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Abstract 

In this paper we describe how we improved the effective performance of ASCI Q, the world's second-fastest su- 
percomputer, to meet our expectations. Using an arsenal of performance-analysis techniques including analytical 
models, custom microbenchmarks, full applications, and simulators, we succeeded in observing a serious-but pre- 
viously undetectable-performance problem. We identified the source of the problem, eliminated the problem, and 
"closed the loop" by demonstrating improved application performance. We present our methodology and provide 
insight into performance analysis that is immediately applicable to other large-scale cluster-based supercomputers. 

1 Introduction 
"[WJhen you have eliminated the impossible, whatever 
remains, however improbable, must be the truth." 

- Sherlock Holmes, Sign ofliour, 
Sir Arthur Conan Doyle 

Users of the 8,192-processor ASCI Q machine that 
was recently installed at Los Alamos National Labora- 
tory (LANL) are delighted to be able to run their ap- 
plications on a 20 Tflop/s supercomputer and obtain 
large performance gains over previous supercomput- 
ers. We, however, asked the question, "Are these appli- 
cations running as fast as they should be running on 
ASCI Q?" This paper chronicles the approach we took 
to accurately determine the performance that should 
be observed when running SAGE, a compressible Eule- 
rian hydrodynamics code consisting of -150,000 lines 
of Fortran + MPI cocle; how we proposed and tested 
numerous hypothescs as to what was causing a discrep- 
ancy between prediction and measurement; and how 
we finally identified and eliminated the problem. 
As of April 2003, ASCI Q exists in its final form- 

a single system comprised of 2,048 HP ES45 Al- 
phaServer SMP nodes, each containing four EV68 Al- 
pha processors and interconnected with a Quadrics Qs- 
Net network [81. ASCI Q was installed in stages and 
its performance was measured at each step. The per- 
formance of individual characteristics such as memory, 
interprocessor communication, and full-scale applica- 
tion performance were all measured and recorded. 
Performance testing began with the measurement on 

the first available hardware worldwide: an eight-node 
HP ES45 system interconnected using two rails of 
Quadrics in March 2001 at HP in Marlborough, Mas- 
sachusetts. The first 128 nodes were available for use 
at LANL in September 2001. The system increased in 
size to 512 nodes in early 2002 and to two segments 
of 1,024 nodes by November 2002. The peak process- 
ing performance of the combined 2,048-node system 
is 20 Tflop/s and will be listed as #2 in the list of the 
top 500 fastest computers.' 

The ultimate goal when running an application on 
a parallel supercomputer such as ASCI Q is either to 
maximize work performed per unit time (weak scal- 
ing) or to minimize time-to-solution (strong scaling). 
The primary challenge in achieving this goal is com- 
plexity. Large-scale scientific applications, such as 
those run at LANL, consist of hundreds of thousands 
of lines of code and possess highly nonlinear scal- 
ing properties. Modern clusters are difficult to op- 
timize for, as their deep memory hierarchies can in- 
cur orders-of-magnitude performance loss in the ab- 
sense of temporal or spatial access locality; multiple 
processors share a memory bus, potentially leading to 
contention for a fixed amount of bandwidth; network 
performance may degrade with physical or logical dis- 
tances between communicating peers or with the level 
of contention for shared wires; and, each node runs 
a complete, heavyweight operating system tuned pri- 
marily for workstation or server workloads, not high- 

'http://wuv. top500.0rg 
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TABLE 1: Performance analysis tools and techniaues 
Technique Meaning Purpose 

~ 

measurement running full applications under various 
system configurations and measuring 
their performance 

measuring the performance of primitive 
components of an application 

running an application or benchmark on 
a software simulation instead of a physi- 
cal system 

devising a parameterized, mathematical 
model that represents the performance 
of an application in terms of the per- 
formance of processors, nodes, and net- 
works 

microbenchmarking 

simulation 

analytical modeling 

determine how well the application actu- 
ally performs 

provide insight into application perfor- 
mance 

examine a series of "what if" scenarios, 
such as cluster configuration changes 

rapidly predict the expected performance 
of an application on existing or hypotheti- 
cal machines 

performance computing workloads. As a result of com- 
plexity in applications and in supercomputers it is diffi- 
cult to determine the source of suboptimal application 
performance-or even to determine if performance is 
suboptimal. 

Ensuring that key, large-scale applications run at 
maximal efficiency requires a methodology that is 
highly disciplined and scientific, yet is still sufficiently 
flexible to adapt to unexpected observations. The ap- 
proach we took is as follows: 

1. Using detailed knowledge of both the application 
and the computer system, use performance model- 
ing to determine the performance that SAGE ought 
to see when running on ASCI Q. 

2. If SAGE'S measured performance is less than the ex- 
pected performance, determine the source of the 
discrepancy. 

3. Eliminate the cause of the suboptimal performance. 
4. Repeat from step 2 until the measured performance 

Step 2 is the most difficult part of the procedure and is 
therefore the focus of this paper. 

While following the above procedure the perfor- 
mance analyst has a number of tools and techniques 
at his disposal as listed in Table 1. An important con- 
straint is that time on ASCI Q is a scarce resource. As a 
result, any one researcher or research team has limited 
opportunity to take measurements on the actual super- 
computer. Furthermore, configuration changes are not 
always practical. It often takes a significant length of 
time to install or reconfigure software on thousands of 
nodes and cluster administrators are reluctant to make 
modifications that may adversely affect other users. In 
addition, a reboot of the entire system can take sev- 
eral hours [61 and is therefore performed only when 
absolutely necessary. 

The remainder of the paper is structured as follows. 
Section 2 describes how we determined that ASCI Q 

matches the expected performance. 

was not performing as well as it could. Section 3 
details how we systematically applied the tools and 
techniques shown in Table 1 to identify the source 
of the performance loss. Section 4 explains how we 
used the knowledge gained in Section 3 to achieve our 
goal of improving application performance to the point 
where it is within a small factor of the best that could 
be expected. Section 5 completes the analysis by re- 
measuring the performance of SAGE on an optimized 
ASCI Q and demonstrating how close the new perfor- 
mance is to the ideal for that application and system. 
A discussion of the insight gained in the course of this 
exercise is presented in Section 6 ,  and we present our 
conclusions in Section 7. 

2 Performance expectations 

Based on the Top 500 results, ASCI Q appears to be per- 
forming well. It runs the LINPACK [l] benchmark at  
75% of peak performance, which is well within range 
for machines of that class. However, there are more 
accurate methods for determining how well a system 
is actually performing. From the testing of the first 
ASCI Q hardware in March 2001, performance models 
of several applications representative of the ASCI work- 
load were used to provide an expectation of the perfor- 
mance that should be achievable on the full-scale sys- 
tem [3 ,  41. These performance models are parametric 
in terms of certain basic, system-related features such 
as the sequential processing time-as measured on 
a single processor-and the communication network 
performance. 

In particular, a performance model of a large-scale 
hydrodynamic application, SAGE, was developed for 
the express purpose of predicting the performance of 
SAGE on the full-sized ASCI Q. The model has been 
validated on many large-scale systems-including all 
ASCI systems-with a typical prediction error of less 
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than 10% [SI. The HP ES45 nodes used in ASCI Q 
actually went through two major upgrades during in- 
stallation: the PCI bus within the nodes was upgraded 
from 33 MHz to 66 MHz and the processor speed was 
upgraded from 1 GHz to 1.25 GHz. The SAGE model 
was used to provide an expected performance of the 
ASCI Q nodes in all of these configurations. 

The performance of the first 4,096-processor seg- 
ment of ASCI Q (“QA”) was measured in Septem- 
ber 2002 and the performance of the second 4,096- 
processor segment (“QB”)-at the time, not physically 
connected to QA-was measured in November. The 
results of the two measurements are consistent with 
each other although they rapidly diverge from the per- 
formance predicted by the SAGE performance model 
(Figure 1). At 4,096 processors, SAGE’S cycle time was 
twice the time predicted by the model. This was consid- 
ered to be a “difference of opinion” between the model 
and the measurements. Without further analysis it 
would have been impossible to discern whether the 
performance model was inaccurate-although it has 
been validated on many other systems-or whether 
there was a problem with some aspect of ASCI Q’s 
hardware or software configuration. 

c 

2 0.4 
d 
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Figure 1: SAGE performance: expected and measured 
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-1 worse on ASCI Q than 

In order to identify why there was a difference in 
performance between the measured and expected per- 
formance, we performed a battery of tests on ASCI Q. 
The most revealing result came from varying the num- 
ber of processors per node used to run SAGE. Figure 2 
shows the difference between the modeled arid the 
measured performance when using 1, 2, 3, or 4 pro- 
cessors per node. Note that a log scale is used on the 

x axis. It can be seen that the only significant differ- 
ence occurs when using all four processors per node 
thus giving confidence to the model being accurate. 

0.6 
I -+- 1 PEsPerNode I i 

1 10 100 1000 10000 
#PES 

Figure 2: Error in modeled and measured SAGE per- 
formance when using 1,2,3, or 4 processors per node 

It is also interesting to note that, above approxi- 
mately 1,500 processors, the processing rate of SAGE 
was actually better when using three processors per 
node instead of the full four, as shown in Figure 3 .  
Even though 25% fewer processors are used per node, 
the performance can actually be greater than when 
using all four processors per node. Phillips et al. ob- 
served similar behavior on a molecular-dynamics appli- 
cation running at  the Pittsburgh Supercomputing Cen- 
ter using similar hardware to that in ASCI Q [SI. They 
concluded that “the inability to use the 4th processor 
on each node for useful computation” is a major prob- 
lem, and they conjectured that “a different implemen- 
tation of [their] low level communication primitives 
will overcome this problem”. 

Like Phillips et al., we also analyzed application per- 
formance variability Each computation cycle within 
SAGE performs a constant amount of work and could 
therefore be expected to take a constant amount of 
time to complete. We measured the cycle time of 1,000 
cycles using 3,584 processors of one of the ASCI Q 
segments. The ensuing cycle times are shown in Fig- 
ure 4(a) and a histogram of the variability is shown 
in Figure 4(b). It is interesting to note that the cycle 
time ranges from just over 0.7s to over 3.0s, indicating 
greater than a factor of 4 in variability, 

A profile of the cycle time when using all four pro- 
cessors per node, as shown in Figure 5, reveals a 
number of important characteristics in the execution 
of SAGE. The profile was obtained by separating 
out the time taken in each of the local boundary ex- 
changes (token-get and token-put) and the collective- 
communication operations (allreduce, reduction, and 
broadcast) on the root processor. The overall cycle 
time, which includes computation time, is also shown 
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Figure 3: Effective SAGE processing rate when using 
1, 2,3,  or 4 processors per node 

in Figure 5. The time taken in the local boundary 
exchanges appears to plateau above 500 processors 
and corresponds exactly to the time predicted by the 
SAGE performance model. However, the time spent in 
allreduce and reduction increases with the number of 
processors and appears to account for the increase in 
overall cycle time with increasing processor count. It 
should be noted that the number and payload size in 
the allreduce operations was constant for all processor 
counts, and the relative difference between allreduce 
and reduction (and also broadcast) is due to the differ- 
ence in their frequency of occurrence within a single 
cycle. 

To summarize, our analysis of SAGE on ASCI Q led 
us to the following observations: 

There is a significant difference of opinion between 
the expected performance and that actually ob- 
served. 
The performance difference occurs only when using 
all four processors per node. 
There is a high variability in the performance from 
cycle to cycle. 
The performance deficit appears to originate from 
the collective operations, especially allreduce. 

It is therefore natural to deduce that improving the 
performance of allreduce, especially when using four 
processors per node, ought to lead to an improvement 
in application performance. In Section 3 we test this 
hypothesis. 

3 Identification of performance 
factors 

In order to identify why application performance such 
as that observed on SAGE was not as good as ex- 
pected, we undertook a number of performance stud- 
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Figure 4: SAGE cycle-time measurements on 3,584 
processors 

ies. To simplify this process we concerned ourselves 
with the examination of smaller, individual operations 
that could be more systematically analyzed. Since it 
appeared that SAGE was most significantly effected 
by the performance of the allreduce collective opera- 
tion several attempts were made to improve the per- 
formance of collectives on the Quadrics network. 

3.1 Optimizing the allreduce 

Figure 6 shows the performance of the allreduce when 
executed on an increasing number of nodes. We can 
clearly see that a problem arises when using all four 
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Figure 7: allreduce and barrier latency with varying 
amounts of intervening computation 
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Figure 5: Profile of SAGE cycle time 

processors within a node. With up to three proces- 
sors the allreduce is fully scalable and takes, on aver- 
age, less than 300 ps. With four processors the latency 
surges to more than 3 ms. These measurements were 
obtained on the QB segment of ASCI Q. 

Allreduce Latency 
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J pL~K?\\l-< IY 1 tl(Kk 

0.5 *.-a *- .-#.-e-’ =.+&-J 
0 

0 100 200 300 400 500 600 700 800 900 lo00 
Nodes 

Figure 6: allreduce latency as a function of the number 
of nodes and processes per node 

Figure 7 provides more clues to our analysis. It 
shows the performance of the allreduce and barrier in 
a synthetic parallel benchmark that alternately com- 
putes for either 0, 1, or 5 ms then performs either an 
allreduce or a barrier. In an ideal, scalable, system we 
should see a logarithmic growth with the number of 
nodes and insensitivity to the computational granular- 
ity. Instead, what we see is that the completion time 
increases linearly with both the number of nodes and 
the computational granularity Figure 7 also shows 
that both allreduce and barrier exhibit similar perfor- 
mance. Given that the barrier is implemented using a 
simple hardware broadcast whose execution is almost 
instantaneous (only a few microseconds) and that it re- 
produces the same problem, we will consider a barrier 
benchmark later in the analysis. 

We made several attempts to optimize the allreduce 
in the four-processor case and were able to substan- 
tially improve the performance. To do so, we used a 
different synchronization mechanism. In the existing 
implementation the processes in the, reduce tree poll 
while waiting for incoming messages. By changing the 
synchronization mechanism to poll for a limited time 
(100 ps) and then block, we were able to improve the 
latency by a factor of 7. 

At 4,096 processors, SAGE spends over 51% of its 
time in allreduce. Therefore, a sevenfold speedup in 
allreduce ought to lead to a 78% performance gain 
in SAGE. In fact, although extensive testing was per- 
formed on the modified collectives, this resulted in 
only a marginal improvement in application perfor- 
mance. 

MYSTERY #2 

Although SAGE spends half of its time in allreduce 
(at 4,096 processors), making allreduce seven times 
faster leads to a negligible performance improve- 

We can therefore conclude that neither the MPI im- 
plementation nor the network are responsible for the 
performance problems. By process of elimination, we 
can infer that the source of the performance loss is in 
the nodes themselves. 

3.2 Analyzing the computational noise 

Our intuition was that periodic system activities were 
interfering with application execution. This hypothesis 
follows from the observation that using all four proces- 
sors per node results in lower performance than when 
using fewer processors. Figures 3 and 6 confirm this 
observation for both SAGE and allreduce performance. 
System activities can run without interfering with the 
application as long as there is a spare processor avail- 
able to absorb them. When there is no spare processor, 
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the application must relinquish one of its processors 
to the system activity. Doing so may introduce perfor- 
mance variability, which we refer to as “noise”. 

To determine if system noise is, in fact, the source of 
SAGE’s performance variability, we crafted a simple mi- 
crobenchmark designed to expose the problems. The 
benchmark works as shown in Figure 8: each node per- 
forms a synthetic computation carefully calibrated to 
run for exactly 1,000 seconds in the absense of noise. 

START 

p. 

Sticking to our assumption that noise is somehow 
responsible for SAGE’s performance problems we re- 
fined our microbenchmark into the version shown in 
Figure 10. The new microbenchmark was intended to 
provide a finer level of detail into the measurements 
presented in Figure 9. In the new microbenchmark, 
each node performs 1 million iterations of a synthetic 
computation, with each iteration carefully calibrated 
to run for exactly 1ms in the absense of noise, for 
an ideal total run time of 1,000 seconds. Using a 
small granularity, such as 1 ms, is important because 
many LANL codes exhibit such granularity between 
communication phases. During the purely computa- 
tional phase there is no message exchange, I/O, or 
memory access. As a result, the run time of each it- 
eration should always be 1 ms in a noiseless machine. 

sTAw - 
TIME 

Figure 8: Performance-variability microbenchmark 

The total normalized run time for the microbench- 
mark is shown in Figure 9 for all 4,096 processors in 
QB. Because of interference from noise the process- 
ing time can be longer and can vary from process to 
process. However, the measurements indicate that the 
slowdown experienced by each process is low, with 
a maximum value of 2.5%. As Section 2 showed a 
performance slowdown in SAGE of a factor of 2, a 
mere 2.5% slowdown in the performance-variability 
microbenchmark appears to contradict our hypothesis 
that noise is what is causing the high performance vari- 
ability in SAGE. , 

Computational Overhead (Coarse Grained) 

‘ I  ‘ I  2.5 I 

” 
0 500 loo0 1500 2000 2500 3000 3500 4000 

Processes 

Figure 9: Results of the performance-variability mi- 
crobenchmark 

START E M ,  

* 
TIME 

Figure 10: Performance-variability microbenchmark, 
second attempt 

We ran the microbenchmark on all 4,096 processors 
of QB. However; the variability results were qualita- 
tively identical to those shown in Figure 9. Our next 
attempt was to aggregate the four processor measure- 
ments taken on each node, the idea being that system 
activity can be scheduled arbitrarily on any of the pro- 
cessors in a node. Our hypothesis is that examining 
noise on a per-node basis may expose structure in what 
appears to be uncorrelated noise on a per-processor 
basis. Again, we ran 1 million iterations of the mi- 
crobenchmark, each with a granularity of lms .  At 
the end of each iteration we measured the actual run 
time and for each iteration that took more than the 
expected 1ms run time, we summed the unexpected 
overhead. The idea to aggregate across processors 
within a node led to an important observation: Fig- 
ure 11 clearly indicates that there is a regular pattern 
to the noise across QB’s 1,024 nodes. Every cluster 
of 32 nodes contains some nodes that are consistently 
noisier than others. 

FINDING #1 
Analyzing noise on a per-node basis instead of a 
per-processor basis reveals a regular structure across 
nodes. 

MYSTERY # 3  

SAGE’s suboptimal performance, microbenchmarks 
of per-processor noise indicate that at  most 2.5% of 
performance is being lost to noise. Figure 12 zooms in on the data presented in Fig- 

ure 11 in order to show more detail on one of the 32- 
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Figure 11: Results of the per-node performance- 
variability microbenchmark 

node clusters. We can see that all nodes suffer from a 
moderate background noise and that node 0 (the clus- 
ter manager), node I (the quorum node), and node 31 
are slower than the others. This pattern repeats for 
each cluster of 32 nodes. 

Computational Overhead in a 32 Node Cluster 

'-1 

0 5 10 15 20 25 30 
Nodes 

Figure 12: Slowdown per node within each 32-node 
cluster 

In order to understand the nature of this noise we 
plot the actual time taken to perform the 1 million 
1 ms computations in histogram format. Figure 13 
contains one such histogram for each of four group- 
ings of nodes: nodes 0, 1, 2-30, and 31 of each 32- 
node cluster. These histograms show that the noise in 
each grouping has a well-defined pattern with classes 
of events that happen regularly with well-defined lre- 
quencies and durations. For example, on any node 2- 
30 of a cluster we can identify two events that hap- 
pen regularly every 30 seconds and whose durations 
are 16 and 19ms. This means that a slice of compu- 
tation that should take 1 ms occasionally takes 16 ms. 
The process that experiences this type of interruption 
will freeze for the corresponding amount of time. Intu- 
itively, these events can be traced back to some regular 
system activity as daemons or the kernel itself. Node 0 
displays four different types of activities, all occurring 
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at regular intervals, with a duration that can be up 
to 200ms. Node 1 experiences a few heavyweight 
interrupts-one every 60 seconds-that freeze the pro- 
cess for about 335ms. On node 31 we can identify 
another pattern of intrusion, with frequent interrupts 
(every second) and a duration of 7 ms. 

Using a number of techniques on QB and other par- 
allel machines, we were able to identify the source 
of most activities. As a general rule, these activities 
happen a t  regular intervals. The two events that take 
16 and 19ms on each node 2-30 are generated by 
Quadrics's resource management system, RMS [lo],  
which regularly spawns a damon every thirty seconds. 
A distributed heartbeat that performs cluster manage- 
ment, generated a t  kernel level, is the cause of many 
lightweight interrupts (one every 125 ms) whose du- 
ration is a few hundreds of microseconds. Other dae- 
mons that implement the parallel file system and Tru- 
Cluster are the source of the noise on nodes 0 and 31. 

Each of these events can be characterized by a tuple 
( F ,  L, E ,  P )  that describes the frequency of the event F ,  
the average duration L, the distribution E,  and the 
placement (the set of nodes where the event is gen- 
erated) P. As will be discussed in Slection 3.4, this 
characterization is accurate enough to closely model 
the noise in the system and is also able to provide 
clear guidelines to identify and eliminate the sources 
of noise. 

3.3 Effect on system performance 

Figure 14(a) provides some intuition on 'the poten- 
tial effects of these delays on applications that are 
fine-grained and bulk-synchronous. In such a case, a 
delay in a single process slows down the whole ap- 
plication. Note that even though any given process 
in Figure 14(a) is delayed only once, the collective- 
communication operation (represented by the vertical 
lines) is delayed in every iteration. When we run an 
application on a large number of processors, the like- 
lihood of having at least one slow process per itera- 
tion increases. For example, if only one process out 
of 4,096 experiences a delay of looms, on an appli- 
cation that barrier-synchronizes every 1 ms, then the 
whole application will run 100 times slower! 

While the obvious solution is to remove any type 
of noise in the system, in certain cases it may not 
be possible or cost effective to remove dzmons or 
kernel threads that perform essential activities as re- 
source management, monitoring, parallel file system, 
etc. Figure 14(b) suggests a possible solution that 
doesn't require the elimination of the system activities. 
By coscheduling these activities we pay only once, irre- 
spective of the machine size. We recently developed a 
prototype coscheduler as a Linux kernel module [2,71 
and we are in the process of investigating the perfor- 
mance implications. 
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Figure 13: Identification of the events that cause the different types of noise 
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Figure 14: Illustration of the impact of noise on synchronized computation 
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3.4 Modeling system events 

We developed a discrete-event simulator that takes 
into account all the classes of events identified and 
characterized in Section 3.2. This simulator provides 
a realistic lower bound on the execution time of a bar- 
rier operation. We validated the simulator for the mea- 
sured events, and we can see from Figure 15 that the 
model is close to the experimental data. The gap be- 
tween the model and the data at  high node counts can 
be explained by the presence of a few especially noisy 
(probably misconfigured) clusters, 

Using the simulator we can predict the performance 
gain that can be obtained by selectively removing the 
sources of the noise. For example, Figure 15 shows 
that with a computational granularity of 1 ms, if we re- 
move the noise generated by either node 0 , l  or 31, we 
only get a marginal improvement, approximately 15%. 
If we remove all three “special” nodes-0, 1 and 31- 
we get an improvement of 35%. However, the surprise 
is that the noise in the system dramatically reduces 
when we eliminate the background noise on “ordinary” 
nodes 2-30. 

Bamer, 1 nis Granulaitty, Modelled and Experimental Data 

0 200 400 600 800 1000 

Nodes 

Figure 15: Simulated vs. experimental data with pro- 
gressive exclusion of various sources of noise in the 
system 

FINDING # 2  -- -- 
applications, more 

lost to short but frequent noise on 
long but less frequent noise on a few nodes. 

4 Eliminating the sources of noise 

On January 25, 2003 we undertook the following opti- 
mizations on ASCI Q: 

We removed about ten daemons (including envmod, 
insightd,  snmpd, lpd, and nif  f )  from all nodes. 

We decreased the frequency of RMS monitoring by a 
factor of 2 on each node (from an interval of 30 sec- 
onds to an interval of 60 seconds). 
We moved several damons from nodes 1 and 2 to 
node 0 on each cluster, in order to confine the heavy- 
weight noise to this node. 
As an initial test of the efficacy of these optimiza- 

tions we used a simple benchmark in which all nodes 
compute for a fixed amount of time and then synchro- 
nize using a global barrier, whose latency is measured. 
Figure 16 shows the results for three types of compu- 
tational granularity-0 ms (a simple sequence of barri- 
ers without any intervening computation), 1 ms, and 
5 ms-and both with and without the noise-reducing 
optimizations described above. 

Burner Latency 8s a function of tla coniputntional granularity 

>iW!I l ,  I 5 m s  
2 2x 
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,o --*: ’ill,’. Irpttiol7rd 

Nodes 

Figure 16: Performance improvements obtained on 
the barrier-synchronization microbenchmark for differ- 
ent computational granularities 

We can see that with fine granularity (0 ms) the bar- 
rier is 13 times faster. The more realistic tests with 
1 and 5ms, which are closer to the actual granular- 
ity of LANL codes, show that the performance is more 
than doubled, This confirms our conjecture that per- 
formance variability is closely related to the noise in 
the nodes. 

Figure 16 shows only that we were able to improve 
the performance of a microbenchmark. In Section 5 
we discuss whether the same performance improve- 
ments can improve the performance of applications, 
specifically SAGE. 

5 SAGE: Optimized performance 

Following from the removal of much of the noise in- 
duced by the operating system the performance of 
SAGE was again analyzed. This was done in two sit- 
uations, one a t  the end of January 2003 on a 1,024- 
node segment of ASCI Q, followed by the performance 
on the full sized ASCI Q at  the start of May 2003 (af- 
ter the two individual 1,024-node segments had been 
connected together). The average cycle time obtained 
is shown in Figure 17. Note that the performance ob- 
tained in September and November 2002 is repeated 
from Figure 1. Also, the performance obtained in Jan- 
uary 2003 is measured only up to 3,716 processors 
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while that obtained in May 2003 is measured up to 
7,680 processors. These tests represent the largest-size 
machine on those dates but with nodes 0 and 31 con- 
figured out of each 32-node cluster. 

0 1024 2048 3072 4096 5120 6144 7168 8192 

# PES 

Figure 17: ‘‘SAGE performance: expected and mea- 
sured after noise removal 

It can be seen that the performance obtained in Jan- 
uary and May is much improved over that obtained be- 
fore noise was removed from the system. Also shown 
in Figure 17 is the minimum cycle time obtained over 
50 cycles. It can be seen that the minimum time very 
closely matches the expected performance. The min- 
imum time represents those cycles of the application 
that were least effected by noise. Thus it appears that 
further optimizations may be possible that will help 
reduce the average cycle time down towards the mini- 
mum cycle time. 

The effective performance for the different configu- 
rations tested prior to noise removal and after is listed 
in Table 2. Listed are the cycle time for the differ- 
ent configurations. However, the total processing rate 
across the system should be considered in comparing 
the performance as the number of usable processors 
varies between the configurations. The achieved pro- 
cessing rate of the application that is the total number 
of cell-updates per second is also listed. This is derived 
from the cycle time as the processor count x cells per 
processor + cycle time. The cells per processor in all 
the SAGE runs presented here was 13,500 cells. Note 
that the default performance on 8,192 processors is an 
extrapolation from the 4,096 processor performance 
using a linear performance degradation observed in 
the measurements of September/November 2002. 

FINDING #3 

nodes 0 and 31 removed from each cluster is only 
15% below the model’s expectations. 

We expect to be able to increase the available pro- 
cessors by just removing one processor from each of 
node 0 and 31 of each cluster. This will allow the oper- 
ating system tasks to be performed without interfering 
with the application, while at  the same time increase 
the number of usable processors per cluster from 120 
(30 out of 32 usable nodes) to 126 (with only two pro- 
cessors removed). This should improve the processing 
rate by a further 5% just by the increase of the usable 
processors by 6 per cluster while not increasing the ef- 
fect of noise. 

6 Discussion 
In the previous section we have seen how the elimina- 
tion of a few system activities benefited SAGE with a 
specific input deck. We now try to provide some guide- 
lines to generalize our analysis. 

In order to estimate the potential gains on other 
applications we provide insight on how the compu- 
tational granularity of a balanced bulk-synchronous 
application correlates to the type of noise. The in- 
tuition behind this discussion is the following: while 
any source of noise has a negative impact on the over- 
all performance of the application, a few sources of 
noises tend to have a significant impact. As a rule of 
thumb, the computational granularity of the applica- 
tion is deemed to “enter in resonance’’ with noise of a 
similar harmonic frequency and duration. 

In order to explain this correlation, consider the 
barrier benchmark of Figure 16 for the three opti- 
mized configurations with 0, 1 and 5ms of compu- 
tational granularity For each of these cases we ana- 
lyze the barrier-synchronization latency for the largest 
node count. For example, in such a configuration 
the barrier takes 0.19 ms, 2 ms, and 7 ms respectively 
In each case we consider the cumulative latency dis- 
tribution, as shown in Figure 18. Each graph de- 
scribes how different sources of noise affect the barrier- 
synchronization latency. 

Figure 18(a) shows the results for a sequence of bar- 
riers without any computation (which represents an 
extreme case of fine grained computation). We can see 
that 66% of the delay is caused by fine-grained noise, 
generating computational holes of less than 4 ms. The 
heavyweight, but less frequent, noise generated by 
node 0 in each cluster impacts the barrier latency by 
only 17%. 

With 1 ms of computational granularity, the impact 
of the fine-grained noise is reduced to only 33% while 
the relative effect of the heavyweight noise grows 
to 27%, as shown in Figure 18(b). The primary source 
of degradation is the medium-grained noise generated 
by RMS on node 31 and on each cluster node. 

Finally, we can see that with 5 ms of computational 
granularity (Figure 18(c)), more than half of the bar- 
rier latency is caused by node 0, while 33% is caused 
by RMS on node 31 plus the cluster nodes. 
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TABLE 2: SAGE effective performance after noise removal 

Configuration Usable Cycle 
processors time 

~ _ _ - I _ . - ~  - 

Unoptimized system 8,192 1.60 
3 PEs/node 6,144 0.64 
Without node 0 7,936 0.87 
Without nodes 0 and 31 7,680 0.86 
Without nodes 0 and 31 (best observed) 7,680 0.68 
Model 8,192 0.63 

Processing rate 
(lo6 cell updateshec.) 

Improvement 
factor 

69.1 
129.3 
123.1 
120.6 
152.5 
178.4 

-N/A- 
1.87 
1.78 
1.75 
2.21 
2.58 

to improve performance falls short and that traditional 
performance analysis tools alone are incabable of yield- - FINDING #4 
ing maximal application performance. Instead, we de- 
veloped a performance-analysis methodology that in- 
cludes the analysis of that degrade applica- 
tion performance yet are not part of an application. 
Our methodology employs exotic tools such as analyt- 

I ’ 
Given that there is a strong correlation bemeen the 

computational granularity of an application and the 
granularity of the noise, we can make the following 
observations: compiling the executable. 

ical performance models and application-specific mi- 
crobenchmarks. The net result is that we managed to 
almost double the Performance of SAGE without mod- 
ifying a single line of code-in fact, without even re- 

Load balanced, coarse-grained applications that do 
not communicate often (e.g., LINPACK [ll) will 
see a performance improvement of only a few per- 
cent from the elimination of the noise generated by 
node 0. Such applications are only marginally af- 
fected by other sources of noise. Intuitively, with 
a coarse-grained application the fine-grained noise 
becomes coscheduled as illustrated in Figure 14(b). 
Because SAGE is a fine-grained applications it ex- 
periences a substantial performance boost when the 
medium-weight noise on node 31 and on the cluster 
nodes is reduced. 
Finer-grained applications, such as deterministic Sn- 
transport codes r3] which communicate very fre- 
quently with small messages, are very sensitive to 
the fine-grained noise. 

7 Conclusions 

The primary contribution of our work is the method- 
ology presented in this paper. While other researchers 
have observed application performance anomalies, we 
are the first to determine how fast an application could 
potentially run, investigate even those components of 
a system that would not be expected to significantly de- 
grade performance, and propose alternate system con- 
figurations that dramatically reduce the sources of per- 
formance loss. A secondary contribution includes our 
notions of “noise” and “resonance”. By understanding 
the resonance of system noise and application struc- 
ture, others can apply our techniques to other systems 
and other applications. 

The full, 8,192-processor ASCI Q only recently be- 
came operational. Although it initially appeared to be 
performing according to expectations based on the re- 
sults of LINPACK [l] and other benchmarks, we de- 
termined that performance could be substantially im- 
proved. After analyzing various mysterious, seemingly 
contradictorv Derformance results. our uniaue method- 
ology and peFformance tools and  techniqies enabled 
us to finally achieve our goal of locating ASCI Qps miss- 
ing performance. 

To increase application performance, one traditionally 
relies upon algorithmic improvements, compiler hints, 
and careful selection of numerical libraries. communi- 
cation libraries, compilers, and compiler options. Typ- 
ical methodology includes profiling code to identify 
the primary performance bottlenecks, determining the 
source of those bottlenecks-cache misses, load imbal- 
ance, resource contention, etc.-and restructuring the 
code to improve the situation. 

This paper describes a figurative journey we took to 
improve the performance of a sizeable hydrodynamics 
application, SAGE, on the world’s second-fastest super- 
computer, the 8,192-processor ASCI Q machine at Los 
Alamos National Laboratory. On this journey, we dis- 
covered that the methodology traditionally employed 

“Nobody reads a mystery to get to the middle. They 
read it to get to the end. If it’s a letdown, they won’t 
buy anymore. The first page sells that book. The last 
page sells your next book.” 

- Mickey Spillane 

References 
[I] J. J. Dongarra. Performance of various com- 

puters using standard linear equations software. 
Technical Report CS-89-85, Computer Science 

11 



Department, University of Tennessee, Knoxville, 
Tennessee, 1989. Available from http : //urn. 
netlib.org/benchmark/performance.ps. 

[2] E. Frachtenberg, E Petrini, et al. STORM: 
Lightning-fast resource management. In Proceed- 
ings of SC2002. Baltimore, Maryland, Nov. 16- 
22 2002. Available from http: //sc-2002. org/ 
paperpdf s/pap . pap297. pdf . 

[31 A, Hoisie, 0. Lubeck, et al. A general pre- 
dictive performance model for wavefront algo- 
rithms on clusters of SMPs. In Proceedings of 
the 2000 International Conference on Parallel Pro- 
cessing (ICPP-2000). Toronto, Canada, Aug. 21- 
24,2000. Available from http : //urn. c3. lanl . 

Cumulative Noise Distribution. Barrier Synchronization 
l - . , . I ' , '  

o.8 - 17% RMS Cluster Nodes + 
91 Node 31 '6 
Z 0.6 - 

0.015 0.062 0.25 I 4 16 64 gov/par-arch/pubs/icpp.pdf. 
Noise Latency (ms) 

[41 D. J. Kerbyson, H. J. Alme, et al. Pre- 
(a) Barrier synchronizations with no intervening computa- dictive performance and scalability modeling 
tion of a large-scale application. In Proceedings 

of SC2002. Denver, Colorado, Nov. 10-16, 
Cumulative Noise Distribution, Barrier Synchronization, 1 ms Granularity 

( '  1 4 .  I * I I .  t b n  I .  I ' 1 1  

2001. Available from http: //www . sc2001. org/ 
papers/pap . pap255. pdf. 

27%. Node 0 [SI D. J. Kerbyson, A. Hoisie, et al. 

2 2003. World Scientific Publishing. 

- 2 [6] K. Koch. How does ASCI actually complete 
a - 0 5 6  B multi-month 1000-processor milestone simula- 

tions? In Proceedings of the Conference on 
High Speed Computing. Gleneden Beach, Oregon, 

0.015 0062 025 I 4 16 64 256 Apr. 22-25, 2002. Available from http : //ww . 
ccs.lanl.gov/salishan02/koch.pdf. 

Use of pre- 
dictive performance modeling during large-scale 0.8 - , 

.- I system installation. Parallel Processing Letters, 

- 1  s 

0.2 33%. Cluster Nodes 
- 

0 

Nowe Latency (ms) 

(b) lms [7] E Petrini and W. Feng. Improved resource uti- 
lization with Buffered Coschedulinn. Journal of 
Parallel Algorithms and Applications;l6: 123-14, 
2001. Available from http: //urn. c3, lanl  . 
gov/"fabrizio/papers/paaOO.ps. 

[8] E Petrini, W. Feng, et al. The Quadrics 
'6 network: High-performance clustering technol- 

om. IEEE Micro, 22(1):46-57, Jan./Feb. 2002. 
ISSN 0272-1732. Available from http: //www . 
computer.org/rnicro/mi2002/pdf/mi046.pdf. 

[9] J. C. Phillips, G. Zheng, et al. NAMD: Biomolec- 
ular simulation on thousands of processors. In 

0.015 0.062 0.25 I 4 16 64 256 Proceedings of SC2002. Baltimore, Maryland, 
Nov. 16-22 2002. Available from http : //urn . 

[lo] Quadrics Supercomputers World Ltd. RMS Refer- 

Cumulative Noise Distribution, Barrier Synchronization, 5 ms Granularity 

0.8 

2 
Z 0.6 

- 

- 

a 
0.2 - 

- I  

Noise Latency (ms) 

(c) 5ms sc-2002.org/paperpdfs/pap.pap277.pdf. 

Figure 18: Cumulative noise distribution for different 
computational granularities 

ence Manual, Jun. 2002. 

12 


