3. The local counts are sent to the other processors’
remote counts so the remote count of processor q on pro-
cessor r equals the local count of processor r on processor q.
Similarly, the buckets of local indices are sent to correspond-
ing buckets of remote indices. The counts are sent before
the indices so t,hat the buckets for the remote indices may
be allocated to the proper size.

The gather and scatter differ in lines 13 to 22. We discuss
the gather first. In the loop of lines 13 to 14, we fill per-
processor buckets of local data from the source array. We use

the buckets of remote indices to read from the source array
in an arbitrary order. The buckets of local data are filled
in order. Then, in lines 15 to 17? the local data is sent to
remote data buckets. The last step, lines 18 to 22: is to copy
the remote data into the destination array. Here we read
from the remote data. buckets in order a.nd, by traversing the
region, write to the destina,tion array also in order. We use
the processor map to select which remote data. bucket to read
from. Since the indices used by the remote processor were
in the order of the region traversal, we obtain the correct
result.

The sca,tter is symmetric to the gather, differing in the fol-
lowing way. We fill the local data. buckets, rea.ding from the
source array in order. We then write t,o the destination arra.1’
in an arbitrary order. Note there are some funda.menta1 dif-
ferences between the scatter and the ga.ther. In the gather,
we read from an array in a. ca.che-unfriendly way whereas, i n
the sca.t,ter, we writ,e to a.n array in a cache-unfriendly way.

These distinctions ext,end to the parallel imp1ementa.tion.
In the scatter, we rea.d from the source arra,y before requir-
ing the remote counts and indices; in the gather, we need the
remote counts and indices before reading from the source ar-
ray. In a clever implement,a.tion of the ga.ther we could start.
to rea.d from the source array as soon as we have t.he indices
from any processor. Likewise in the sca,t,ter we could start
to write to the dest,inat,ion array as soon as we have data
from any processor. These distinctions 1ea.d us to believe
that we should be a.ble to tell whether to prefer t,he scatter
or the gather based on certain rules of thumb if we are in
a situa.tion where either applies. For exa.mple: we could use
either the scatter or the gather to write the 2D transpose
of Section 1, the redistribution of Section 4.1.2, and the 3D
transpose of Section 4.2. However, it is unclear which is
preferable in these sit,ua.tions. Nonetheless, the importance
of the optimization discussed in Section 4.5.4 suggests we
favor the ga.ther since t,his optimiza.tion is less rea.dily a.ppli-
cable to the scatter.

4.5 Optimizations
The generality of the remap operator and its wide appli-

cability make it slower than the other conimunicat,ion opera-
tors in ZPL. Indeed, it is the communication operator of last
resort. Even so, there are a number of optimizations that
greatly improve its efficiency. In this section, we discuss
a number of general opt,imizations. We have not focused
on specific idiomatic optimizations in our implementation.
though it is easy to imagine several that could further im-
prove our results.

4.5. I Map Saviizg/Sharing
The remap operator is commonly used to perform stylized

collective communication. Examples include transposing ar-
rays or slices of arrays, rotating arrays or slices of arrays.
translating arrays or slices of arrays, etc. Moreover, such
uses might occur within the main repeated computation of
a program. Great benefit may be reaped by caching copies
of the counts, indices. and processor map so that they do
not need to be recalculated. We call this optimization map
sawing since we save the map used to remap the data.

If the region and map arrays remain unchanged between
two instances of the same remap operator, we can skip lines
1 to 12 of Figure 3 for both the scatter and gather. There
are two ways to implement this optimization; either we may

use static analysis or we may use a more dynamic approach.
The static approach is more conservative but may result in
cleaner and faster code. We opt for the dynamic approach
due to the optimiza.tion’s importance and beca.use the addi-
tional runtime support is not substantial.

The optimiza.tion is as follows. If the map information
exists when we come to the start of the gather or scatter,
we use i t . Otherwise, we recompute the map. Additionally,
wherever the region or map arrays change in the program, we
destroy the map informa.tion. Care is ta.ken to assure that if
the map arrays are changed on any processor, the map infor-
ma.tion is destroyed on all processors. ZPL’s programming
model lets us do this wit,hout the need for communication.

Another benefit, of the dynamic scheme is that it aids with
a.not,her Optimization called map sharing. In this optimiza-
tion: the ma.p information is shared between remap oper-
a.t,ors tha.t a,ccess the same region and set of map arrays
at, different static points in the program. In the NAS CG
benchmark, for exa.mple, the sa.me remap occurs inside and
outside of the main loop.

4.5.2 Coiiiputa tioidComnzun ication Overlap
A common optimiza.tion parallel programmers often em-

ploy is to overlap communica,tion with computation in order
to hide la.t,ency. This optimiza.tion applies to the remap op-
erator in ZPL. The compiler will automatically push inde-
pendent computa.tions between lines 16 and 17 of the gather
implementation and between lines 19 and 20 of the sca.tter
implementation as detailed in Figure 3. In addition, the
compiler will push independent computations between lines
11 and 12 of both remap forms. This a.dditiona1 push is done
with a. lower priority beca.use the map saving optimiza.t.ion
may eliminate this conimunica.tion altogether and there is
typically less to communicate.

This optimiza,tion cannot be applied by the MPI program-
mer using the monolithic MPI-Alltoall, MPIScatter, and
MPI-Gather intrinsics. Of course, the optimization would
have no effect if the ZPL implementation were based on
these MPI routines.

4.5.3 Run Length Encoding
St,ylized collective communication patterns like those listed

in Section 4.5.1 benefit from encoding the processor map and
buckets of indices in such a way as to decrease the storage
and communication requirements and improve the perfor-
mance of indexing into the arrays when the potentially ar-
bitrary access pattern is actually a strided sequence. We
use a strided run length encoding to store the processor map
and buckets of indices. Through a careful implementation,
we never need to use the full amount of memory necessary to
store unencoded representations. We use exactly the mem-
ory required to store the encoding plus a small constant
amount of space for the work of actually encoding the se-
quences. Moreover. our implementation is such that if the
encoding does not appear t o have a benefit, we will stop the
encoding process early and use unencoded representations.

We use a recursive strided run length encoding so we can
encode the encoding if this will benefit, us. In our implemen-
tation, by default, we base the number of recursive encod-
ings on the rank of the remap operator. So if there are three
map arrays, we encode an encoded encoding. This choice is
based on the optimal number of encodings we would need
for the basic redistribution pattern of Section 4.1.2.

As a basic example of the strided run length encoding,
consider the sequence: 1, 2, 3, 4, 5 , 6. Our run length
encoder would stream in this sequence and output: 1, 1, G.
The initial value is I , the stride is 1. and the length is 6.

The 2D transpose implemented with the gather demon-
strates the power of run length encoding the indices. As
we t,raverse the array in row major order. the map arrays,
Index2 and Indexl, provide pairs of integers used tlo index
the source array. The stream of pairs

is easily compressed. One level of encoding produces

(1 1) (1 0) 4 (1 2) (I 0) 4 (1 3) (I 0) 4 (I 4) (1 0) 4

There are four sequences to decode. In the first. sequence,
the initial pair is (l, 1): the stride is (1, 0), a.nd the 1engt.h
is 4. The stride applies element-wise t*o the pair so the next.
pair is (2, 1). Since we are working on a 2D array, we use
two levels of encoding, and produce

(1 I) (:l 0) 4 (0 1.) 4

There is one sequence to decode which stasts with the pair
(1, l), the inner stride is (1, 0), the out,er stride is (0 , 1):
and the inner and outer lengths are 4. In producing t,liis re-
cursive encoding, the level one encoding is never produced,
not, even as an intermedia.te result. The total memory used
to produce this encoding from the stream of indices is never
more than enough memory to store the final result, 8 ink-
gers in this case, and some consta.nt amount, of a.dditional
memory for the computa.tions. Eieca.use we encode multiple
streanis of indices at, a. time, one stream for each processor
we need to communica.t,e with, we cannot, simply use vi~ri-
a.bles for this coinput,a.tion, but ra.t.her need a bufier array.

4.5.4 Dead Source/Destiizarioiz Reuse
The buckets of da.ta used in the implementa.t,ion of the

remap opera.tor may consume significant, memory. To avoid
this, we employ a.n opth imt ion called dead source reuse
and dead destination reuse. If the destinat-ion array is dead
before the remap, we may use its memory for the local da,ta
buckets. Note tha.t in the case of t,he gat,her, it is relatively
easy to determine what data in the destimtion array will
be overwritten. This is not the case for the sca,tt,er. If the
source array is dead a.fter the remap, we may use its memory
for the remote d a h buckets. Then, in essence, we copy the
source array to the destina.tion array, locally wit,h possible
rearrangements of the data, send the data in the dest,ina-
tion array t o the source array, and, lastly, copy the source
array to the dest,inafion array, again locally with possible
rearrangements of the data.

This optimization is done by ha.nd in the Fortran + h4PI
implementation of the NAS FT 3D transpose shown in Ap-
pendix A.2. I t is easy for the ZPL compiler t o determine
t,hat both the source and destination arrays are dead, thus
i t is able t,o duplicate the work of the Fortran programmer.

4.5.5 Direct Seizdiizg/Receiviizg
Both dead source reuse and dea.d destination reuse de-

crease the storage required to implement the remap oper-
a.tor, but an interesting case arises i f , during either of the
local copies to the destina,tion array or a. data bucket, no

rearrangement of the data takes place. If the data is copied
in order from one array to another, a straight copy, there
is no reason to buffer the data. I t may just be sent or re-
ceived directly. The difficult task, then, is to detect whether
a. straight copy will take pla.ce. For t,his detection, the run
length encoding of Section 4.5.3 comes to the rescue.

A small, well-struct.ured, easily-detectable encoding of the
indices is both necessary and sufficient to prove that the copy.
from the source array to the da,ta buckets in the case of the
gather or from the da.ta buckets t80 t,he destination array
in the case of the scatter is a straight copy when coupled
with information &out where the first and last elements are
pla.ced in memory: the size of ea.ch element, and the number
of elements. It, is even easier to tell if the other copy is
straight: we just, need t,lie informa.tion a.bout the first, and
last elements, the size of ea.ch element, and the number of
elements. If the copy is dense, we know it is straight beca.use,
i n these latt,er copies. we are copying tlhe data in order.

This optimization, performed in the ZPL runtime, is equiv-
alent, to the straight-forward approach taken by the Fortran
+ LIP1 progra.nimer in t,he context of the NAS CG trans-
pose. Due t,o the dynamic na,ture, the ZPL implementa.tion
necessarily suffers from some overhead. More interestingly,
t,liis optimization fired in cert,ain configurations of the NAS
FT benchmark t,ha,t, we did not, expect. We discuss this fur-
ther in Section 5 where we evalua.te our implementation of
the remap operator.

5. EVALUATION
In this section, we evalua.i,e our impIement,a.tion of the

remap operator in the context, of the NAS CG and NAS
FT benchmarks. The NAS parallel benchmarks are a suite
of scientific a.pplica,tions a.nd kernels representative of codes
scientists write for parallel computers 12: 31. The Fortran
and MPl provided implementations are highly-tuned. We
compare the NAS codes qualitatively first, then exa.niine
differences in memory usage a.nd execution time.

5.1 Expressiveness
Throughout, this paper, we have argued t>hat the remap

opera.t,or and ZPL's high-level construct,s make the program-
mer's job easier. Figure 4 contains a breakdown of the lines
of code in the ZPL a.nd Fortran + MPI implementations.
While lines of code is not, even close to being a perfect metric
for expressive power, it, does yield some useful informa.tion.
The ZPL implementations of both the NAS FT and NAS CG
benchmarks are writt>en with less than half the number of
lines uses t o write the Fortran + MPI versions. The figures
show a. breakdown of the lines of code into those used for
declara.t,ions, the actual computation, and communication.
The high-level approa.ch of ZPL elimina.tes the need for the
programmer t,o specify details of communication. The com-
putation was written with significantly fewer lines because
of ZPL's powerful array syntax based on the region. The
reduction in lines is especially great for the NAS CG bench-
mark bemuse of ZPL's support, for sparse arrays [8].

5.2 Memory Usage
Execution time is not the only important metric. It is

frequently the case that scientists would prefer to run their
a.pplications using the largest possible data sets. Thus the
implementatlion of their code should use as little memory as
possible. Figure 5 shows the effect of the remap optirniza-

NAS Fl' ljenchmark NAS CG Benchmark
RW 4 n

Figure 4: T h e n u m b e r of lines of code in t h e For-
t r a n + MPI a n d ZPL versions of t h e NAS FT a n d
NAS CG b e n c h m a r k s broken d o w n into lines used
for communicat ion, computa t ion , a n d declarat ions.

NAS Fl' Benchmark

PIMI'I 2 P L Z P L N M ZPI.NH ZPLNH 2 Y L N O 2 P L I I

Imnlementation

F i g u r e 5: The effect of the various remap opt imiza-
t ions o n t h e p e a k m e m o r y usage d u r i n g execut ion
of a remap for class C of t h e NAS FT b e n c h m a r k
r u n on 256 processors of a C r a y T3E. T h e m e m o r y
is subdiv ided in to five uses: general program d a t a ,
t h e t h r e e large ar rays , t h e r e m a p processor map,
t h e r e m a p indices, a n d t h e r e m a p d a t a buckets.

tions discussed in this paper on the total memory usage for
class C (512 x 512 x 512 arrays, the largest size) of the NAS
FT benchmark running on 256 processors of a Cray T3E.
The memory needed to implement the remap in the NAS
CG benchmark is insignificant regardless of the optimiza-
tions because the amount of data movement is relatively in-
significant. The optimized ZPL implementation (ZPL) uses
nearly the same amount of memory as the Fortran + MPI
(FSMPI); the memory usage is broken down into the mem-
ory needed for the three major arrays and for the rest of the
program including a massive lookup table. The optimized
ZPL overhead, on the order of 84K, is small enough so as to
not show up in the chart.

Disabling the map saving optimization (ZPL NM) saves
the memory used for storing the map for the forward trans-
pose. In the benchmark, we do a forward transpose followed
by twenty backward transposes. The map is recalculated for
the backward transposes, but is not saved for the forward
transpose, a savings in memory on the order of 42K.

Run length encoding proves crucial for reducing the mem-
ory footprint. The three indices per position and the pro-
cessor map use half the memory needed to store the three
major arrays of the computation. Disabling run length en-

coding (ZPL NR) increases the memory needed to save the
two maps from about 84K to 24M. Compared to disabling
all the optimizations (ZPL NO), including map saving, we
use significantly more memory for the map. We make up
this loss with the dead source/destination reuse optimiza-
tion which eliminates the data buckets. Disabling this opti-
inization (ZPL NB) increases the memory usage by 16M.

As mentioned at the end of Section 4.5.5, the direct send-
ing/receiving optimization works under certain conditions
for the NAS FT benchmark. The processor grid used for
this benchmark is a p x 1 x 1 grid if p is less than or equal
to nx, after which a p - nx x nx x 1 grid is used, where p
is a power of two. When p 2 nx. the copy from the source
array is a straight copy, and the direct optimization applies.
This optimization has no effect with less than 512 proces-
sors for class C. but if it did, the direct optimization could
be used at the expense of the dead source/destination reuse
optimization. The memory use would increase by 8M (ZPL
D) for the one bucket. In our current implementation, we
give the direct optimization priority, however, we are look-
ing into whether a scheme based on dynamic profiling or an
inspector/executor model would be worthwhile.

5.3 NAS FT Speedup
Figures 6-9 show results for the NAS FT and NAS CG

benchmarks for the class C problem size on increasing num-
bers of processors of a Cray T3E. We use speedup graphs
except where more information can be gleamed from a graph
of execution times. We calculate the speedups over the best
implementation time on the fewest number of processors for
which any implementation could complete without exhaust-
ing the memory or our time allotment. (Complete results for
classes A, B. and C are in Appendix C; raw times are listed
in Appendix D.) The ZPL implementation is based on C
and MPI. Though ZPL would likely exhibit improved per-
formance with the SHMEM library, time constraints have
limited our work.

Figure 6(a) compares the ZPL and Fortran + MPI imple-
mentations of the NAS FT benchmark. The ZPL implemen-
tation exhibits noticeable overhead stemming mostly from
the transpose, shown in Figure 6(b). This overhead in the
ZPL implementation can be attributed completely to the
cache blocking done by hand in the Fortran + MPI code. In
Figure 6(c), we undo the cache blocking (F+MPI NB), and
the ZPL implementation becomes noticeably faster. Now
the overhead lies in the Fortran + MPI implementation's lo-
cal copying between source and destination arrays. In ZPL,
these copies are especially fast because of prior work done
in computing the maps.

In Figure 7(a) we look at the effect of the map saving op-
timization on ZPL. Disabling this optimization (ZPL NM)
decreases the execution time by nearly a factor of two. In
this graph, ZPL AMORTIZED refers to an implementation
of ZPL in which the maps are pre-computed. On the first
transpose. the maps are initially calculated adding some
overhead to the ZPL implementation. As the graph indi-
cates. in only twenty iterations. the optimization is almost
fully amortized.

Disabling run length encoding (ZPL NR), Figure 7(b),
slows execution time significantly. Further, if the indices
are not encoded, the ZPL version cannot run on 64 proces-
sors. The importance of the full suite of optimizations is
shown in Figure 7(c) where we compare the ZPL implemen-

FT Class C -- Cray T3E
Total Time

1
01632 64 128 256

(a) Processors

FT Class C -- Cray T3E
Transpose Time

- - - linear speedup

I I
01632 64 128 256

Procesrors

FT Claas C - Cray T3E
Transpose Time

4

- - - linear speedup

-c ZPL

0)II I , I I
01632 64 128 256

Proceaaors

Figure 6: S p e e d u p graphs for class C of the NAS FT b e n c h m a r k showing t h e (a) t o t a l t ime, (b) t ranspose
t ime, a n d (c) effect of t h e hand-coded cache-blocking opt imizat ion on the t ranspose time.

FT C b s s C -. Crey T3E
Transpose Time

- - I lineer speedup

--C- ZPL NM

/’/

I
01632 64 128 256

Processors

FT Class C -- Cray T3E
Transpose Time

I I
01632 64 128 256

Processors

FT Class C -- Crey T3E
Transpose Time

--f- ZPL NO

Figure 7: S p e e d u p g r a p h s for class C of the NAS FT b e n c h m a r k showing t h e effect of the (a) map saving,
(b) r u n length encoding, a n d (c) s u i t e of optimizat, ions o n t h e transpose t ime.

t,at,ion wit,liout. the remap optimiza.tions (ZPL NO). The di-
rect sending/receiving opt,imizat,ions have no impact on class
C unt,il there are 512 processors, but do show up for class A
at 128 processors a.nd class B a.t 25G processors. The dead
source/destina.t.ioii reuse opt,imiea.tion had a critical impa.ct.
in decrea.sing t,he memory footprint, but did not affect exe-
cution time.

5.4 NAS CG Speedup
The transpose iii NAS CG differs from the one in NAS

FT in a. number of ways? two of which are worth mention-
ing. First, the tra.nspose in NAS CG results in a. one-to-ont:
communication pa.ttern as opposed t,o the all-to-all commu-
nication of NAS FT. Second, there is little data. movement
in NAS CG, but much in NAS FT.

Figure 8(a) compares the ZP% and Fortran -t MPI imple-
menta.tions. Nearly all the noticeable overhead in this graph
stems from the sparse matrix-vector multiplication. In ZPL,
the programmer’s job is made easier with tlie builbin sup-
port for sparse armys, but the final code is slightly less effi-
cient. For a discussion of this support, the rea.der is referred
to the lit,era.ture [8] . In this paper we focus on the relatively
insignificant transp’osition. The transpose time of the ZPL
and Fortran -t MPl implement,at,ions as well as that for the
baseline ZPL (ZPL NO) is. charted in Figure 8(c). More
overhead is exhibited in the ZPL version t,han was seen for
the NAS FT benchmark, a result of the crit,ical nature of the
direct sending/receiving optimization which has inherently
more overhea,d from the det,ection process a.nd the decreased
data motion which exposes more over1iea.d. As a. whole, the

optimizations are seen to be more critical resulting in about
a factor of 6 to 8 slowdown.

Figure 8(b) shows tlie variations for the ZPL transpose
discussed in Section 4.3. The simple method of using the
Index2/Indexl transpose (ZPL 1211) shows comparable per-
formance to the more complicated scheme that results in an
exactly one-to-one coniniunication pattern, and, of course,
tlie performance is identical on a k x IC processor grid. The
transpose using Index2 twice (ZPL 1212) has noticeably worse
performance because the communication pattern is ineffi-
cient.

Figure 9 shows the effect of disabling any one of the (a)
map saving (ZPL NM), (b) run length encoding (ZPL NR),
and (c) direct sending/receiving (ZPL D) optimizations. Each
of these optimizations is critical to performance.

6, CONCLUSIONS
ZPL’s remap operator possesses great power, yet retains

an efficient implementation. The operator is more versa-
tile than those provided even by APL, and is significantly
more geiieral than ZPL’s other operators, including the re-
duction and flood operators discussed in this paper. Remap
arguably subsumes these other operators because we can
easily rewrite any reduction or flood with a remap. How-
ever, the purpose of ZPL is not only to communicate with
the machine. but also with the programmer. The reduction
and flood operators indicate, t o both the programmer and
the implementer, specific communication patterns with ef-
ficient implementations that may be based on the parallel

CG Class C - Cray T3E
Total Time

0 "1

CG Class C -- Cray T3E
Transpose Time

24

0- 01632 64 128 256

Pro c e s s 0 r s (b)

CG Class C - Cray T3E
Transpose Time

441 A

9 1 1

0 M 0 1632 64 128 256

Processors (c)

F igu re 8: S p e e d u p g raphs for class C of t h e NAS CG benchmark showing t h e (a) total t ime , (b) t r anspose
t i m e for the variations of Section 4.3, and (c) effect of t h e s u i t e of opt imizat ions o n t h e t r anspose t ime.

CG Class C -- Cray T3E
Transpose Time

18

" 1 - o , , , -i
I

01632 64 128 256
(a) ProcessOrs

CG Class C -- Cray T3E
Transpose Time

12 -

f

m -
0 , I , I I
01632 64 128 256

Processors (b)

CG Class C -- Cray T3E
Transpose Time

l2 -1

-
o , , , I I I
01632 64 128 256

Processors (c)

F igu re 9: Speedup graphs for class C of t h e NAS CG benchmark showing the effect of t h e (a) m a p saving
a n d shar ing, (b) run length encoding, a n d (c) direct s end ing a n d receiving opt imizat ions on t r anspose t ime.

prefix algorithm and/or special hardware.
Rather than replace the other operators, remap compli-

ments them in creating a small suite of parallel array opera-
tors that one could use to write scalable, high-performance,
parallel codes. In the end, though, remap remains a catch-
all operator for ZPL, to be used when other operators do
not suffice. The implementation described in this paper
lessens the cost of remap's wide applicability. Through opti-
mizations such as map saving, communication/computation
overlap, run length encoding, dead array reuse, and direct
communication, our implementation produces code compa-
rable in performance to hand-tuned Fortran and MPI.

7, REFERENCES
111 J . C. Adams. W. S. Brainerd. J. T. Martin, B. T.
L 1

Smith, and j. L. Wagener. Fortran 90 Handbook.
McGraw-Hill, New York, NY, USA, 1992.

[2] D. Bailey, E. Barszcz, J . Barton, D. Browning,
R. Carter, L. Dagum, R. Fatmoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS
parallel benchmarks. Technical report, NASA Ames
Research Center (RNR-94-007), March 1994.

[3] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS parallel
benchmarks 2.0. Technical report, NASA Ames
Research Center (NAS-95-020), December 1995.

[4] R. Barriuso and A. Knies. SHMEM userk guide.
Technical report, May 1994.

I51

I61

171

181

B. L. Chamberlain. The design and implementation of
a region-based parallel language. Technical report,
Universit,y of Washington (Ph.D. Thesis), November
2001.
B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin,
L. Snyder. and W. D. Weathersby. ZPL's WYSIWYG
performance model. In Proceedangs of the IEEE
Workshop on High- Level Parallel Programming Models
and Supportive Environments, 1998.
B. L. Chamberlain, E. C. Lewis, and L. Snyder.
Problem space promotion and its evaluation as a
technique for efficient parallel computation. In
Proceedings of the A CM International Conference on
Supercomputing, 1999.
B. L. Chamberlain and L. Snyder. Array language
support for parallel sparse computation. In
Proceedings of the A CM International Conference on
Supercomputinq, 2001.

[9] S. J . Deitz. B. L. Chamberlain, and L. Snyder.
High-level language support for user-defined
reductions. In Proceedings of the Los Alamos
Computer Science Institute Symposium, 2001 I

[lo] A. D. Falkott and K. E. Iverson. APL/360 User's
Manual. IBM Corporation, 1968.

[ll] K. E. Iverson. A Programming Language. Wiley, New
York, NY, USA, 1968.

[12] M. Snir, S. W. Otto, S. Huss-Lederman, D. W.
Walker, and J . Dongarra. MPI: the complete reference.

MIT Press, Cambridge, MA, USA, 1996.

Cambridge, MA, USA, 1999.
(131 L. Snyder. Programming Guide to ZPL. MIT Press,

APPENDIX

A. NAS FT 3D TRANSPOSE
The ZPL and Fortran + MPI codes for implementing the 3D transpose in the NAS FT benchmark follow.

A.l ZPL Version
1 [RYZXI X2 := Xl#[Index3, Indexl, Index23;

2 [RXYZ] X2 := Xl#[Index2, Index3, Indexl'l;

A.2
1
2
3
4
5
6

7
8

9
10

Fortran Version
subroutine transpose-x-yz(l1, 12, xin, xout)
implicit none
include 'global .h'
integer 11, 12
double complex xin(ntotal/np) , xout (ntotal/np)
call transpose2-local (dims (1,111,

call transpose2-global(xout, xin)
call transpose2-f inish(dims(l,ll),

return
end

> dims(2, ll)*dims(3, ll), xin, xout)

> dims(2, ll)*dims(3, 111, xin, xout)

11 subroutine transpose-xyz(l1, 12, xin, xout)
12 implicit none
13 include 'g1obal.h'
14 integer 11, 12
15 double complex xin(ntotal/np) , xout (ntotalhp)
16 call transpose2-local(dims(l,ll)*dims(2, 111,

17 call transpose2-global(xout, xin)
18 call transpose2-finish(dims(l,ll)*dims(2, ll),

> dims(3, 111, xin, xout)

> dims(3, ll), xin, xout)
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

return
end

subroutine transposel-local (nl, n2, xin, xout)
implicit none
include 'mpinpb.h'
include 'g1obal.h'
integer nl, n2
double complex xin(n1, n2), xout(n2, nl)
double complex z(transblockpad, transblock)
integer i, j, ii, jj
if (nl .It. transblock .or. n2 .It. transblock) then

if (nl .ge. n2) then
do j = 1, n2

do i = 1, nl

end do
xout(j, i) = xin(i, j)

end do

do i = 1, nl
else

do j = 1, n2

end do
xout(j, i) = xin(i, j)

end do
endif

do j = 0, n2-1, transblock
else

do i = 0, nl-1, transblock

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68

do jj = 1, transblock
do ii = 1, transblock

end do
z(jj,ii) = xin(i+ii, j+jj)

end do
do ii = 1, transblock

do jj = 1, transblock

end do
xout(j+jj, i+ii) = z(jj,ii)

end do
end do

end do
endif
return
end

subroutine transpose2-global (xin, xout)
implicit none
include 'g1obal.h'
include 'mpinpb.h'
double complex xin(ntotal/np)
double complex xout(ntotal/np)
integer ierr
call mpi-alltoall(xin, ntotal/(np*np) , dc-type,

> xout , ntotal/ (np*np), dc-type,
> commslicel, ierr)

69 return
70 end

71
72 implicit none
73 include 'global .h'
74 integer nl, n2, ioff
75

subroutine transposel-finishhl, n2, xin, xout)

double complex xin(n2, nl/np2, O:np2-1),
> xout (n2*np2, nl/np2)

76
77
78
79
80
81
82
83
84
85
86

87

88

integer i, j , p
do p = 0, np2-1

ioff = p*n2
do j = 1, nl/np2

do i = 1, n2

end do
xout(i+ioff, j) = xin(i, j , p)

end do
end do
return
end

call transpose-xyz(2, 3, XI, x2)

call transpose-x-yz(3, 2, XI, x2)

. . .

B. NAS CG COLUMN ROW TRANSPOSE
The ZPL and Fortran -+ MPl codes for implementing the column to row transpose in the NAS CG benchmark follow.

B.l ZPL Version
1 [Row] W := PJthdex2, exch-procl;

B.2
1
2

3

Fortran Version
i f (12npcols .ne , 0)then

> dp-type, exch-proc, 1 ,
> mpi-corn-world, request., i err)

> dp-type, exch-proc, 1 ,

> rupi-corn-world, i err)

c a l l mpi-irecv(q, exchrecv-length,

c a l l mpi-send(w(send-start,), send len ,

c a l l rnpi-wait(request, s tatus , i err)

do j=l,exch-recv-length

enddo

e l s e

qCj) = w(j)

endif

C. EXPERIMENTAL RESULTS
The following gra.phs show the complete results (classes A, B, a.nd C) for our experiments discussed in Section 5. We

show efficiency graphs except where more informa,tion can be gleamed from graphs of. execution times. We calculate the
efficiencies against t,he perfectly-scaled time of the best, implementation time on the fewest. number of processors for which
any imp1ementa.tion could complete without exha.usting tlie memory or our time allottment.

'C.l NAS FT Results
The graphs below compare the total execut,ion time of the ZPL and Fortran + MPI implementations.

--I lineat speedup
-4- F+MPl
--.- ZPL

FT Class A -- Croy T3E
Total Time

-----)---+-----.l

5.G 25 ra

$ 01632 64 128 256
Processore

25

I
E

01632 64 128 256
Processors

The following graphs compare the performance of the transpose part of the benchmark.

F'T Class A -. Cray T3E
Transpose Time

FT Class B I. Cray T3E FT Class C -- Cray T3E
Transpose Time Transpose Tlme

e

B B
5325-

E
z 0- - 5s

h 0 1%2 I34 128 256
E o.J-n--r---
h 01632 64 128 256

Piocessors Processors Processors

The following graphs show the effect of the cache-blocking optimization in the Fortran + MPI implementation.
FT Class A - Cray T3E

Transpose Time

linear speedup

F+MPI NB

- --
-C F+MPI

-c ZPL

Processors

FT Class B -- Cray T3E
Transpose Time *

1 01632 64 128 256
Processors

FT Class C - Cray T3E
Transpose Time

Y

f 01632 64 128 256
Processors

The following graphs show the effect of the map sa.ving optimization.

FT Class A -- Cray T3E FT Class B -. Cray T3E
Transpose Time Transpose Time Transpose Tlme

FT Class C - Cray T3E

Y a

--I linear speaup
4 F+MPl

-t ZPL
--+- ZPL NM

2PL AMORTIZED

f '-56
Processors Processors

5 01632 64 128 256
Proceuorr,

The following graphs show the effect of the run length encoding optimimtion.

FT Class A -- Cray T3E
Transpose Time

- - - linear 6peeaup
-C F+MPl
-c ZPL
-C- ZPL NR

Processors

FT Class B -- Cray T3E
Transpose Time

I o
2 01632 64 128 256

Processors

The following graphs show the total effect of the optimizations discussed in this paper.

-I- linear speedup
-P- F+MPI
-c ZPL
IC 2PL NO

FT Class A -- Clay T3E
Transpose Time

t o I f Olbd2 $4 lb8 256
Processors

B 0 - 1 1
$ 01632 64 128 256

Processors

FT Class C -- Crey T3E
Transpose Time

E o
2 01632 84 128 256

Procsssors

FT CISSS C - Cray T3E
Transpose Time

E

$ 01632 64 128 256
Procsssors

C.2 NAS CG Results
The graphs below compare the total execution time of the ZPL and Fortran 4- MPI implementations.

CG Class A -- Cray T3E
Total Time

CG Class B -- Cray T3E
Total Time

CG Class C -- Cray T3E
Total Time

The following graphs compare the performance of the transpose part, of t,he benchmark and show the total effect of the
optimizations discussed in t,his paper.

CG Class A -. Cray T3E
Transpose Time

01632 64 128 256
Processors

CG Class B -- Cray T3E
Transpose Time

0 - w t- - i
0 1 6 3 ~ 64 w e 256

Processors

CG Class C -- Cray T3E
Transpose Time

01632 64 128 256
Processors

The foollowing graphs compare the va.rjous ZPL jniplementations of t h e transpose.

CG Class A -- Cray T3E
Transpose Time

CG Class B -- Crey T3E
Transpose Time

CG Class C -- Cray T3E
Transpose Time

24

ZPL 12

1 1 2 1

I I
01632 64 128 256 0 1632 64 128 256 0 1632 64 128 256

ProcsssoIa PI o c e 6 sa r 6 Processors

The following graphs show the effect of the map saving and sharing optimizations.

0

CG Class A -. Cray T3E
Transpose Time

' -

I , I I I

CG Class B -* Gray T3E
Transpose Time

CG Class C -- Cray T3E
Transpose Time

28 7 36

+ ZPL N
1 :
147

I
t Q

I T 0 , ! 7 7 I
01632 64 128 256 01632 64 128 256 01632 64 128 256

Processors Processors Plocessols

The following gra.phs show the effect of the run length encoding optiiniza.t,ion.

CG Class A -- Cray T3E
Transpose Time

01632 64 128 256
Processors

CG Class B -- Cray T3E
Transpose Time

8-

8 4

0 (1 ,
01632 64 128 256

Processors

CG Class C -- Cray T3E
Transpose Time

l2 7

The following graph show the effect of the direct sending and receiving optimizations.

CG Class A -- Cray T3E
Transpose Time

CG Class B -- Cray T3E
Transpose Time

CG Class C -- Cray T3E
Transpose Time

8 - 12 -

f 4-

7-

0 l l I I I 0 1 , 1 I I
01632 64 128 256 0 1632 64 128 266 0 1632 64 128 256

Processors Processors Processors

D. EXPERIMENTAL TIMINGS
The following tables contain the minimum observed times for each configuration of the experiments reported on in Section 5

and Appendix C.

processors

Fi-MPI
F+MPI NE!

ZPL

ZPLNR
ZPL NM

2 4 8 16 32 64 128 256
84.209’ 4 2 m 21.560 10.!%09 5.566 2.769 1.450 0.710

100.841 50.283 24.997 12.619 6.394 3.170 1.642 0.789
99.477 4 8 m 24.737 12.562 6.339 3.199 1.605 0.903

-.- -.- 25.998 13.304 6.800 3.650 2.173 1.284
115.429 56.775 28.885 14.505 7.383 3.752 1.876 1.228 -

ZPLNO
ZPL AMORTIZED

FT Class 3 - Cray T3E (Total Time)
I L

v r o c - 8 - - 16 32 64 128 256 I

-.-- 8.178 4.225 2.210 j 1.417
6.169 3.112 1.550 1 0.816

F+MPI
FI-MPI NB

ZPL
l l

ZPLNM (1
ZPLNR I I

330.907 167.841 84.769 42.862 21.665 11.183
383.536 191.053 96.059 48.524 24.312 12.465 -E- -- 184.957 93.796 47.481 23.827 11.964

._

ZPLNO
ZPL Ah4ORTIZED zL---+--- 117.338 59.825 30.752 16.154

184.691 93.222 47.194 23.662 11.835

ZPL II -.- I 2!9.228 I 16

\ p r o c e s s o r s
F”+MPI

F+MPl NB

8 16 32 64 128 256 -.
32.466 I 18.565 9.941 5.576 3.025 1.773
85.364 141.963 21.278 11.233 5.703 3.085

FT Class C - Cray T3E (Total Time) .__-
processors 11 64 1 2 8 2 5 6)

-.053 8.566 4.381 _ _ _ I. , . . - - - ,

FT Class C - Cray T3E (Transpose Time) -
processors \ I 64 128 256 I

6.752 I F-tMPI 11 23.686 I 12.639 I
c

2.172
ZPL NM
ZPL NR
ZPL NO

ZPL AMORTIZED

-.- 54.490 28.625 15.091 7.666 4.048
-.-- --.- 19.186 10.464 6.318 3.980
-:- --.- 39.513 20.983 11.250 6.356
-.- 28.822 15.733 8.286 4.220 2.062 -.--

-
F+MPI NB 46.922 23.829 12.107

ZPL 36.751 18.915 10.123
ZPL NM 62.315 31.656 17.135
ZPLNR -.- 23.293 14.385
ZPLNO -.- 44.703 24.907

ZPL AMORTIZED 35.668 18.352 9.758

I ZPL 1211 I(0.200 1 0.196 I 0.149 I 0.155 1 0.146 I 0.134 I 0.177 I 0.160 I 0.216 I I

CG Class B - Crav T3E (Total Time)
processors

F+MPI
ZPL

8 16 32 64 128 256
858.405 1 440.781 1 133.984 I
931.290 I 468.454 I 193.313 I

78.033 I 28.934 I 19.279
95.748 I 48.582 1 27.822

I I

ZPL NM 11 965.250 1 497.998 I 209.422 I 111.673 I 58.915 I 39.715
ZPL NR II 951.269 I 475.753 I 195.777 1 98.758 I 50.054 1 29.803
ZPL ND
ZPL NO
ZPL 1212
ZPL I211

952.145 475.015 198.186 99.031 50.999 29.187
977.309 503.068 210.391 115.029 60.812 41.047
952.405 479.898 200.653 106.481 54.699 37.979
949.701 471.528 196.332 97.410 51.104 28.534

CG Class B - Crav T3E (Transwose Time)

F+R4PI
ZPL

ZPL NM
ZPL NR

1.264 1.258 0.780 0.757 0.521 0.494
1.758 2.623 1.669 3.080 1.986 2.559

26.865 27.117 14.782 17.119 10.900 13.479
5.439 6.419 3.613 5.008 2.986 3.577

processors
F+R4PI

ZPL
ZPL NM
ZPL NR

8 16 32 64 128 256
1.264 1.258 0.780 0.757 0.521 0.494
1.758 2.623 1.669 3.080 1.986 2.559

26.865 27.117 14.782 17.119 10.900 13.479
5.439 6.419 3.613 5.008 2.986 3.577

CG Class C - Crav T3E (Total Time)

ZPL ND
ZPL NO
ZPL I212
ZPL 1211

4.961 5.936 4.038 4.844 2.902 3.521
30.377 35.620 19.232 22.893 14.264 17.203

5.124 9.906 5.641 10.446 6.194 11.401
2.570 2.614 1.850 3.079 2.713 2.552

ZPL NM 11 714.300 I 373.965 1 162.857 1 96.736
ZPL NR. 11 690.091 I 348.150 I 149.784 I 83.218

processors
F+MPI

ZPL

. .._ _ _ _ _._ _ ~ . ~~- .

I ZPL ND /I 690.182 I 349.968 1 148.285 I 80.848 I

32 64 128 256
585.906 I 303.845 I 105.895 I 61.941
678.068 I 343.936 1 143.390 I 77.602

ZPL ND
ZPL NO
ZPL 1212
ZPL I211

CG Class C - Gray T3E (Transpose Time) 1 proces;;L 11 32 ~ 64 ~ 128 ~ 256 1
F+MPI 1.158 1.244 0.799 0.777

2.978 5.733 3.411 4.316
ZPL NM 29.016 32.351 18.931 21.785
ZPL NR 6.720 9.528 5.321 6.253

6.358 9.082 5.113 6.116
34.067 43.117 24.160 29.237
10.837 19.741 11.417 20.890
3.317 5.733 3.297 4.313

ZPL NO
ZPL 1212
ZPL 1211

716.261 378.467 164.740 102.905
694.190 362.423 155.265 97.550
686.806 346.857 146.884 79.143

