LA-UR-03 -D3(e2

The Design and Implementation of a Parallel
Array Operator for the Arbitrary Remapping of Data’

8010385176

3933

Steven J. Deitz Bradford L. Chamberlain' —
University of Washington University of Washington §§
Seattle, WA 88195 Seattle, WA 98195 =

deitz @ cs.washington.edu brad @ cs.washington.edu =
=

Sung-Eun Choi Lawrence Snyder =

Los Alamos National Laboratory University of Washington =
Los Alamos, NM 87545 Seattle, WA 98195 =

sungeun @lanl.gov

ABSTRACT

The data redistribution or remapping functions, gather and
scatter, are of long-standing in high-performance comput-
ing, having been included in Cray Fortran for decades. In
this paper, we present a highly-general array operator with
powerful gather and scatter capabilities unmatched in other
array languages. We discuss an efficient parallel implemen-
tation, introducing several new optimizations—run length en-
coding, dead array reuse, and direct communication—that
lessen the costs associated with the operator's wide appli-
cability. In our implementation of this operator in ZPL, we
demonstrate comparable performance to the highly-tuned,
hand-coded Fortran plus MPI versions of the NAS FT and
NAS CG benchmarks.

1. INTRODUCTION

Gather and scatter operations are noticeably absent from
most parallel programming systems. Instead, inadequate
mechanisms serve to mitigate the difficult task of the sci-
entist who must arbitrarily redistribute data across proces-
sors. ZPL [13], a parallel array programming language for
scientific and engineering computations, provides the func-
tionality necessary to solve the scientist’s problem.

Gather and scatter are data redistribution or remapping
functions of long standing in high performance computing,

*This work was supported in part by a grant of HPC re-
sources from the Arctic Region Supercomputing Center.
The first author is supported by a DOE High Performance
Computer Science Graduate Fellowship.

TThis author is currently in the employ of Cray Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is pranted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PPoPP'03, June 11-13, 2003, San Diego, Californja, USA.

Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

snyder@cs.washington.edu

having been included in Cray Fortran for decades. Being
data transfer operations, gather and scatter require a source
array, S, a destination array, D, and a specification of how
the elements are to be rearranged. As the names imply,
gather describes where a sequence of elements comes from
and scatter describes where a sequence of elements goes to.
Accordingly, gather can be thought of logically as operating
on the right hand side of an assignment statement-gather

- the items—and so is written in ZPL as

D := S#l[<specification of index positions>];

Symmetrically, scatter can be thought of logically as operat-
ing on the left hand side of an assignment statement—scatter
the items—and so is written in ZPL as

D#[<specification of index positions>] := S;

Almost all aspects of the gather and scatter operations are
symmetric.

Specifying the remapped positions is particularly easy for
linear arrays since another linear array defining the remapped
index positions can be given. Accordingly, if S and D are five
element arrays, and Rev is an array containing the integers
5, 4, 3, 2, 1 in that order, then both

D := S#[Rev]; and D#[Rev] := S;

result in assigning D the elements of 8 in reverse order.

For higher rank arrays, say rank k, k-element index vec-
tors are required to specify the positions of the new arrange-
ment. This can be cumbersome, and so it is common for
gather and scatter to be implemented only for linear arrays,
implying that higher dimensional arrays must first be flat-
tened. ZPL takes the view that a gather or scatter between
rank k arrays can be specified by a sequence of k rank k
arrays, each giving the index values for a specific dimen-
sion. For example, the built-in constant arrays, Index1 and
Index2, may be thought of as 3 x 3 arrays given by

Indexl = 1 1 Index2 =123
2 2 123
333 123

implying that the transpose in ZPL is expressed with either
of the following lines:

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

D := S#[Index2, Indexi];

D#[Index2, Index1] := S;

That is, the arrays of index values for the two dimensions are
simply interchanged. Arbitrary remappings merely require
that the position-specifying arrays be set up properly.

(a) Gather: D := S#|M1, M2];

fgl1]2]a 1)14{4 a1

4/5|6]7 2(4)3 32

8|90 Br 23

12[13[14]15 ilalal1])fii2]1]4
3 Mi M2

"one~10-many"

(b) Scatter: D#[M1, M2} := §;

3 q1]44 1 @i 1] 2108]
7 12|4]3 2y ple|s[11]?
ik Jala|2 3 721 ?
15 q4laln 4 3(13|6]2
M1 D
"many-to-one"

Figure 1: An illustration of an arbitrary (a) gather
and (b) scatter between 2D arrays. In the gather,
a 0 is replicated in the first column of the destina-
tion array as specified by the gather’s one-to-many
mapping. In the scatter, a 4 is placed in the first
position of the destination array as an arbitrary res-
olution to the scatter’s many-to-one mapping. Note,
also, that not every element in the destination array
is assigned a value based on the scatter.

A problem arises for gather and scatter if the index spec-
ification is not a permutation, i.e., not a one-to-one map-
ping. (Such cases are often forbidden.) If the indices are
not unique, then a gather fetches multiple elements from a
single position. On the other hand, a scatter maps multiple
elements to the same position. Figure 1 illustrates a general
two dimensional gather and scatter operation based on two
map arrays showing that gathers may result in many-to-one
mappings and scatters in one-to-many mappings. The exact
behavior depends on how the remap is used in ZPL. If the
scatter is given as a simple assignment as shown in all previ-
ous examples, the behavior is undefined, but still legal-the
element assigned last “wins.” The scatter may be written
with operator assignment statements like += in which case
the sum of the elements mapped to the same position would
be stored in that position. Thus

D#[1] += 8;

is an inefficient way to add up the items of S and store them
in the first position of D.

The remap operator is clearly powerful, but implementing
such a communication operator in a high-level language such
as ZPL is a concern because of its potential expense. Specif-

ically, to implement a gather (the problems are identical for
scatter) of the form

D := S#[M1, M2, ., Mkl

implies potential for considerable data motion. Even pre-
suming that all k4 2 arrays are allocated to processors iden-
tically, an all-to-all communication is potentially required to

specify where the elements are to be moved to. A second all-
to-all communication is potentially required to transfer the
elements. Further, because the data is coming from or going
to arbitrary positions in the memory, considerable memory
management is necessary to marshal and distribute the data.
Such generality is required in the most complex cases, but in
many common cases much less communication and memory
management are possible. The technical problem considered
in this paper is: How can the remap operator for gather and
scatier be implemented efficiently in a high-level language?
The research goals are first to understand where the costs
are for remapping, and second to discover ways to optimize
those portions of the implementation so that they approxi-
mate the performance of hand-coded gather and scatter.
This paper’s contributions are as follows:

e We present an operator for arbitrary gathers and scat-
ters that has a unique semantics and provides power
unmatched by other array languages including APL,
resulting in cleaner, more understandable code. More-
over, the operator is general enough to apply to most
array languages.

e We discuss a parallel implementation for the opera-
tor and introduce optimizations for run length encod-
ing, dead array reuse, and direct communication that
lessen the costs of the operator’s generality.

e We demonstrate comparable performance to'highly-
tuned, hand-coded Fortran 4+ MPI benchmarks.

This paper is organized as follows. In the next section, we
show how programmers typically write arbitrary gather and
scatter operations using array languages like APL and For-
tran 90 or communication libraries like MPI and SHMEM.
In Section 3, we introduce the ZPL language. In Section 4,
we describe the remap operator through a series of examples
that illustrates its power, and we discuss our implementa-
tion of the operator in ZPL. In Section 5, we evaluate the
performance of the remap operator in the context of the
NAS FT and NAS CG benchmarks, and, in Section 6, we
conclude.

2. BACKGROUND AND MOTIVATION

In this section we examine ways in which programmers
write arbitrary gathers and scatters when using systems
other than ZPL. These methods include communication li-
braries like MPI and SHMEM as well as array languages like
APL and Fortran 90/95.

2.1 Array Languages

ZPL is a parallel array language, and, from the beginning,
it was designed with the parallel implementation in mind. In
many ways, this forced us to place more constraints on the
programmer than other developers of array languages would
have had to. However, in the case of the gather and scatter,
the remap operator provides unmatched functionality.

2.1.1 APL

APL [10, 11] is a well-known array language first intro-
duced in the 1960’s and still in use today. It provides about
100 built-in operators, and in addition to having special op-
erators for transpose and rotate (cases of gather and scat-
ter), APL provides a relatively powerful form of arbitrary

gather and scatter based on indexing. For destination and
source vectors, D and S, a vector map array, M, produces
the standard gather and scatter operations:

D « S[M]

D[M] ~ S

A way to perform gather for higher dimensional arrays in
APL is first to flatten the source array to produce a vector
and then to construct an array of indices of the same shape
as the destination array specifying for each position where
the item is to be found in the flattened source. Thus, if M
is the two dimensional array

M=147
258
369

and S contains the flattened (row major order) elements of
a 3x3 source array, 52, then the gather written above pro-
duces the transpose of $2, an alternative to using the built-
in operator. Similarly, for the scatter we would produce a
flattened destination array.

Interestingly, APL lets the programmer specify more than
one multi-dimensional map array, but the semantics are
very different from ZPL’s remap operator. Considering only
gather, though these concepts apply to the scatter as well,

let M1 be an m x n array and let M2 be a p x g array. Then
the statement

D « S[M1; M2)

implies that the destination array, D, isan m xn x p x ¢
array and the source array, S, is of rank two. Then for all
permutations of 4, j, k, and I, D; ., would be assigned
Sn; 5,m2,,. These ideas extend to arbitrary dimensions.
In the 2D case, using two vectors of lengths m and n for the
map arrays would result in m X n assignments from a 2D
source array to a 2D destination array.

2.1.2 Fortran 90

Fortran 90 (1] can implement the standard gather and
scatter operations using array subscripting. If the destina-
tion array, D, source array, S, and map array, M, are all
one-dimensional, then gather and scatter are expressed as

D = S(M)

DM =8

Higher-dimensional arrays must be treated as 1D vectors in
order to scatter or gather data between them. For multiple
map arrays, the semantics are similar to APL, but the map
arrays must be 1D vectors.

2.2 Communication Libraries

The de-facto standard for scientific parallel programming
remains a sequential language like Fortran or C and a com-
munication library. This combination provides performance
currently unmatched by other approaches to parallel pro-
gramming. Unfortunately, it is often difficult to write codes
and is always a time-consuming endeavor,

221 MPI

MPI [12] is arguably the most used tool of parallel pro-
gramming. At its core, the programmer is left to write

matching “send” and “receive” function calls throughout the
program. Building on top of this base, the MPI standard
provides the programmer with several higher-level functions
for collective communication. These functions may serve to
implement an arbitrary gather and scatter, but not without
significant work on the part of the programmer.

The MPI.Gather and MPI_Scatter functions are logical
choices. However, these functions lack the generality of
ZPL’s remap operator and other language facilities of Sec-
tion 2.1 which let the programmer take a global view of the
computation. In a global view, programmers do not need
to concentrate on the data movement between specific pro-
cessors. These MPI functions force the programmer to be
fully explicit. With the MPI_Gather function, a programmer
specifies a root processor, a receiving buffer on the root pro-
cessor, and a sending buffer on every processor (including
the root). The execution entails that the sending buffers
are concatenated and placed in the receiving buffer on the
root processor. Thus the root processor gathers the smaller
buffers on every processor and places the results in its larger
receiving buffer. Similarly, in a scatter, the root processor
scatters segments of its larger sending buffer to the smaller
receiving buffers on the other processors.

We can implement the arbitrary scatter and gather opera-
tions by writing per-processor code to copy data for sending
to other processors into buffers and then use up to p calls of
either MPI_Gather or MPI_Scatter, where p is the number of
processors. An alternative function that may be more appro-
priate is the MPI_A11toall function. In this function, each
processor specifies a receiving buffer and a sending buffer
that are partitioned into sections for receiving data from
cach processor and sending data to each processor. The
same per-processor copying code needs to be written to im-
plement our arbitrary gather and scatter operations. Note
there are numerous variations on these functions that may’
be used by the MPI programmer.

2.2.2 SHMEM

SHMEM (4] is a proprietary message-passing library im-
plemented on various CRAY and SGI systems. Again, the
programmer cannot take a global view of the computation
and must specify what data is going to which processors.
In SHMEM, rather than writing two-sided “send” and “re-
ceive” functions, the programmer specifies one-sided “get”
or “put” functions. On top of these standard functions,
the SHMEM standard supplies functions called shmem_ixget
and shmem_ixput. In these functions, the programmer spec-
ifies the indices for where the data is to be gathered from
or scattered to on the remote processor. To implement an
arbitrary gather or scatter, the programmer must specify
up to p calls to shmem_ixget or shmem_ixput, where p is the
number of processors. Note that the arrays must be treated
as one-dimensional for the indices.

3. ZPL

ZPL is a data-parallel array programming language de-
veloped at the University of Washington. It provides the
programmer with a global view of the computation as well
as complete control over communication. The current ZPL
implementation is based on a compiler that translates the
ZPL code to a C program with calls to a chosen message-
passing library including MPI and SHMEM. In this section
we introduce aspects of ZPL relevant to this paper. The

interested reader is referred to the literature for more infor-
mation [5, 13].

3.1 Regions and Parallel Arrays

Central to ZPL is the concept of the region. A region
is an index set with no associated data. The region serves
two fundamental purposes in ZPL: declaring parallel arrays
and controlling computation. To declare a parallel array,
the programmer specifies its shape and size using a region;
alternatively, in the case of dynamic parallel arrays, the pro-
grammer specifies the region in the program. 1n the follow-
ing example, we (1) declare a region R to be the index set
containing (%, 7) for all < and j such that 1 < 4,5 < n, (2)
declare a region IntR to contain the interior indices of R,
1 < 1,7,< n, (3) declare arrays A, B, and C over region R,
and (4) assign the interior elements in C the sum of the cor-
responding elements in A and B:

1 region R = [1..n, 1..n];
IntR = [2..n-1, 2..n-1];
3 var A, B, C : [R] double;

4 [IntR] C := A + B;

Since A, B, and C are defined over the same region, they
are distributed in the same way over the processors, and no
communication is required to compute the statement in line
4 of the above example. Had A, B, and C been declared in
such a way as to be distributed in different ways, the code
in line 4 would result in either a compiler or runtime error.
Instead the statement would need to be rewritten using one
of ZPL’s several array operators that induce communication.

3.2 Communication Operators

In ZPL, all communication directly results from the use
of several array operators that induce it. Programmers are
thus provided with a syntactic clue as to the type and amount
of communication occurring in parallel executions of their
codes. This syntactic clue provides a simple, yet powerful,
performance model (6] that further distinguishes ZPL from
parallel programming languages like HPF and UPC in which
the programmer may not always see syntax indicating that
a code segment requires communication. In this section,
we provide a. brief introduction to the reduction and flood
operators. The remap operator, which also induces commu-
nication, is the subject of this paper; we provide an in-depth
introduction to its usage in Section 4.

3.2.1 The Reduction Operator

The reduction operator, op<<, reduces the values in an ar-
ray to a lower-rank slice of the array or a single scalar value.
A common use of the reduction operator is to compute the
minimum of all the elements in an array. We might also use
a reduction to find the sums of the elements in every row of
an array and store these sums in the first column of another
array. These examples follow:

1 [R] val := min<< A;
2 [1..n, 1] B := +<< [R] C;

We assume for line 1 of the above example that val is de-
clared as a scalar double. In line 1, then, we take the mini-
mum of every element in A that exists in R and store the re-
sult in val. Since A was declared over R, this is every element

in A. In line 2, we use two regions to contro! the computa-
tion. The dynamically specified region controls where the
result is stored in B. The first dimensions of the two regions
match, so we only reduce over the second dimension. As a
rule, we reduce over each dimension that is collapsed. We
use + to find the sum of the elements in every row. Reduc-
tions may use a number of built-in operators or user-defined
ones [9].

3.2.2 The Flood Operator

The flood operator, >>, provides nearly the opposite be-
havior of the reduction operator. With this operator, the
programmer is able to replicate a value throughout an array
or values in a slice of the array to a larger slice. Its name
implies the dramatic visualization of the replication taking
place. For example, suppose the programmer wants to mul-
tiply the value in the (1,1) position of array A with every
value in array B and store the result in array C. One way to
accomplish this is to replicate that value in & throughout A
as in the following lines of code:

1 [R] & := >>[1, 1].4;
2 [R] C := A * B;

Clearly there is an inefficiency in this code. While a
smart compiler might perform optimizations, the program-
mer should not have to write this. In the next section, we
discuss another type of region that allows for the efficient
storage and computation of the result of the flood operator.
To close this section, we mention that the previous code can
be optimally rewritten as the following single line:

[R] C := (>>[1, 1] A) * B;

3.3 Flooded Dimensions

The flood operator results in potentially redundant stor-
age on any given processor. In the example from the last
section in which we replicate one value throughout 4, we end

2 .
up storing the same value - times. The flooded dimension
solves this problem.

A flooded dimension, *, is one in which every value in that
dimension is constrained to have the same value. Each pro-
cessor owning a piece of that dimension stores only a single
copy of that value. Consider the example of multiplying an
n X 1 column matrix by a 1 X n row matrix to form an nxn
square matrix. Take the first column of array A as our col-
umn matrix and the first row of array B as our row matrix.
We want to store the product in C. Since the region factors
out the indices in a computation so there is no communica-
tion without the use of communication operators and since
there must be communication if 4, B, and C are distributed
in the same way, we need to use a communication operator.
The flood operator is a perfect choice.

In the following code which performs the matrix multipli-
cation, we declare (1) a column array and (2) a row array
using flooded dimensions, use the flood operator to fill the
(3) column array and (4) row array, and (5) compute. the
multiplication:

1 var Col : [1..n, *] double;
2 Row : [*, 1..n] double;

3 [1..n, *] Col := >>[1..n, 1] A;
[*, 1..n] Row := >>[1, 1..n] B;
5 [R] C := Col * Row;

oS

All communication occurs in lines 3 and 4. The storage
needed for the partial values, Col and Row, is minimized.
We could also write the same computation without explic-
itly declaring the flooded arrays. There is no change in the
computation since the result of the flood operator is an array
with flooded dimensions, This code is as follows:

[R] C := >>[1..n, 1] & * >>[1, 1..n] B;

As an aside, flooded dimension are important for defining
the arrays, Indexl and Index2, that were informally men-
tioned in the introduction. These built-in constant arrays
belong to a series of arrays, Indexi, where the ith Indexq ar-
ray contains the values of the indices in the ith dimension of
any array and all dimensions other than the sth are flooded.
Because all but one of the dimensions is fiooded, one should
assume that the memory required for the implementation of

these arrays is minimal. In practice, we do even better: no
memory is needed.

4. THE REMAP OPERATOR

ZPL’s remap operator, #, performs either gather or scatter
operations on arrays. The general form of the gather is

[R] D := S#[M1, M2, ..., Mk];
where the region, R, the destination array, D, and the map
arrays, M1, M2, ..., Mk, are of the same rank and the source

array, S, is of rank k. In addition, D must be writable over
R and M1, M2, ..., Mk must contain valid indices for 8. The
general form of the scatter is

[R] D#[M1, M2, ..., MK] := S;

where the region, R, the source array, 5, and the map arrays,
M1, M2, ..., Mk, are of the same rank and the destination array,
D, is of rank k. In addition, § must be readable over R and
M1, M2, ..., Mk must contain valid indices for D.

In this section we demonstrate the power of the remap
operator with a number of telling examples, examine the
use of the remap operator in ZPL versions of the NAS FT
and NAS CG benchmarks, and discuss the implementation
of this operator in ZPL.

4.1 Some Basic Examples

For the following examples, let R be a region containing
the indices (4,) for all ¢ and j such that 1 < 4,7 < n and let
A and B be arrays of double-precision floating-point numbers
declared over the region R.

4.1.1 Skew

A common use of the remap operator is for permuting data
in an array. The skew permutation shows up frequently in
numerical algorithms. The idea is to cyclically shift each
successive row an increasing number of times. To permute
the data in array A so that the elements in row 4 are cyclically
shifted to the right i~ 1 times, we write (note the use of the
modulus operator, %)

[R] A := A#[Indexl, ((Index2+Indexi-2)%n)+1];

‘We may do the same cbmputation with a scatter. Alterna-
tively, we can keep the same maps and write

[R] A#[Index1, ((Index2+Index1-2)%n)+1] := A;

in which case the direction of the shift is reversed.

4.1.2 Redistribution

In this example we assume A and B are distributed across
the processors in different ways. Then the following line of
code would result in an error:

[R] B := 4;

Communication is necessary so the programmer must use a
communication operator. Since no logical remapping is tak-

ing place, only a physical redistribution, the identity gather
suffices:

[R] B := A#[Indexl, Index2];
4.1.3 Diagonal Replication

In the following contrived example, we wish to replicate
the values along the major diagonal of array A leaving the
result in B such that B; ; = Bj; = A; for all ¢ and j. The
following single line of code does what we want:

[R] B := A#[min(Index1i, Index2),
min(Index1, Index2)];

This may not be done with a scatter since it requires the
one-to-many mapping provided only by gathers.

4.1.4 Diagonal Reduction

Consider a nearly opposite problem from the previous ex-
ample. Suppose we want to set the values in the major
diagonal of array B such that B;; = ._ A¢; + ;;iAj'q‘, for
all i. The following line of code is sufhcient:

[R] B#[min(Indexl, Index2),
min(Indexl, Index2)] += A;

Notice the use of the += assignment operator to resolve col-
lisions. Regular assignment, :=, is legal as well and, as dis-
cussed in the introduction, has the semantics of resolving
collisions arbitrarily. Symmetrically to the example in Sec-

" tion 4.1.3, a gather would be insufﬁgient.

4.1.5 Rank Change

One well-known technique for matrix multiplication in
which synchronization is minimized may be written in ZPL
using Problem Space Promotion (PSP) [7]. The basic idea
behind PSP is to compute with arrays of rank higher than
the initial arrays and use flooded dimensions to make the
computation efficient. The PSP matrix multiplication algo-
rithm is written in ZPL as

region 1J = [1..n, 1..n, *];
JK [+, 1..n, 1..n);
IK {1..n, 1, 1..n];

1
2
3
4 IJK = [1..n, 1..n, 1..n];
5
6
7

]

var C : [IK] double;
A3 : [1J] double;
B3 : [JK] double;

8 [1J] A3 := A#[Indexl, Index2];
9 {JK] B3 := B#[Index3, Index2]};
10 [IK] C := +<< [IJK] (A3 * B3);
11 [R] A := C#[Indexl, 1, Index2];

Since arrays of different rank in ZPL are distributed across
the processors differently, programmers must use the remap
operator to copy data between such arrays. In the above
code, each 2D array is promoted into 3D space by replicating

it in a single dimension (lines 8 and 9). These flooded arrays
are multiplied and accumulated in the final dimension to
form the product (line 10). The product is then remapped
to a 2D array (line 11).

4.2 NASFT 3D Transpose

The NAS FT benchmark [2, 3] numerically solves a 3D
partial differential equation using forward and backward
Fast Fourier Transforms (FFT's). The computation centers
around 1D FFT’s on each dimension of a 3D array. The ba-
sic idea is to always leave at least one dimension of the array
local to a processor in order to keep the complicated access
patterns required by a 1D FFT from inducing communi-
cation. After computing an FFT on the local dimension,
transpose the array, if necessary, so that another dimension
is local. In the 2D layout, there are four transposes, one
between each of the three FFT’s in both the forward and
backward directions. In the 1D layout, we need only trans-
pose the array twice since two of the dimensions are kept
local.

In the NAS FT benchmark, the array on which we com-
pute the FFT’s is not a cube. Thus, to achieve a load-
balanced program, we use arrays that are distributed in dif-
ferent ways. The remap operator is a perfect choice for
transposing from one array to another especially given the
different distributions.

In the case of a 1D layout, we distribute only the first
dimension. Note that in the Fortran code the opposite is
done because of the column-major layout choice. Given the
region declarations

1 region RXYZ = {1..nx, 1..ny, 1..nz];
2 RYZX = [1..ny, 1..nz, 1..nx];

and knowing that X1 is allocated first over RXYZ and then
over RYZX while X2 is allocated first over RYZX and then over
RXYZ, the backward and forward transposes in ZPL are given
by

1 [RYZX] X2 :

X1#[Index3, Indexl, Index2]};

2 [RXYZ) X2 := X1#[Index2, Index3, Index1];

These same two lines of code require well over fifty for the
Fortran + MPI implementation (shown in Appendix A.2).
In Fortran + MPI, instead of regions, loops guide the com-
putation and the 3 x 3 array dims stores the different di-
mension lengths for the transposed arrays. Communication
is not induced by operators, but is specified with MPI func-
tion calls.

The 3D transpose in the NAS FT benchmark is not an
obvious piece of code. Even the ZPL version requires some
thought! Consider the following reasonable attempt to write
the first transpose:

[RYZX] X2 := X1#[{Index2, Index3, Index1];

At first glance, this code may appear correct. The region of
the statement is the region over which X1 is allocated and
specifies the new layout: 2, 3, 1. The index maps match this
layout. However, since X1 is allocated over RXYZ we must, in-
dex into its first dimension using indices ranging over one to
nx. In the region that applies to the statement, these indices
are in the third dimension. The same reasoning applies to
the other two dimensions. Note that this line of reasoning
must also be followed by the Fortran programmer although
the result is more convoluted.

4.3 NAS CG Row Column Transpose

{a) [Row] W := P#[Index2, Index2];

<

® olelefé]
oldlele

sjejaje s|oi09
elelelé

(b) [Row] W := P#[Index2, Index1};
eololele elolofe

Qg
slejele oleie|s
é¢lelele]

() [Row] W := P#[Index2, exch_proc);
oloisle olejoje
sjelele
noQ o\m anp
¢|é|e|e]

Figure 2: An illustration of three alternative com-
munication patterns on a 2 x 4 processor grid, each
induced by a different implementation of the trans-
position of a flooded column vector to a flooded row
vector in the NAS CG benchmark: (a) an implemen-
tation where the map arrays are readable over the
region of computation, (b) an implementation using
the Indexl array that looks more like the standard
transpose, and (c¢) an optimal implementation where
the index is chosen so as to duplicate the clever trick
in which each processor communicates with at most
one other processor.

The NAS CG benchmark (2, 3] estimates the largest eigen-
value of a symmetric positive definite sparse matrix by the
inverse power method. The main iteration loop contains a
sparse matrix vector multiplication, several reductions, and
a column to row transpose. It is in this transpose that we
are primarily interested. A clever trick is used in the For-
tran 4+ MPI code (shown in Appendix B.2) in which each
processor needs only to communicate with at most one other
processor when using a k x k or k x 2k processor grid where
k is a power of 2. In ZPL, we duplicate this trick, but it is
worthwhile to consider more basic alternatives first.

We start with the following definitions:

1 region Row = [*, 1..n];
2 Col = [1..n, *];
3 var W : [Row] dcomplex;

4 P : [Col] dcomplex;

We can transpose the values in P to W using the following
line of code:

[Row] W := P#[Index2, Index2];

Since the second dimension of P is flooded, the second map
array is irrelevant. The transpose stems from using the in-
dices ranging over the second dimension of region Row to
index into the first dimension of P. Using Index2 in the sec-
ond dimension may appear to be a reasonable choice because

Gather Implementation

[(R] D := s#[M1, M2, ., Mk];
1 Lent[1..PROCS] := 0
2 forall i = (i1, i2, ..., ik) in R
3 M o= (M1[4], M2[i], ..., MK[iD)
4 p := proc_owns(M)
5 Pmap[i] := p
6 Lind[p] (Lent[pl] := M
7 Lent{p] := Lent[p]l + 1
8 forall p in 1..PROCS
9 send Lent(p] to p
10 receive Rentlpl from p
11 send Lind[p](1..Lent[pl] to p
12 receive Rind[p][1..Rent[p]] from p
13 forall p in 1..PROCS and e in 1..Rentlp]
14 Ldata[p] [e] = S[Rind[p]lel]
15 forall p in 1..PROCS
16 send Ldata[pl{1..Rentlpl] to p
17 receive Rdata[p][1..Lcnt[pl]l from p
18 Lent(1..PROCS] := O
19 forall i = (i1, i2, ..., ik) in R
20 p := Pmaplil
21 D[i] := Rdatal[p] [Lentlpl]
22 Lent[p] := Lentlpl + 1

Scatter Implementation

[R] D#[M1, M2, ., ME] = 8;
1 Lent[1..PROCS] := O
2 forall i = (i1, i2, ..., ik) in R
3 M o= (M3[i), M2(il, ..., ME[D
4 p := proc.owns(M)
B Pmap[i] := p
6 Lind[p] (Lent [p]] := M
7 Lent[p] := Lent[pl + 1
8 forall p in 1..PROCS
9 send Lent[p] to p
10 receive Rent[p] from p
11 send Lind[p)[1..Lent(pl) to p
12 receive Rind[p]l([1..Rentipl] from p
13 Lent[1..PROCS] := 0O
14 forall i = (i1, i2, ..., ik) in R
16 p := Pmapli]
16 Ldatalp]l [Lent[pl] := S[i)
17 Lent[p]l := Lent{pl + 1
18 forall p in 1..PROCS
19 send Ldata[p][i..Lent[pl] to p
20 receive Rdata[p] [1..Rent{pl] from p
21 forall p in 1,..PROCS and e in 1..Rcnt[p]
22 D{Rind[p] [e]] := Rdata[p][e]

Figure 3: The basic implementation of the Gather and Scatter operators.

it takes on different values as we traverse the region. Fig-
ure 2(a) illustrates this transpose assuming a 2 x 4 processor
grid. Note the inefficient communication pattern in which
there is no one-to-one mapping between processors. As we
increase the number of processors, this pattern becomes sig-
nificantly worse. We can do better with the following code:

[Row] W := P#[Index2, Indexi];

Figure 2(b) illustrates this second approach. Here is the
distinction. Since W is flooded in the first dimension, ev-
ery processor must write the same value to its representa-
tive element. Thus the map arrays must also, in general,
be flooded in the first dimension. Otherwise different pro-
cessors would potentially read different values in the map
arrays and might ultimately get different values from the
source array. However, since the source array is flooded in
the second dimension, the value of the second map is irrele-
vant; it affects only performance. Using Index1 results in a
communication pattern that more closely achieves a one-to-
one communication pattern, and does achieve just this with
a k X k processor grid.

If each processor specifies an index in place of the sec-
ond map that would point it to the processor with which it
should communicate, then we can duplicate the clever one-
to-one communication pattern implemented by the Fortran
+ MPI benchmark writers. The ZPL code is as {ollows:

[Row] W := P#[Index2, exch.proc];

The scalar variable, exch_proc, is set so that on each pro-
cessor it contains an index specifying a position on a unique
processor. If rows and cols equal the number of row and
column processors and row and col identify the computing
processor, then we set exch_proc with the formula

n Tows n
Tow X ~— + col mod —— X ——— 4 1.
cols cols TOWS

The communication pattern induced by this approach is il-
lustrated in Figure 2(c).

4.4 Implementation

The implementation of the general remap operator is non-
trivial. There is the potential for all-to-all communication
and, before the actual data can be transmitted between pro-
cessors, the pattern of communication must first be estab-
lished. In the case of the gather, the processors do not ini-
tially know where they must send data and, in the case of
the scatter, the processors do not initially know from where
they must receive data.

Figure 3 illustrates the base-line implementation of both
gather and scatter versions of the remap operator. These
implementations are identical through line 12. In the ini-
tial loop, lines 2 to 7, we compute the processor map, per-
processor buckets of local indices, and local counts. The
processor map contains the processor number that owns the
value pointed to by the map arrays. The buckets of local
indices are filled with the indices specified by the map arrays
such that the bucket for the processor owning a given index
contains that index. The local counts are set to the number
of indices in each bucket of local indices.

We communicate between the processors in lines 8 to 12 of
Figure 3. The local counts are sent to the other processors’
remote counts so the remote count of processor ¢ on pro-
cessor 7 equals the local count of processor r on processor g.
Similarly, the buckets of local indices are sent to correspond-
ing buckets of remote indices. The counts are sent before
the indices so that the buckets for the remote indices may
be allocated to the proper size.

The gather and scatter differ in lines 13 to 22. We discuss
the gather first. In the loop of lines 13 to 14, we fill per-
processor buckets of local data from the source array. We use

the buckets of remote indices to read from the source array
in an arbitrary order. The buckets of local data are filled
in order. Then, in lines 15 to 17, the local data is sent to
remote data buckets. The last step, lines 18 to 22, is to copy
the remote data into the destination array. Here we read
from the remote data buckets in order and, by traversing the
region, write to the destination array also in order. We use
the processor map to select which remote data bucket to read
from. Since the indices used by the remote processor were
in the order of the region traversal, we obtain the correct
result.

The scatter is symmetric to the gather, differing in the fol-
lowing way. We fill the local data buckets, reading from the
source array in order. We then write to the destination array
in an arbitrary order. Note there are some fundamental dif-
ferences between the scatter and the gather. In the gather,
we read from an array in a cache-unfriendly way whereas, in
the scatter, we write to an array in a cache-unfriendly way.

These distinctions extend to the parallel implementation.
In the scatter, we read from the source array before requir-
ing the remote counts and indices; in the gather, we need the
remote counts and indices before reading from the source ar-
ray. In a clever implementation of the gather we could start
to read from the source array as soon as we have the indices
from any processor. Likewise in the scatter we could start
to write to the destination array as soon as we have data
from any processor. These distinctions lead us to believe
that we should be able to tell whether to prefer the scatter
or the gather based on certain rules of thumb if we are in
a situation where either applies. For example, we could use
either the scatter or the gather to write the 2D transpose
of Section 1, the redistribution of Section 4.1.2, and the 3D
transpose of Section 4.2. However, it is unclear which is
preferable in these situations. Nonetheless, the importance
of the optimization discussed in Section 4.5.4 suggests we
favor the gather since this optimization is less readily appli-
cable to the scatter.

4.5 Optimizations

The generality of the remap operator and its wide appli-
cability make it slower than the other communication opera-
tors in ZPL. Indeed, it is the communication operator of last
resort. Even so, there are a number of optimizations that
greatly improve its efficiency. In this section, we discuss
a number of general optimizations. We have not focused
on specific idiomatic optimizations in our implementation,
though it is easy to imagine several that could further im-
prove our results.

4.5.1 Map Saving/Sharing

The remap operator is commonly used to perform stylized
collective communication. Examples include transposing ar-
rays or slices of arrays, rotating arrays or slices of arrays,
translating arrays or slices of arrays, etc. Moreover, such
uses might occur within the main repeated computation of
a program. Great benefit may be reaped by caching copies
of the counts, indices, and processor map so that they do
not need to be recalculated. We call this optimization map
saving since we save the map used to remap the data.

If the region and map arrays remain unchanged between
two instances of the same remap operator, we can skip lines
1 to 12 of Figure 3 for both the scatter and gather. There
are two ways to implement this optimization; either we may

use static analysis or we may use a more dynamic approach.
The static approach is more conservative but may result in
cleaner and faster code. We opt for the dynamic approach
due to the optimization's importance and because the addi-
tional runtime support is not substantial. »

The optimization is as follows. If the map information
exists when we come to the start of the gather or scatter,
we use it. Otherwise, we recompute the map. Additionally,
wherever the region or map arrays change in the program, we
destroy the map information. Care is taken to assure that if
the map arrays are changed on any processor, the map infor-
mation is destroyed on all processors. ZPL’s programming
model lets us do this without the need for communication.

Another benefit of the dynamic scheme is that it aids with
another optimization called map sharing. In this optimiza-
tion, the map information is shared between remap oper-
ators that access the same region and set of map arrays
at different static points in the program. In the NAS CG
benchmark, for example, the same remap occurs inside and
outside of the main loop.

4.5.2 Computation/Communication Overlap

A common optimization parallel programmers often em-
ploy is to overlap communication with computation in order
to hide latency. This optimization applies to the remap op-
erator in ZPL. The compiler will automatically push inde-
pendent computations between lines 16 and 17 of the gather
implementation and between lines 19 and 20 of the scatter
implementation as detailed in Figure 3. In addition, the
compiler will push independent computations between lines
11 and 12 of both remap forms. This additional push is done
with a lower priority because the map saving optimization
may eliminate this communication altogether and there is
typically less to communicate.

This optimization cannot be applied by the MPI program-
mer using the monolithic MPI_Alltoall, MPI_ Scatter, and
MPI.Gather intrinsics. Of course, the optimization would
have no effect if the ZPL implementation were based on
these MPI routines.

4.5.3 Run Length Encoding

Stylized collective communication patterns like those listed
in Section 4.5.1 benefit from encoding the processor map and
buckets of indices in such a way as to decrease the storage
and communication requirements and improve the perfor-
mance of indexing into the arrays when the potentially ar-
bitrary access pattern is actually a strided sequence. We
use a strided run length encoding to store the processor map
and buckets of indices. Through a careful implementation,
we never need to use the full amount of memory necessary to
store unencoded representations. We use exactly the mem-
ory required to store the encoding plus a small constant
amount of space for the work of actually encoding the se-
quences. Moreover, our implementation is such that if the
encoding does not appear to have a benefit, we will stop the
encoding process early and use unencoded representations.

We use a recursive strided run length encoding so we can
encode the encoding if this will benefit us. In our implemen-
tation, by default, we base the number of recursive encod-
ings on the rank of the remap operator. So if there are three
map arrays, we encode an encoded encoding. This choice is
based on the optimal number of encodings we would need
for the basic redistribution pattern of Section 4.1.2.

As a basic example of the strided run length encoding,
consider the sequence: 1, 2, 3, 4, 5, 6. Our run length
encoder would stream in this sequence and output: 1, 1, 6.
The initial value is 1, the stride is 1, and the length is 6.

The 2D transpose implemented with the gather demon-
strates the power of run length encoding the indices. As
we traverse the array in row major order, the map arrays,
Index2 and Index1, provide pairs of integers used to index
the source array. The stream of pairs

(11)(21)(31)(41) (12)(22)(32) (42)
(13)(23)(33) (43) (14)(24) (34) (44)

is easily compressed. One level of encoding produces
(11104 (12)(10)4 (13)(10)4 (14)(10)4

There are four sequences to decode. In the first sequence,
the initial pair is (1, 1), the stride is (1, 0), and the length
is 4. The stride applies element-wise to the pair so the next
pair is (2, 1). Since we are working on a 2D array, we use
two levels of encoding, and produce

(11)(10)4(01)4

There is one sequence 10 decode which starts with the pair
(1, 1), the inner stride is (1, 0), the ocuter stride is (0, 1),
and the inner and outer lengths are 4. 1n producing this re-
cursive encoding, the level one encoding is never produced,
not even as an intermediate result. The total memory used
to produce this encoding from the stream of indices is never
more than enough memory to store the final result, 8 inte-
gers in this case, and some constant amount of additional
memory for the computations. Because we encode multiple
streams of indices at a time, one stream for each processor
we need to communicate with, we cannot simply use vari-
ables for this computation, but rather need a buffer array.

4.5.4 Dead Source/Destination Reuse

The buckets of data used in the implementation of the
remap operator may consume significant memory. To avoid
this, we employ an optimization called dead source reuse
and dead destination reuse. If the destination array is dead
before the remap, we may use its memory for the local data
buckets. Note that in the case of the gather, it is relatively
easy to determine what data in the destination array will
be overwritten. This is not the case for the scatter. If the
source array is dead after the remap, we may use its memory
for the remote data buckets. Then, in essence, we copy the
source array to the destination array, locally with possible
rearrangements of the data, send the data in the destina-
tion array to the source array, and, lastly, copy the source
array to the destination array, again locally with possible
rearrangements of the data.

This optimization is done by hand in the Fortran + MPI
implementation of the NAS FT 3D transpose shown in Ap-
pendix A.2. It is easy for the ZPL compiler to determine
that both the source and destination arrays are dead, thus
it is able to duplicate the work of the Fortran programmer.

4.5.5 Direct Sending/Receiving

Both dead source reuse and dead destination reuse de-
crease the storage required to implement the remap oper-
ator, but an interesting case arises if, during either of the
local copies to the destination array or a data bucket, no

rearrangement of the data takes place. If the data is copied
in order from one array to another, a straight copy, there
is no reason to buffer the data. It may just be sent or re-
ceived directly. The difficult task, then, is to detect whether
a straight copy will take place. For this detection, the run
length encoding of Section 4.5.3 comes to the rescue.

A small, well-structured, easily-detectable encoding of the
indices is both necessary and sufficient to prove that the copy.
from the source array to the data buckets in the case of the
gather or from the data buckets to the destination array
in the case of the scatter is a straight copy when coupled
with information about where the first and last elements are
placed in memory, the size of each element, and the number
of elements. It is even easier to tell if the other copy is
straight: we just need the information about the first and
last elements, the size of each element, and the number of
elements. 1f the copy is dense, we know it is straight because,
in these latter copies, we are copying the data in order.

This optimization, performed in the ZPL runtime, is equiv-
alent to the straight-forward approach taken by the Fortran
<+ MPI programmer in the context of the NAS CG trans-
pose. Due to the dynamic nature, the ZPL implementation
necessarily suffers from some overhead. More interestingly,
this optimization fired in certain configurations of the NAS
F'T benchmark that we did not expect. We discuss this fur-
ther in Section b where we evaluate our implementation of
the remap operator.

S. EVALUATION

In this section, we evaluate our implementation of the
remap operator in the context of the NAS CG and NAS
FT benchmarks. The NAS parallel benchmarks are a suite
of scientific applications and kernels representative of codes
scientists write for parallel computers [2, 3]. The Fortran
and MP1 provided implementations are highly-tuned. We
compare the NAS codes qualitatively first, then examine
differences in memory usage and execution time,

5.1 Expressiveness

Throughout this paper, we have argued that the remap
operator and ZPL's high-level constructs make the program-
mer’s job easier. Figure 4 contains a breakdown of the lines
of code in the ZPL and Fortran + MPI implementations.
While lines of code is not even close to being a perfect metric
for expressive power, it does yield some useful information.
The ZPL implementations of both the NAS FT and NAS CG
benchmarks are written with less than half the number of
lines uses to write the Fortran + MPI versions. The figures
show a breakdown of the lines of code into those used for
declarations, the actual computation, and communication.
The high-level approach of ZPL eliminates the need for the
programmer to specify details of communication. The-com-
putation was written with significantly fewer lines because
of ZPL’s powerful array syntax based on the region. The
reduction in lines is especially great for the NAS CG bench-
mark because of ZPL’s support for sparse arrays (8.

3.2 Memory Usage

Execution time is not the only important metric. It is
frequently the case that scientists would prefer to run their
applications using the largest possible data sets. Thus the
implementation of their code should use as little memory as
possible. Figure 5 shows the effect of the remap optimiza-

NAS FI' Benchmark NAS CG Benchmark

R0 anu—l

0 -

00
o L 004
T swd b
__‘f = == comm
c 44 — comip T —— o
A — rcls l‘l) —— il
§ g £
-] AT R

24

wod

L 0~
FeMp) . [ZPL

Implememation Implementation

Figure 4: The number of lines of code in the For-
tran 4+ MPI and ZPL versions of the NAS FT and

NAS CG benchmarks broken down into lines used
for communication, computation, and declarations.

NAS FI' Benchmark
9()]

[

— oty
—=inds
w—pinap
w—— ooy
I base

-

Peak Mcmory Used {megahytes)

FeMPl ZPL ZPLNM ZPLNR ZPLNBR ZPLNO ZPLD

Implementation

Figure 5: The effect of the various remap optimiza-
tions on the peak memory usage during execution
of a remap for class C of the NAS FT benchmark
run on 256 processors of a Cray T3E. The memory
is subdivided into five uses: general program data,
the three large arrays, the remap processor map,
the remap indices, and the remap data buckets.

tions discussed in this paper on the total memory usage for
class C (512 x 512 x 512 arrays, the largest size) of the NAS
FT benchmark running on 256 processors of a Cray T3E.
The memory needed to implement the remap in the NAS
CG benchmark is insignificant regardless of the optimiza-
tions because the amount of data movement is relatively in-
significant. The optimized ZPL implementation (ZPL) uses
nearly the same amount of memory as the Fortran + MPI
(F+MPI); the memory usage is broken down into the mem-
ory needed for the three major arrays and for the rest of the
program including a massive lookup table. The optimized
ZPL overhead, on the order of 84K, is small enough so as to
not show up in the chart.

Disabling the map saving optimization (ZPL NM) saves
the memory used for storing the map for the forward trans-
pose. In the benchmark, we do a forward transpose followed
by twenty backward transposes. The map is recalculated for
the backward transposes, but is not saved for the forward
transpose, a savings in memory on the order of 42K.

Run length encoding proves crucial for reducing the mem-
ory footprint. The three indices per position and the pro-
cessor map use half the memory needed to store the three
major arrays of the computation. Disabling run length en-

coding (ZPL NR) increases the memory needed to save the
two maps from about 84K to 24M. Compared to disabling
all the optimizations (ZPL NO), including map saving, we
use significantly more memory for the map. We make up
this loss with the dead source/destination reuse optimiza-
tion which eliminates the data buckets. Disabling this opti-
mization (ZPL NB) increases the memory usage by 16M.

As mentioned at the end of Section 4.5.5, the direct send-
ing/receiving optimization works under certain conditions
for the NAS FT benchmark. The processor grid used for
this benchmark is a p x 1 % 1 grid if p is less than or equal
to nx, after which a p — nz X nz x 1 grid is used, where p
is a power of two. When p > nz, the copy from the source
array is a straight copy, and the direct optimization applies.
This optimization has no effect with less than 512 proces-
sors for class C, but if it did, the direct optimization could
be used at the expense of the dead source/destination reuse
optimization. The memory use would increase by 8M (ZPL
D) for the one bucket. In our current implementation, we
give the direct optimization priority, however, we are look-
ing into whether a scheme based on dynamic profiling or an
inspector /executor model would be worthwhile.

5.3 NASFT Speedup

Figures 6-9 show results for the NAS FT and NAS CG
benchmarks for the class C problem size on increasing num-
bers of processors of a Cray T3E. We use speedup graphs
except where more information can be gleamed from a graph
of execution times. We calculate the speedups over the best
implementation time on the fewest number of processors for
which any implementation could complete without exhaust-
ing the memory or our time allotment. (Complete results for
classes A, B, and C are in Appendix C; raw times are listed
in Appendix D.) The ZPL implementation is based on C
and MPI. Though ZPL would likely exhibit improved per-
formance with the SHMEM library, time constraints have
limited our work.

Figure 6(a) compares the ZPL and Fortran + MPI imple-
mentations of the NAS FT benchmark. The ZPL implemen-
tation exhibits noticeable overhead stemming mostly from
the transpose, shown in Figure 6(b). This overhead in the
ZPL implementation can be attributed completely to the
cache blocking done by hand in the Fortran + MPI code. In
Figure 6(c), we undo the cache blocking (F+MPI NB), and
the ZPL implementation becomes noticeably faster. Now
the overhead lies in the Fortran + MPI implementation’s lo-
cal copying between source and destination arrays. In ZPL,
these copies are especially fast because of prior work done
in computing the maps.

In Figure 7(a) we look at the effect of the map saving op-
timization on ZPL. Disabling this optimization (ZPL NM)
decreases the execution time by nearly a factor of two. In
this graph, ZPL AMORTIZED refers to an implementation
of ZPL in which the maps are pre-computed. On the first
transpose, the maps are initially calculated adding some
overhead to the ZPL implementation. As the graph indi-
cates, in only twenty iterations, the optimization is almost
fully amortized.

Disabling run length encoding (ZPL NR), Figure 7(b),
slows execution time significantly. Further, if the indices
are not encoded, the ZPL version cannot run on 64 proces-
sors. The importance of the full suite of optimizations is
shown in Figure 7(c) where we compare the ZPL implemen-

FT Class C - Cray T3E

FT Class C -- Cray T3E

FT Class C -- Cray T3E

Total Time Transpose Time Transpose Time
g 4 3 E 4 " . g 4 . v
k| 3 " 4
£ - = linear speedu e o w- lingar speedup e — -~ linear spaedup ’/.
% 8 oot Pt MP] - E 3 - e FMPI e LA % 3 Tfj?;:maﬁﬁ “
& o= ZPL R —7 ¢ — 7Pl
4 i3 33
i £ 24 % § 24 5% 2
2 8 H LR
ip B s 8
883 88 14 ... 88 4 g
4 - ‘ - - . L4 4 ’ ‘
07— T T 1 03— T T 1 01— U T 1
01632 64 128 256 01632 64 128 266 01632 64 128 256
(a.) Processors Processors (C) Processors

Figure 6: Speedup graphs for class C of the NAS FT benchmark showing the (a) total time, (b) transpose
time, and (c) effect of the hand-coded cache-blocking optimization on the transpose time.

FT Class C -- Cray T3E
Transpose Time

tme
N
ad
8
e
o
]

~ «w iinear speedup
e FMP .
3] e ZPL AMORTIZED

—e ZPL

P!

over best irn
{23.69 seconds in F+#FT)
n
1

over best 64-p
{23.69 seconds in F+MPI)
n
1
-
1]

FT Class C -- Cray T3E
Transpose Time

w = w -« linear speedup
33 —e— F+MPI

e ZPL NR

F7 Cless C -~ Cray T3E
Transpose Time

N
~
time

3§ =~~~ linear speedup

3.3 el FAMPI
~—a— ZPL

~meie~n ZPL NO

‘over best
{23.69 seconds in F+MP1)
- N
X
\\
&
[N

- /V /
’/' ///
0 gy T] 0 “Fpp=——y T 1 0 Fop=—— T]
01632 64 128 266 01632 64 128 256 01632 64 128 256
(a) Processors (b) Processors (C) Pracessors

Figure 7: Speedup graphs for class C of the NAS FT benchmark showing the effect of the (a) map saving,
{(b) run length encoding, and (c) suite of optimizations on the transpose time.

tation without the remap optimizations (ZPL NQ). The di-
rect sending/receiving optimizations have no impact on class
C until there are 512 processors, but do show up for class A
at 128 processors and class B at 256 processors. The dead
source/destination reuse optimization had a critical impact

in decreasing the memory footprint, but did not affect exe-
cution time.

5.4 NAS CG Speedup

The transpose in NAS CG differs from the one in NAS
FT in a number of ways, two of which are worth mention-
ing. First, the transpose in NAS CG results in a one-to-ane
communication patfern as opposed to the all-to-all commu-
nication of NAS FT. Second, there is little data movement
in NAS CG, but much in NAS FT.

Figure 8(a) compares the ZPL and Fortran + MPI imple-
mentations. Nearly all the noticeable overhead in this graph
stems from the sparse matrix-vector multiplication. In ZPL,
the programmer’s job is made easier with the built-in sup-
port for sparse arrays, but the final code is slightly less effi-
cient. For a discussion of this support, the reader is referred
to the literature [8]. In this paper we focus on the relatively
insignificant transposition. The transpose time of the ZPL
and Fortran 4+ MPI] implementations as well as that for the
baseline ZPL (ZPL NO) is_charted in Figure 8(c). More
overhead is exhibited in the ZPL version than was seen for
the NAS FT benchmark, a result of the critical nature of the
direct sending/receiving optimization which has inherently
more overhead from the detection process and the decreased
data motion which exposes more overhead. As a whole, the

optimizations are seen to be more critical resulting in about
a factor of 6 to 8 slowdown.

Figure 8(b) shows the variations for the ZPL transpose
discussed in Section 4.3. The simple method of using the
Index2/Index1 transpose (ZPL I211) shows comparable per-
formance to the more complicated scheme that results in an
exactly one-to-one communication pattern, and, of course,
the performance is identical on a k x k processor grid. The
transpose using Index?2 twice (ZPL 1212) has noticeably worse
performance because the communication pattern is ineffi-
cient, '

Figure 9 shows the effect of disabling any one of the (a)
map saving (ZPL NM), (b) run length encoding (ZPL NR),
and (c) direct sending/receiving (ZPL D) optimizations. Each
of these optimizations is critical to performance.

6. CONCLUSIONS

ZPL’s remap operator possesses great power, yet retains
an efficient implementation. The .operator is more versa-
tile than those provided even by APL, and is significantly
more general than ZPL’'s other operators, including the re-
duction and flood operators discussed in this paper. Remap
arguably subsumes these other operators because we can
easily rewrite any reduction or flood with a remap. How-
ever, the purpose of ZPL is not only to communicate with
the machine, but also with the programmer. The reduction
and flood operators indicate, to both the programmer and
the implementer, specific communication patterns with ef-
ficient implementations that may be based on the parallel

(a)

CG Class C - Cray T3E

Total Time

Processors

(b)

CG Ciass C -- Cray T3E
Transpose Time

24 ~
12
r]]
£ =~ = linear speedup $al.——
% 9 Bt Pl e %18
& —e— ZPL
i E % 3
| -§ 6 g2
g
o
°8 o 8 B g e e
g 3 X /\\’______________.
0 .:l T T T 1] 0] T T 1 T 1
01632 64 128 256 01632 64 128 256

Processors

(c)

Execution time {seconds)

CG Class C ~ Cray T3E
Transpose Time

0 T T T 1 -
01632 64 128

Processors

Figure 8: Speedup graphs for class C of the NAS CG benchmark showing the (a) total time, (b) transpose
time for the variations of Section 4.3, and (c) effect of the suite of optimizations on the transpose time.

CG Class C -- Cray T3E
Transpose Time

CG Class C -- Cray T3E
Transpose Time

CG Class C -- Cray T3E
Transpose Time

124 124
) 7)
§ 3 §
s s 2
: ; ¢
8 § 5
£ g g
g g g
[] i
_ ey
047717 1] 017 T T] T T T 1
01632 64 128 256 01632 64 128 256 01632 64 128 256
(a) Processors Processors C Processors

Figure 9: Speedup graphs for class C of the NAS CG benchmark showmg the effect of the (a) map saving
and sharing, (b) run length encoding, and (c) direct sending and receiving optimizations on transpose time.

prefix algorithm and/or special hardware.

Rather than replace the other operators, remap compli-
ments them in creating a small suite of parallel array opera-
tors that one could use to write scalable, high-performance,
parallel codes. In the end, though, remap remains a catch-
all operator for ZPL, to be used when other operators do
not suffice. The implementation described in this paper
lessens the cost of remap’s wide applicability. Through opti-
mizations such as map saving, communication/computation
overlap, run length encoding, dead array reuse, and direct
communication, our implementation produces code compa-
rable in performance to hand-tuned Fortran and MPI.

7. REFERENCES

{1} J. C. Adams, W. S. Brainerd, J. T. Martin, B. T.
Smith, and J. L. Wagener. Foriran 90 Handbook.
McGraw-Hill, New York, NY, USA, 1992.
D. Bailey, E. Barszcz, J. Barton, D. Browning,
R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS
parallel benchmarks. Technical report, NASA Ames
Research Center (RNR-94-007), March 1994.
D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS parallel
benchmarks 2.0. Technical report, NASA Ames
Research Center (NAS-95-020), December 1995.
R. Barriuso and A. Knies. SHMEM user’s guide.
Technical report, May 1994.

(2l

[4]

(5)

(6]

(8]

(10)
[11]

(12]

B. L. Chamberlain. The design and implementation of
a region-based parallel language. Technical report,
University of Washington (Ph.D. Thesis), November
2001.
B. L. Chamberlain, S.-E, Choi, E. C. Lewis, C. Lin,
L. Snyder, and W. D. Weathersby. ZPL’s WYSIWYG
performance model. In Proceedings of the IEEE
Workshop on High-Level Parallel Programming Models
and Supportive Environments, 1998.
B. L. Chamberlain, E. C. Lewis, and L. Snyder.
Problem space promotion and its evaluation as a
technique for efficient parallel computation. In
Proceedings of the ACM International Conference on
Supercomputing, 1999.
B. L. Chamberlain and L. Snyder. Array language
support for parallel sparse computation. in
Proceedings of the ACM International -Conference on
Supercomputing, 2001.
S. J. Deitz, B. L. Chamberlain, and L. Snyder.
High-level language support for user-defined
reductions. In. Proceedings of the Los Alamos
Computer Science Institute Symposium, 2001,
A. D. Falkott and K. E. Iverson. APL/360 User’s
Manual. IBM Corporation, 1968.
K. E. Iverson. A Programming Language. Wiley, New
York, NY, USA, 1968.
M. Snir, S. W. Otto, S. Huss-Lederman, D. W.
Walker, and J. Dongarra. MPI: the complete reference.

MIT Press, Cambridge, MA, USA, 1996.
(13] L. Snyder. Programming Guide to ZPL. MIT Press,
Cambridge, MA, USA, 1999.

APPENDIX
A. NASFT 3D TRANSPOSE
The ZPL and Fortran + MPI codes for implementing the 3D transpose in the NAS FT benchmark follow.

A.1 ZPL Version

1 [RYZX] X2 := Xi1#[Index3, Index1, Index2];

2 [RXYZ] X2 := X1#[Index2, Index3, Indexi];

A.2 Fortran Version
1 subroutine transpose_x.yz(1l1, 12, xin, xout) 46 do jj = 1, transblock
2 implicit none 47 do ii = 1, tramsblock
3 include ’global.h’ 48 z(3j,ii) = xin(i+ii, j+33)
4 integer 11, 12 49 end do
5 double complex xin(ntotal/np), xout(ntotal/np) 50 end do
6 call transpose2.local(dims(1,11), 61 do ii = 1, transblock i
> dims(2, 11)*dims(3, 11), xin, xout) 52 do jj = 1, transblock
7 call transpose2.global (xout, xin) 63 xout (j+jj, i+ii) = 2(jj,ii)
8 call transpose2.finish(dims(1,11), 64 end do
> dims (2, 11)*dims(3, 11), xin, xout) 55 end do
9 return 56 end do
10 end 67 end do
58 endif
11 subroutine transpose.xy—z(l1, 12, xin, xout) 59 return
12 implicit none 60 end
13 include ’global.h’
14 integer 11, 12 61 subroutine transpose2_global(xin, xout)
16 double complex xin(ntotal/np), xout(ntotal/mp) 62 implicit none
16 call transpose2.local(dims(1,11)*dims(2, 11), 63 include ’global.h’
> dims(3, 11), xin, xout) 64 include ’mpinpb.h’
17 call transpose2.global(xout, xin) 65 double complex xin(ntotal/np)
18 call transpose2.finish(dims(1,11)»*dims(2, 11), 66 double complex xout(ntotal/np)
> dims(3, 11), xin, xout) 67 integer ierr
18 return 68 call mpi-alltoall(xin, ntotal/(np*np), dc.type,
20 end > xout, ntotal/(np*np), dc_type,
> commslicel, ierr)
21 subroutine transpose2.local(ni, n2, xin, xout) 69 return
22 implicit none 70 end
23 include ‘mpinpb.h’
24 include ’global.h’ 71 subroutine transpose2_finish(ni, n2, xinm, xout)
25 integer nl, n2 72 implicit none
26 double complex xin(nl, n2), xout(n2, ni) 73 include ’global.h’
27 double complex z(transblockpad, transblock) ‘74 integer nl, n2, ioff
28 integer i, j, ii, jj 75 double complex xin(n2, ni/np2, O:np2-1),
29 if (n1 .1t. transblock .or. n2 .1t. transblock) then > xout (n2*np2, nl1/np2)
30 if (nl1 .ge. n2) then 76 integer i, j, p
31 do j =1, n2 77 do p = 0, np2-1
32 do i=1, nl 78 ioff = p*n2
33 xout(j, i) = xin(i, j) 79 do j = 1, n1/np2
34 end do 80 do i =1, n2
35 end do 81 xout (i+ioff, j) = xin(i, j, p)
36 else 82 end do
37 do i =1, nl 83 end do
38 do j =1, n2 84 end do
39 xout(j, i) = xin(i, j) 85 return
40 end do 86 end
41 end do
42 endif
43 else 87 call transpose.xy.-z(2, 3, x1, x2)
44 do j = 0, n2-1, transblock

45 do i = 0, ni-1, transblock 88 call transpose.x.yz(3, 2, x1, x2)

B. NAS CG COLUMN ROW TRANSPOSE

The ZPL and Fortran + MPI codes for implementing the column to row transpose in the NAS CG benchmark follow.

B.1

B.2

1 if(

ZP1. Version
1 [Row] W :=

Fortran Version

12npcols .ne, O)then

P#[Index2, exch.procl;

2 call mpi.irecv(q, exch.recv_.length,

v Vv

els

w00 N oo

end

dp.type, exch.proc, 1,

mpi.comm.world, request, ierr)
call mpi_send(w(send_start), send.len,

dp.type, exch_proc, 1,
mpi.comm.world, ierr)

call mpi.wait(request, status, ierr)

e

do j=1,exch.recv.length
q(j) = w(j)

enddo

if

C. EXPERIMENTAL RESULTS

The following graphs show the complete results (classes A, B, and C) for our experiments discussed in Section 5. We
show efficiency graphs except where more information can be gleamed from graphs of execution times, We calculate the
efficiencies against the perfectly-scaled time of the best implementation time on the fewest number of processors for which
any implementation could complete without exhausting the memory or our time allottment.

‘C.1 NASFT Results

The graphs below compare the total execution time of the ZPL and Fortran + MPI implementations.

~ = = lingar speedup

oot F+MPY
—e— ZPL

The following graphs compare the performance of the transpose part of the benchmark.

~ = = linear
e F o+ M
——t— ZPL

P

FT Class A -- Cray T3E
Total Time

~
o

-
[=]
o
| I

{B84.2% seconds in FaMPD
n o
o o
i 1

0

Efticiency (%) of scaled best 2-processor time

U T
01632 64

T
128

Processora

FY Class A - Cray T3E
Transpose Time

e
(=4
o
ki
H
§

Bpesdup

~
o
1

{10.29 seconds in F+MPY)
N (1]
o o
3 +

0

Efticiency (%} of scaled best 2-processor time

L) T
01632 64

T
128

1/

[=2]

Processore

N
Oh-d
o

FT Class B -- Cray T3E

Total Time
g 100 ~r#ugcgiz s = e e
o M
@ ..
§§ 75+
Jogra
% £
3
H € 50
58
Eg' 254
é Or—T—1—T T |
@ 01632 64 128 256
Processors

FT Ciass B -~ Cray T3E
Transpose Time

H
£ 100
§
8E
75

o

£
3 g 50 Sy Y
B8
£8%1
-
§
VR e S N T 1
g 01632 64 128 256

Processors

FT Class C -- Cray T3E

" Total Time
;_ 100 - - s o e vy
g —e
;% 75 4

'S
t

50 |
ge
B 4
g%
§ 04T T)
g 01632 64 128 256
Proceasors
FT Ciass C -- Cray T3E

° Transpose Time
E
g’ 100 -\’\\.
H
5575

£75-

d
gE .-—‘-o\._.

v
‘2, £ 501
38
g o

© S
3825
g
] 0 T 7 T T 1
£ 01632 64 128 256

Processors

The following graphs show the effect of the cache-blocking optimization in the Fortran + MPI implementation.

= = lingar speedup

FT Class A -- Cray T3E
Transpose Time

g 100 -

P]

550s]

i

g.s

3 $

88

58

£2

g

$

2 O 1 T)

o 01632 64 128 256
Processors

FT Class B -- Cray T3E
Transpose Time

f
100 ~ g = e o o e e o o
5|
LEn
g
»n
T 50 -
3
5525_]... .
g
g 0 T T T |
a 01632 64 128 256
Processors

The following graphs show the effect of the map saving optimization.

~ =~ linear speedup
e E4MPI

e ZPL AMORTIZED
~— ZPL

- ZPL NM

Efticiency {%) Of Scaled best 2-processor time

FT Class A -- Cray T3E
Transpose Time

100 &

£

&

£

£50

8

8

g 25

0 ~-r—7 T T !
01632 64 128 266
Processors

FT Class B -- Cray T3E
Transpose Time

The following graphs show the effect of the run length encoding optimization.

~ =~ ~ linear speedup
o= FtMPL
—a— ZPL

~—— ZPL NR

Etticiency (") of scaled best 2-processor time

FT Class A -- Cray T3E
Transpose Time

TOO A o e e oo o o o i e o
g
s 75+
[r4
£
3
'§ 50 -
§ 25+
0 -~ T T |
01632 64 128 256
Processors

1]
£ 100
I3
ggn -

&
gs
3 g 50 =}
i
;E 25 A "
23 A
g
€
ﬁ 0 L T T 1
b 01632 64 128 266

Processars
FT Class B -- Cray T3E

R Transpose Time
% 100 -
-3
e
£
§£

»

205
Eg25
{
g 0 T \ T 1
& 01632 64 128 256

Processors

The following graphs show the total effect of the optimizations discussed in this paper.

« =~ =~ linear speedup
et F+MPI
—o— ZPL

s ZPL NO

Efticiency (%) of scaled best 2-processor time

{10.29 seconds in F+MP1)

FT Ciass A -- Cray T3E
Transpose Time

(0 iy e o i o s v
75
50
O T T |
01632 64 128 256
Processors

FY Class B -- Cray T3E
Transpose Time

®
§ 100 o~ e

2

8

=

'%75-

u

’g;

B0 Sy

3% .

i

8 S o e

R B

g (] T 1 T 1 1
& 01632 64 128 256

Processors

-
[=]
i=4

~
o

(23.69 seconds in F+MPT)
n [+)]
[4,] o

0

Efticiency (%) of scaled best 64-processor time

100

~
Lol

{22.69 seconds in F4MPI)
n o
o o

0

Efticiency (%) ot scaled best 53-processor time

ime

100

-~
o

(23.69 seconds in F+MP1}
n o
o t=3

0

Efticiency (%) of scated best 53-processor ti

Py
[~
(=)

-~
o

(23.69 seconds in F+MPT)
o o
o [=]

0

Eftictency (%} Ot scaled best 64-processor time

FT Class C -- Cray TIE
Transpose Time

T |
01632 64 128 256
Processors
FT Class C -- Cray T3E
Transpose Time
e
L
LI T T 1
01632 64 128 256
! Processors
FT Class C -- Cray T3E
Transpose Time
TS
LA T T RN)
01632 64 128 256
Processors
FT Class C « Cray T3E
Transpose Time
LI T T 1
01632 64 128 256

Processors

C.2 NAS CG Results

The graphs below compare the

CG Class A -- Cray T3E

total execution time

CG Class B -- Cray T3E

of the ZPL and Fortran + MPI implementations.

CG Class C -- Cray T3E

Total Time Total Time . Total Time
: 244 % 188 § 140
: l : l]
ww w linear speedy I = =
N e TR BS54t fo » ﬁ':jots-
—e—2zPL sl & i By
ix i i
E-Em?_ 3‘594* mmmmmmmmmmm M 31‘%70_
1 Q
§ i g8 g8
58 —_— ., 8% 3 &
EEG‘I— : R ;;;3;47— Egsﬁ-
B 2 3
i o I £ 0
] T T T] ‘E’ T T T 1 B LU T
] 01632 64 128 266 & 01632 64 128 256 § 01632 64 128
Processors Processors Processors

The following graphs compare the performance of the transpose part of the benchmark and show the total effect of the

optimizations discussed in this paper.

CG Class A -- Cray T3E
Transpose Time

CG Class B - Cray T3E
Transpose Time

CG Class C -- Cray T3E
Transpose Time

36 ~ 44 7
] $274 tE:E
§ & 13
£ I JLE foo-
i g
-]
N laby— et T
O ==l # A 0 == —=% f ! O -t—T—1 ' Y
01632 64 128 256 01632 64 128 256 01632 64 128 256
Processors Processors Processors

The following graphs compare the various ZPL implementations of the transpose.

CG Class A - Cray T3E
Transpose Time

4
ot F4+MP(
3 —e— ZPL
e ZPL 1241
e ZPL 1212

Execution time {seconds)

CG Ciass B -- Cray T3E
Transpose Time

Execution time {seconds)

CG Class C -- Cray T3E
Transpose Time

12
1 3 / ‘\,.__.——-—-""
& K - i -
T * % 0 7 T] O~ 1—T17 T)
01632 64 128 266 01632 64 128 256 01632 64 128 256
Processors Processars Processors

The following graphs show the effect of the map saving and sharing optimizations.

CG Class A - Cray T3E
Transpose Time

CG Class B -- Cray T3E
Transpose Time

CG Class C -- Cray T3E
Transpose Time

4 - 36
3
2 i F+MPI %z v
3 4-—e—2ZPL '§ 2274
g e ZPL NM H §
£ LA £
£ £ E1s
5] -
% / g £
R B g 74 g 94
2 . e '::‘/.\o—-——————“' s
1 T 04— ! ' T T T \
01632 64 128 256 01632 64 128 256 01632 64 128 256
Processors Processors Processors
The following graphs show the effect of the run length encoding optimization.
CG Class A -- Cray T3E CG Class B -- Cray T3E CG Class C - Cray T3E
Trenspose Time Transpose Time Transpose Time
4 _i e et 8- 12 4
k3 E —w— F+MPI 7 3 = FgMPI
3+ e 2PL ﬁ 6 § 9 -omo—
—tee ZPL NR 8 $ ZPL
£ b .ﬁ. 2
i O
_g 24 £ a4 1 . N
: : !
13 g 2 M\/—“ § 4l . »
£ & § -
N L M—W
0 = + -4 T T — 0 =1 T]
01632 64 128 256 01632 64 128 256 01632 64 128 256
Processors Processors Processors

The following graph show the effect of the direct sending and receiving optimizations.

CG Class A -- Cray T3E
Transpose Time

CG Class B -- Cray T3E
Transpose Time

CG Class C -- Cray T3E
Transpose Time

4 R 8- 12 g

% et F4MPI 7 v

R B 3 3

: —— ZPLND g 8

£ 2 LA

E L R, £ é

§ § £

£ 1 g g

[o &
] L L B el

* » - 0 T T T (e T 1 T T 1
01632 64 128 256 01632 64 126 256 01632 64 128 256
Processors Processors Processors

D. EXPERIMENTAL TIMINGS

The following tables contain the minimum observed times for each configuration of the experiments reported on in Section 5-
and Appendix C.

FT Class A - Cray TSE (Total Time)

processors || 2 4 8 16 32 64 128 256 |

F4+MPI [84.209 | 42.138 | 21.560 | 10.909 | 5.566 | 2.769 | 1.450 | 0.710

F+MPI NB || 100.841 | 50.283 | 24.997 | 12.619 | 6.394 | 3.170 | 1.642 | 0.789

ZPL]| 09.477 | 48.967 | 24.737 | 12.562 | 6.339 | 3.199 [1.606 | 0.903

ZPL NM [115.429 | 56.775 | 28.885 | 14.505 | 7.383 | 3.7562 | 1.876 | 1.228

ZPL NR —.— | —~— | 2b.998 | 13.304 | 6.800 | 3.650 | 2.173 | 1.284

ZPL NO —— | —.— 130.907 | 15.971 | 8.178 | 4.225 | 2.210 | 1.417

ZPL, AMORTIZED 06.893 | 47.892 [24.106 | 12.253 | 6.169 | 3.112 | 1.550 | 0.816

FT Class A -~ Cray T3E (Transpose Time)

I processors || 2 4 8 16 32 64 128 256
F4+MPI || 10.293 5,188 3.027 | 1.643 | 0.892 | 0.439 { 0.281 | 0.350

F+MPI NB || 26.949 | 13.312 6.434 | 3.347 | 1.768 | 0.840 | 0.474 | 0.431

ZPL | 21.031 9,780 5.080 | 2.725 | 1.396 | 0.725 | 0.377 | 0.452

ZPL NM || 36.660 | 17.449 9,169 | 4.654 | 2.446 | 1.268 | 0.631 | 0.776
ZPLNR || —— —_— 6.456 | 3.466 | 1.894 | 1.198 | 0.912 | 0.870

ZPL NO || —.— o 11.235 | 6.117 [3.275 | 1.711 | 0.966 | 0.974

ZPL AMORTIZED || 18.548 8.604 4.431 | 2.440 | 1.236 | 0.653 | 0.318 | 0.363

FT Class B - Cray T8E (Total Time)

r processors | 8 16 32 64 128 256 |
F+MPT || 330.907 | 167.841 84.769 | 42.862 | 21.6656 | 11.183
F+MPI NB || 383.536 | 191.053 96.059 | 48.524 | 24.312 | 12.465
ZPL —— 184.957 93.796 | 47.481 | 23.827 | 11.964
ZPL. NM —_— 210.262 | 106.583 | 53.931 | 27.128 | 13.829
ZPL NR —— —_— 96.791 | 49.282 | 25.741 | 13.765
ZPL NO —— —— 117.338 | 59.825 | 30.752 | 16.154
ZPL AMORTIZED —_ 184.691 03.222 | 47.194 | 23.662 | 11.835

FT Class B ~ Cray TSE (Transpose Time)
[processors || 8 16 32 64 128 256 |

F4+MPI || 32.466 | 18.565 9.941 5,576 3.025 | 1.773
F-+MPI NB || 85.364 | 41.963 | 21.278 | 11.233 | 5.703 | 3.085
ZPL Y —— | 20.228 | 16.063 | 8.566 | 4.381 | 2,172
ZPL NM || —— | b4.490 | 28.625 | 15.091 7.666 | 4.048
ZPLNR || —— | ——]19.186 | 10.464 | 6.318 | 3.980
ZPL NO || —~— | ——]39.513 | 20.983 | 11.2560 | 6.356
ZPL AMORTIZED || —.— 128.822 | 15.733 | 8.286 | 4.220 | 2.062
FT Class C - Cray T3E (Total Time) FT Class C - Cray T3E (Transpose Time)
[PTOCESSOTS 64 128 256 | | processors || 64 128 256 |
F+MPT || 198.529 | 100.312 | 50.717 | [F+MPI || 23.686 | 12.639 | 6.752
F+MPI NB || 221.686 | 111.393 | 56.064 F+MPI NB || 46.922 | 23.829 | 12.107
ZPL || 214.605 | 107.772 | 54.579 ZPL || 36.751 1 18,915 | 10.123
ZPL NM || 240.188 | 120.640 | 61.675 ZPL NM || 62.315 | 31.656 | 17.135
ZPL NR —.— | 112,174 | 58.751 ZPL NR || —— | 23.293 | 14.385
ZPL NO —.— | 133.824 | 69.359 ZPL NO || —— | 44.708 | 24.907
ZPL AMORTIZED [l 213.452 | 107.031 | 54.164 ZPL AMORTIZED || 35.668 | 18.352 | 9.758

CG Class A - Cray T3E (Total Time)

| processors | 1 2 4 8 16 32 64 128 256 |
F+MPI [[147.309 | 42.216 | 22.447 | 7.588 | 5.683 | 2.019 | 1.321 | 0.791 | 0.609
ZPL || 155.291 | 53.358 | 26.573 | 11.679 | 6.026 | 3.556 | 1.946 | 1.473 | 0.900
ZPL NM [160.675 | 56.551 | 28.965 | 13.060 | 7.300 | 4.291 | 2.724 | 2,272 | 2.150
ZPL NR || 157.546 | 54.607 | 27.342 | 12.108 | 6.329 [3.811 | 2.042 | 1.583 | 0.955
ZPL ND || 156.261 | 54.087 | 27.049 | 12.033 | 6.243 | 3.716 [2.038 | 1.550 [0.950
ZPL NO || 161.559 | 56.795 | 29.402 | 13.210 | 7.466 | 4.424 | 2.923 | 2.367 | 2.305
ZPL 1212 || 155.916 | 53.829 | 27.092 | 12.085 | 6.483 | 3.837 | 2.334 | 1.695 | 1.283
ZPL 1211 ['155.831 | 53.885 | 26.791 | 11.951 | 6.141 | 3.684 [1.992 | 1.533 | 0.925
CG Class A - Cray T8E (Transpose Time)
| processors | 1 2 4 8 16 32 64 128 256 |
F+MPI]| 0.198 [0.128 | 0.126 | 0.078 | 0.075 | 0.047 | 0.046 | 0.026 | 0.028
ZPL [0.200 | 0.143 | 0.149 | 0.116 | 0.146 | 0.123 | 0.178 | 0.156 | 0.214
ZPL NM [3.774 | 2.145 | 1.951 | 1.105 | 1.241 | 0.733 | 0.920 | 0.909 [1.436
ZPL NR || 0.789 | 0.432 | 0.445 | 0.266 | 0.294 | 0.200 | 0.256 | 0.194 | 0.261
ZPL ND | 0.706 | 0.416 | 0.422 [0.252 | 0.277 | 0.186 | 0.242 [0.195 | 0.259
ZPL NO | 4.910 | 2.624 | 2.560 | 1.407 | 1.533 | 0.962 | 1.170 | 1.076 | 1.610
ZPL 1212 1] 0.201 | 0.142 | 0.450 [0.268 | 0.477 | 0.275 | 0.461 | 0.321 | 0.550
ZPL 1211 |[0.200 [0.196 | 0.149 | 0.155 | 0.146 | 0.134 | 0.177 | 0.160 | 0.216
CG Class B -~ Cray T3E (Total Time)
PTOCESSOTS 8 16 32 64 128 256 |
F+MPI || 858.405 | 440.781 | 133.984 78.033 | 28.934 | 19.279
ZPL || 931.290 | 468.454 | 193.313 95.748 | 48.582 | 27.822
ZPL NM || 965.250 | 497.998 | 209.422 | 111.673 | 58.915 | 39.715
ZPL NR [l 951.269 | 475.753 | 195.777 98.758 | 50.054 | 29.803
ZPL ND || 952.145 | 475.015 | 198.186 99.031 | 50.999 | 29.187
ZPL NO || 977.309 | 503.068 | 210.391 | 115.029 | 60.812 | 41.047
ZPL 1212 || 952.405 | 479.898 | 200.653 | 106.481 | 54.699 | 37.979
ZPL 1211 || 949.701 | 471.528 | 196.332 97.410 | 51.104 | 28.534
CG Class B - Cray T3E (Transpose Time)
processors | 8 16 32 64 128 256 |
F+MPI 1.264 1.258 0.780 0.757 0.521 0.494
ZP1, 1.758 2.623 1.669 3.080 1.986 2.559
ZPL NM | 26.865 | 27.117 | 14.782 [17.119 | 10.900 | 13.479
ZPL NR 5439 | 6.419 | 3.613 | 5.008 | 2.986 | 3.577
ZPL ND 4.961 59036 | 4.038 | 4.844 | 2.902 | 3.521
ZPL NO || 30.377 | 35.620 | 19.232 | 22.893 | 14.264 | 17.203
ZPL 1212 5.124 9.906 5.641 | 10.446 | 6.194 | 11.401
ZPL 1211 2.570 | 2.614 1.850 [3.079 | 2.713 | 2.552
CG Class C - Cray T8E (Total Time) CG Class C - Cray TSE (Transpose Time)
[processors 32 64 128 256 | [processors 32 64 128 256 |
F+MPI || 585.906 | 303.845 | 105.895 | 61.941 F+MPI 1.158 1.244 0.799 | 0.777
ZPL |l 678.068 | 343.936 | 143.390 | 77.602 ZPL 2.978 5.733 | 3.411 4.316
ZPL NM [I 714.300 | 373.965 | 162.857 | 96.736 ZPL NM | 29.016 | 32.351 | 18.931 | 21.785
ZPL NR || 690.091 | 348.150 | 149.784 83.218 ZPL NR 6.720 | 9.528 | 5.321 6.2563
ZPL ND | 690.182 | 349.968 | 148.285 | 80.848 ZPL ND 6.358 { 9.082 | 5113 | 6.116
ZPL NO || 716.261 | 378.467 | 164.740 | 102.905 ZPL NO || 34.067 | 43.117 | 24.160 | 29.237
ZPL 1212 || 694.190 | 362.423 | 155.265 | 97.550 ZPL 1212 i 10.837 | 19.741 | 11.417 | 20.890
ZPL 1211 || 686.806 | 346.857 | 146.884 79.143 ZPL 1211 3.317 | 5.733 | 3.297 | 4.313

