
LA-UR- 0 3 -3 j lb
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

THE CASE OF THE MISSING SUPERCOMPUTER
PERFORMANCE: ACHIEVING OPTIMAL
PERFORMANCE ON THE 8,192 PROCESSORS OF
ASCl Q

Fabrizio Petrini, 154601 , CCS-3
Darren J. Kerbyson, 176262, CCS-3
Scott Pakin, 179752, CCS-3

Supercomputing Conference 2003
Phoenix, AZ

a Los Ala
N A T I O N A L L A B O R A T O R Y

LOS Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the US.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do SO, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the US. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to
publish; as an institution. however, the Laboratorydoes not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (8/00)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of ASCI Q

Fabrizio Petrini Darren J. Kerbyson Scott Pakin

Performance and Architecture Laboratory (PAL,)
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory

{f abrizio,djk,pakin}@lanl .gov

May 2,2003

Abstract

In this paper we describe how we improved the effective performance of ASCI Q, the world's second-fastest su-
percomputer, to meet our expectations. Using an arsenal of performance-analysis techniques including analytical
models, custom microbenchmarks, full applications, and simulators, we succeeded in observing a serious-but pre-
viously undetectable-performance problem. We identified the source of the problem, eliminated the problem, and
"closed the loop" by demonstrating improved application performance. We present our methodology and provide
insight into performance analysis that is immediately applicable to other large-scale cluster-based supercomputers.

1 Introduction
"[WJhen you have eliminated the impossible, whatever
remains, however improbable, must be the truth."

- Sherlock Holmes, Sign ofliour,
Sir Arthur Conan Doyle

Users of the 8,192-processor ASCI Q machine that
was recently installed at Los Alamos National Labora-
tory (LANL) are delighted to be able to run their ap-
plications on a 20 Tflop/s supercomputer and obtain
large performance gains over previous supercomput-
ers. We, however, asked the question, "Are these appli-
cations running as fast as they should be running on
ASCI Q?" This paper chronicles the approach we took
to accurately determine the performance that should
be observed when running SAGE, a compressible Eule-
rian hydrodynamics code consisting of -150,000 lines
of Fortran + MPI cocle; how we proposed and tested
numerous hypothescs as to what was causing a discrep-
ancy between prediction and measurement; and how
we finally identified and eliminated the problem.
As of April 2003, ASCI Q exists in its final form-

a single system comprised of 2,048 HP ES45 Al-
phaServer SMP nodes, each containing four EV68 Al-
pha processors and interconnected with a Quadrics Qs-
Net network [81. ASCI Q was installed in stages and
its performance was measured at each step. The per-
formance of individual characteristics such as memory,
interprocessor communication, and full-scale applica-
tion performance were all measured and recorded.
Performance testing began with the measurement on

the first available hardware worldwide: an eight-node
HP ES45 system interconnected using two rails of
Quadrics in March 2001 at HP in Marlborough, Mas-
sachusetts. The first 128 nodes were available for use
at LANL in September 2001. The system increased in
size to 512 nodes in early 2002 and to two segments
of 1,024 nodes by November 2002. The peak process-
ing performance of the combined 2,048-node system
is 20 Tflop/s and will be listed as #2 in the list of the
top 500 fastest computers.'

The ultimate goal when running an application on
a parallel supercomputer such as ASCI Q is either to
maximize work performed per unit time (weak scal-
ing) or to minimize time-to-solution (strong scaling).
The primary challenge in achieving this goal is com-
plexity. Large-scale scientific applications, such as
those run at LANL, consist of hundreds of thousands
of lines of code and possess highly nonlinear scal-
ing properties. Modern clusters are difficult to op-
timize for, as their deep memory hierarchies can in-
cur orders-of-magnitude performance loss in the ab-
sense of temporal or spatial access locality; multiple
processors share a memory bus, potentially leading to
contention for a fixed amount of bandwidth; network
performance may degrade with physical or logical dis-
tances between communicating peers or with the level
of contention for shared wires; and, each node runs
a complete, heavyweight operating system tuned pri-
marily for workstation or server workloads, not high-

'http://wuv. top500.0rg

1

TABLE 1: Performance analysis tools and techniaues
Technique Meaning Purpose

~

measurement running full applications under various
system configurations and measuring
their performance

measuring the performance of primitive
components of an application

running an application or benchmark on
a software simulation instead of a physi-
cal system

devising a parameterized, mathematical
model that represents the performance
of an application in terms of the per-
formance of processors, nodes, and net-
works

microbenchmarking

simulation

analytical modeling

determine how well the application actu-
ally performs

provide insight into application perfor-
mance

examine a series of "what if" scenarios,
such as cluster configuration changes

rapidly predict the expected performance
of an application on existing or hypotheti-
cal machines

performance computing workloads. As a result of com-
plexity in applications and in supercomputers it is diffi-
cult to determine the source of suboptimal application
performance-or even to determine if performance is
suboptimal.

Ensuring that key, large-scale applications run at
maximal efficiency requires a methodology that is
highly disciplined and scientific, yet is still sufficiently
flexible to adapt to unexpected observations. The ap-
proach we took is as follows:

1. Using detailed knowledge of both the application
and the computer system, use performance model-
ing to determine the performance that SAGE ought
to see when running on ASCI Q.

2. If SAGE'S measured performance is less than the ex-
pected performance, determine the source of the
discrepancy.

3. Eliminate the cause of the suboptimal performance.
4. Repeat from step 2 until the measured performance

Step 2 is the most difficult part of the procedure and is
therefore the focus of this paper.

While following the above procedure the perfor-
mance analyst has a number of tools and techniques
at his disposal as listed in Table 1. An important con-
straint is that time on ASCI Q is a scarce resource. As a
result, any one researcher or research team has limited
opportunity to take measurements on the actual super-
computer. Furthermore, configuration changes are not
always practical. It often takes a significant length of
time to install or reconfigure software on thousands of
nodes and cluster administrators are reluctant to make
modifications that may adversely affect other users. In
addition, a reboot of the entire system can take sev-
eral hours [61 and is therefore performed only when
absolutely necessary.

The remainder of the paper is structured as follows.
Section 2 describes how we determined that ASCI Q

matches the expected performance.

was not performing as well as it could. Section 3
details how we systematically applied the tools and
techniques shown in Table 1 to identify the source
of the performance loss. Section 4 explains how we
used the knowledge gained in Section 3 to achieve our
goal of improving application performance to the point
where it is within a small factor of the best that could
be expected. Section 5 completes the analysis by re-
measuring the performance of SAGE on an optimized
ASCI Q and demonstrating how close the new perfor-
mance is to the ideal for that application and system.
A discussion of the insight gained in the course of this
exercise is presented in Section 6 , and we present our
conclusions in Section 7.

2 Performance expectations

Based on the Top 500 results, ASCI Q appears to be per-
forming well. It runs the LINPACK [l] benchmark at
75% of peak performance, which is well within range
for machines of that class. However, there are more
accurate methods for determining how well a system
is actually performing. From the testing of the first
ASCI Q hardware in March 2001, performance models
of several applications representative of the ASCI work-
load were used to provide an expectation of the perfor-
mance that should be achievable on the full-scale sys-
tem [3 , 41. These performance models are parametric
in terms of certain basic, system-related features such
as the sequential processing time-as measured on
a single processor-and the communication network
performance.

In particular, a performance model of a large-scale
hydrodynamic application, SAGE, was developed for
the express purpose of predicting the performance of
SAGE on the full-sized ASCI Q. The model has been
validated on many large-scale systems-including all
ASCI systems-with a typical prediction error of less

2

than 10% [SI. The HP ES45 nodes used in ASCI Q
actually went through two major upgrades during in-
stallation: the PCI bus within the nodes was upgraded
from 33 MHz to 66 MHz and the processor speed was
upgraded from 1 GHz to 1.25 GHz. The SAGE model
was used to provide an expected performance of the
ASCI Q nodes in all of these configurations.

The performance of the first 4,096-processor seg-
ment of ASCI Q (“QA”) was measured in Septem-
ber 2002 and the performance of the second 4,096-
processor segment (“QB”)-at the time, not physically
connected to QA-was measured in November. The
results of the two measurements are consistent with
each other although they rapidly diverge from the per-
formance predicted by the SAGE performance model
(Figure 1). At 4,096 processors, SAGE’S cycle time was
twice the time predicted by the model. This was consid-
ered to be a “difference of opinion” between the model
and the measurements. Without further analysis it
would have been impossible to discern whether the
performance model was inaccurate-although it has
been validated on many other systems-or whether
there was a problem with some aspect of ASCI Q’s
hardware or software configuration.

c

2 0.4
d

.__ -
0 512 1024 1536 2048 2560 3072 3584 4096

PES

Figure 1: SAGE performance: expected and measured

-e2PEsPerNode

-c- 3PEsPerNode 9

4PEsPerNode *
i

-1 worse on ASCI Q than

In order to identify why there was a difference in
performance between the measured and expected per-
formance, we performed a battery of tests on ASCI Q.
The most revealing result came from varying the num-
ber of processors per node used to run SAGE. Figure 2
shows the difference between the modeled arid the
measured performance when using 1, 2, 3, or 4 pro-
cessors per node. Note that a log scale is used on the

x axis. It can be seen that the only significant differ-
ence occurs when using all four processors per node
thus giving confidence to the model being accurate.

0.6
I -+- 1 PEsPerNode I i

1 10 100 1000 10000
#PES

Figure 2: Error in modeled and measured SAGE per-
formance when using 1,2,3, or 4 processors per node

It is also interesting to note that, above approxi-
mately 1,500 processors, the processing rate of SAGE
was actually better when using three processors per
node instead of the full four, as shown in Figure 3 .
Even though 25% fewer processors are used per node,
the performance can actually be greater than when
using all four processors per node. Phillips et al. ob-
served similar behavior on a molecular-dynamics appli-
cation running at the Pittsburgh Supercomputing Cen-
ter using similar hardware to that in ASCI Q [SI. They
concluded that “the inability to use the 4th processor
on each node for useful computation” is a major prob-
lem, and they conjectured that “a different implemen-
tation of [their] low level communication primitives
will overcome this problem”.

Like Phillips et al., we also analyzed application per-
formance variability Each computation cycle within
SAGE performs a constant amount of work and could
therefore be expected to take a constant amount of
time to complete. We measured the cycle time of 1,000
cycles using 3,584 processors of one of the ASCI Q
segments. The ensuing cycle times are shown in Fig-
ure 4(a) and a histogram of the variability is shown
in Figure 4(b). It is interesting to note that the cycle
time ranges from just over 0.7s to over 3.0s, indicating
greater than a factor of 4 in variability,

A profile of the cycle time when using all four pro-
cessors per node, as shown in Figure 5, reveals a
number of important characteristics in the execution
of SAGE. The profile was obtained by separating
out the time taken in each of the local boundary ex-
changes (token-get and token-put) and the collective-
communication operations (allreduce, reduction, and
broadcast) on the root processor. The overall cycle
time, which includes computation time, is also shown

3

200000 1 I

8
E 140000 -
3 : 120000 -.

$ 100000 -

*
; 20000 -'

a

u - 80000 -

IT 60000
Ul - 0 40000

a

al

0 1

U + ZPEsPerNode E 160000 t 3 P E s P e r N o d e

h > 1 L 4PEsPerNodeL

A - .
'*\

*. .. L - r 4 7 % *

'.
----*-- ti..\

4.-

Ry --be*
-- - - ~

Figure 3: Effective SAGE processing rate when using
1, 2,3, or 4 processors per node

in Figure 5. The time taken in the local boundary
exchanges appears to plateau above 500 processors
and corresponds exactly to the time predicted by the
SAGE performance model. However, the time spent in
allreduce and reduction increases with the number of
processors and appears to account for the increase in
overall cycle time with increasing processor count. It
should be noted that the number and payload size in
the allreduce operations was constant for all processor
counts, and the relative difference between allreduce
and reduction (and also broadcast) is due to the differ-
ence in their frequency of occurrence within a single
cycle.

To summarize, our analysis of SAGE on ASCI Q led
us to the following observations:

There is a significant difference of opinion between
the expected performance and that actually ob-
served.
The performance difference occurs only when using
all four processors per node.
There is a high variability in the performance from
cycle to cycle.
The performance deficit appears to originate from
the collective operations, especially allreduce.

It is therefore natural to deduce that improving the
performance of allreduce, especially when using four
processors per node, ought to lead to an improvement
in application performance. In Section 3 we test this
hypothesis.

3 Identification of performance
factors

In order to identify why application performance such
as that observed on SAGE was not as good as ex-
pected, we undertook a number of performance stud-

100 200 300 400 500 600 700 800 900 1000

Cycle Number

(a) Variability

120 1

100

80
>
C

U

U

$ 60

e,

40

20

0

(b) Histogram

Figure 4: SAGE cycle-time measurements on 3,584
processors

ies. To simplify this process we concerned ourselves
with the examination of smaller, individual operations
that could be more systematically analyzed. Since it
appeared that SAGE was most significantly effected
by the performance of the allreduce collective opera-
tion several attempts were made to improve the per-
formance of collectives on the Quadrics network.

3.1 Optimizing the allreduce

Figure 6 shows the performance of the allreduce when
executed on an increasing number of nodes. We can
clearly see that a problem arises when using all four

4

A --- -

2 1.5
3

2 1 -

Allreduce and Bamer Latency, 4 Processes per Node

0 100 200 300 400 S O 0 600 700 800 900 lo00
Nodes

Figure 7: allreduce and barrier latency with varying
amounts of intervening computation

.

A token-put

6 -6 cyc-time
9, 0.8
0 f‘“

1 10 100 1000 10000
#PES

Figure 5: Profile of SAGE cycle time

processors within a node. With up to three proces-
sors the allreduce is fully scalable and takes, on aver-
age, less than 300 ps. With four processors the latency
surges to more than 3 ms. These measurements were
obtained on the QB segment of ASCI Q.

Allreduce Latency

- - * -. 3 proccsscs per node
J pL~K?\\l-< IY 1 tl(Kk

0.5 *.-a *- .-#.-e-’ =.+&-J
0

0 100 200 300 400 500 600 700 800 900 lo00
Nodes

Figure 6: allreduce latency as a function of the number
of nodes and processes per node

Figure 7 provides more clues to our analysis. It
shows the performance of the allreduce and barrier in
a synthetic parallel benchmark that alternately com-
putes for either 0, 1, or 5 ms then performs either an
allreduce or a barrier. In an ideal, scalable, system we
should see a logarithmic growth with the number of
nodes and insensitivity to the computational granular-
ity. Instead, what we see is that the completion time
increases linearly with both the number of nodes and
the computational granularity Figure 7 also shows
that both allreduce and barrier exhibit similar perfor-
mance. Given that the barrier is implemented using a
simple hardware broadcast whose execution is almost
instantaneous (only a few microseconds) and that it re-
produces the same problem, we will consider a barrier
benchmark later in the analysis.

We made several attempts to optimize the allreduce
in the four-processor case and were able to substan-
tially improve the performance. To do so, we used a
different synchronization mechanism. In the existing
implementation the processes in the, reduce tree poll
while waiting for incoming messages. By changing the
synchronization mechanism to poll for a limited time
(100 ps) and then block, we were able to improve the
latency by a factor of 7.

At 4,096 processors, SAGE spends over 51% of its
time in allreduce. Therefore, a sevenfold speedup in
allreduce ought to lead to a 78% performance gain
in SAGE. In fact, although extensive testing was per-
formed on the modified collectives, this resulted in
only a marginal improvement in application perfor-
mance.

MYSTERY #2

Although SAGE spends half of its time in allreduce
(at 4,096 processors), making allreduce seven times
faster leads to a negligible performance improve-

We can therefore conclude that neither the MPI im-
plementation nor the network are responsible for the
performance problems. By process of elimination, we
can infer that the source of the performance loss is in
the nodes themselves.

3.2 Analyzing the computational noise

Our intuition was that periodic system activities were
interfering with application execution. This hypothesis
follows from the observation that using all four proces-
sors per node results in lower performance than when
using fewer processors. Figures 3 and 6 confirm this
observation for both SAGE and allreduce performance.
System activities can run without interfering with the
application as long as there is a spare processor avail-
able to absorb them. When there is no spare processor,

5

the application must relinquish one of its processors
to the system activity. Doing so may introduce perfor-
mance variability, which we refer to as “noise”.

To determine if system noise is, in fact, the source of
SAGE’s performance variability, we crafted a simple mi-
crobenchmark designed to expose the problems. The
benchmark works as shown in Figure 8: each node per-
forms a synthetic computation carefully calibrated to
run for exactly 1,000 seconds in the absense of noise.

START

p.

Sticking to our assumption that noise is somehow
responsible for SAGE’s performance problems we re-
fined our microbenchmark into the version shown in
Figure 10. The new microbenchmark was intended to
provide a finer level of detail into the measurements
presented in Figure 9. In the new microbenchmark,
each node performs 1 million iterations of a synthetic
computation, with each iteration carefully calibrated
to run for exactly 1ms in the absense of noise, for
an ideal total run time of 1,000 seconds. Using a
small granularity, such as 1 ms, is important because
many LANL codes exhibit such granularity between
communication phases. During the purely computa-
tional phase there is no message exchange, I/O, or
memory access. As a result, the run time of each it-
eration should always be 1 ms in a noiseless machine.

sTAw -
TIME

Figure 8: Performance-variability microbenchmark

The total normalized run time for the microbench-
mark is shown in Figure 9 for all 4,096 processors in
QB. Because of interference from noise the process-
ing time can be longer and can vary from process to
process. However, the measurements indicate that the
slowdown experienced by each process is low, with
a maximum value of 2.5%. As Section 2 showed a
performance slowdown in SAGE of a factor of 2, a
mere 2.5% slowdown in the performance-variability
microbenchmark appears to contradict our hypothesis
that noise is what is causing the high performance vari-
ability in SAGE. ,

Computational Overhead (Coarse Grained)

‘ I ‘ I 2.5 I

”
0 500 loo0 1500 2000 2500 3000 3500 4000

Processes

Figure 9: Results of the performance-variability mi-
crobenchmark

START E M ,

*
TIME

Figure 10: Performance-variability microbenchmark,
second attempt

We ran the microbenchmark on all 4,096 processors
of QB. However; the variability results were qualita-
tively identical to those shown in Figure 9. Our next
attempt was to aggregate the four processor measure-
ments taken on each node, the idea being that system
activity can be scheduled arbitrarily on any of the pro-
cessors in a node. Our hypothesis is that examining
noise on a per-node basis may expose structure in what
appears to be uncorrelated noise on a per-processor
basis. Again, we ran 1 million iterations of the mi-
crobenchmark, each with a granularity of lms . At
the end of each iteration we measured the actual run
time and for each iteration that took more than the
expected 1ms run time, we summed the unexpected
overhead. The idea to aggregate across processors
within a node led to an important observation: Fig-
ure 11 clearly indicates that there is a regular pattern
to the noise across QB’s 1,024 nodes. Every cluster
of 32 nodes contains some nodes that are consistently
noisier than others.

FINDING #1
Analyzing noise on a per-node basis instead of a
per-processor basis reveals a regular structure across
nodes.

MYSTERY # 3

SAGE’s suboptimal performance, microbenchmarks
of per-processor noise indicate that at most 2.5% of
performance is being lost to noise. Figure 12 zooms in on the data presented in Fig-

ure 11 in order to show more detail on one of the 32-

6

Computational Overhead (Fine Grained)
1-7- 7

4 1.8 I I h

_. .
0 200 400 GOO 800 1000

Nodes

Figure 11: Results of the per-node performance-
variability microbenchmark

node clusters. We can see that all nodes suffer from a
moderate background noise and that node 0 (the clus-
ter manager), node I (the quorum node), and node 31
are slower than the others. This pattern repeats for
each cluster of 32 nodes.

Computational Overhead in a 32 Node Cluster

'-1

0 5 10 15 20 25 30
Nodes

Figure 12: Slowdown per node within each 32-node
cluster

In order to understand the nature of this noise we
plot the actual time taken to perform the 1 million
1 ms computations in histogram format. Figure 13
contains one such histogram for each of four group-
ings of nodes: nodes 0, 1, 2-30, and 31 of each 32-
node cluster. These histograms show that the noise in
each grouping has a well-defined pattern with classes
of events that happen regularly with well-defined lre-
quencies and durations. For example, on any node 2-
30 of a cluster we can identify two events that hap-
pen regularly every 30 seconds and whose durations
are 16 and 19ms. This means that a slice of compu-
tation that should take 1 ms occasionally takes 16 ms.
The process that experiences this type of interruption
will freeze for the corresponding amount of time. Intu-
itively, these events can be traced back to some regular
system activity as daemons or the kernel itself. Node 0
displays four different types of activities, all occurring

7

at regular intervals, with a duration that can be up
to 200ms. Node 1 experiences a few heavyweight
interrupts-one every 60 seconds-that freeze the pro-
cess for about 335ms. On node 31 we can identify
another pattern of intrusion, with frequent interrupts
(every second) and a duration of 7 ms.

Using a number of techniques on QB and other par-
allel machines, we were able to identify the source
of most activities. As a general rule, these activities
happen a t regular intervals. The two events that take
16 and 19ms on each node 2-30 are generated by
Quadrics's resource management system, RMS [lo],
which regularly spawns a damon every thirty seconds.
A distributed heartbeat that performs cluster manage-
ment, generated a t kernel level, is the cause of many
lightweight interrupts (one every 125 ms) whose du-
ration is a few hundreds of microseconds. Other dae-
mons that implement the parallel file system and Tru-
Cluster are the source of the noise on nodes 0 and 31.

Each of these events can be characterized by a tuple
(F , L, E , P) that describes the frequency of the event F ,
the average duration L, the distribution E, and the
placement (the set of nodes where the event is gen-
erated) P. As will be discussed in Slection 3.4, this
characterization is accurate enough to closely model
the noise in the system and is also able to provide
clear guidelines to identify and eliminate the sources
of noise.

3.3 Effect on system performance

Figure 14(a) provides some intuition on 'the poten-
tial effects of these delays on applications that are
fine-grained and bulk-synchronous. In such a case, a
delay in a single process slows down the whole ap-
plication. Note that even though any given process
in Figure 14(a) is delayed only once, the collective-
communication operation (represented by the vertical
lines) is delayed in every iteration. When we run an
application on a large number of processors, the like-
lihood of having at least one slow process per itera-
tion increases. For example, if only one process out
of 4,096 experiences a delay of looms, on an appli-
cation that barrier-synchronizes every 1 ms, then the
whole application will run 100 times slower!

While the obvious solution is to remove any type
of noise in the system, in certain cases it may not
be possible or cost effective to remove dzmons or
kernel threads that perform essential activities as re-
source management, monitoring, parallel file system,
etc. Figure 14(b) suggests a possible solution that
doesn't require the elimination of the system activities.
By coscheduling these activities we pay only once, irre-
spective of the machine size. We recently developed a
prototype coscheduler as a Linux kernel module [2,71
and we are in the process of investigating the perfor-
mance implications.

3.35e+07 3.35e+07

1.04e+06 l.O4e+O6

32768 32768

1024

32

1 1

335 ms every 60 s
8 3

A 1024

32

0 0
Latency (ms) Latency (ms)

(a) latency distribution on node 0 (b) Latency distribution on node 1

1.04e+06

32768

1024

32

1 1

RMS cluster 1.04e+06

' 327,68

1024
2
Q)

4
2

8 a2,

Latency (ms) Latency (ms)

(c) latency distribution on nodes 2-30 (d) Latency distribution on node 31

Figure 13: Identification of the events that cause the different types of noise

(a) Uncoordinated noise (b) Coscheduled noise

Figure 14: Illustration of the impact of noise on synchronized computation

8

3.4 Modeling system events

We developed a discrete-event simulator that takes
into account all the classes of events identified and
characterized in Section 3.2. This simulator provides
a realistic lower bound on the execution time of a bar-
rier operation. We validated the simulator for the mea-
sured events, and we can see from Figure 15 that the
model is close to the experimental data. The gap be-
tween the model and the data at high node counts can
be explained by the presence of a few especially noisy
(probably misconfigured) clusters,

Using the simulator we can predict the performance
gain that can be obtained by selectively removing the
sources of the noise. For example, Figure 15 shows
that with a computational granularity of 1 ms, if we re-
move the noise generated by either node 0 , l or 31, we
only get a marginal improvement, approximately 15%.
If we remove all three “special” nodes-0, 1 and 31-
we get an improvement of 35%. However, the surprise
is that the noise in the system dramatically reduces
when we eliminate the background noise on “ordinary”
nodes 2-30.

Bamer, 1 nis Granulaitty, Modelled and Experimental Data

0 200 400 600 800 1000

Nodes

Figure 15: Simulated vs. experimental data with pro-
gressive exclusion of various sources of noise in the
system

FINDING # 2 -- --
applications, more

lost to short but frequent noise on
long but less frequent noise on a few nodes.

4 Eliminating the sources of noise

On January 25, 2003 we undertook the following opti-
mizations on ASCI Q:

We removed about ten daemons (including envmod,
insightd, snmpd, lpd, and nif f) from all nodes.

We decreased the frequency of RMS monitoring by a
factor of 2 on each node (from an interval of 30 sec-
onds to an interval of 60 seconds).
We moved several damons from nodes 1 and 2 to
node 0 on each cluster, in order to confine the heavy-
weight noise to this node.
As an initial test of the efficacy of these optimiza-

tions we used a simple benchmark in which all nodes
compute for a fixed amount of time and then synchro-
nize using a global barrier, whose latency is measured.
Figure 16 shows the results for three types of compu-
tational granularity-0 ms (a simple sequence of barri-
ers without any intervening computation), 1 ms, and
5 ms-and both with and without the noise-reducing
optimizations described above.

Burner Latency 8s a function of tla coniputntional granularity

>iW!I l , I 5 m s
2 2x

‘2 4- I ;,1- opt!mlrkh
,o --*: ’ill,’. Irpttiol7rd

Nodes

Figure 16: Performance improvements obtained on
the barrier-synchronization microbenchmark for differ-
ent computational granularities

We can see that with fine granularity (0 ms) the bar-
rier is 13 times faster. The more realistic tests with
1 and 5ms, which are closer to the actual granular-
ity of LANL codes, show that the performance is more
than doubled, This confirms our conjecture that per-
formance variability is closely related to the noise in
the nodes.

Figure 16 shows only that we were able to improve
the performance of a microbenchmark. In Section 5
we discuss whether the same performance improve-
ments can improve the performance of applications,
specifically SAGE.

5 SAGE: Optimized performance

Following from the removal of much of the noise in-
duced by the operating system the performance of
SAGE was again analyzed. This was done in two sit-
uations, one a t the end of January 2003 on a 1,024-
node segment of ASCI Q, followed by the performance
on the full sized ASCI Q at the start of May 2003 (af-
ter the two individual 1,024-node segments had been
connected together). The average cycle time obtained
is shown in Figure 17. Note that the performance ob-
tained in September and November 2002 is repeated
from Figure 1. Also, the performance obtained in Jan-
uary 2003 is measured only up to 3,716 processors

9

while that obtained in May 2003 is measured up to
7,680 processors. These tests represent the largest-size
machine on those dates but with nodes 0 and 31 con-
figured out of each 32-node cluster.

0 1024 2048 3072 4096 5120 6144 7168 8192

PES

Figure 17: ‘‘SAGE performance: expected and mea-
sured after noise removal

It can be seen that the performance obtained in Jan-
uary and May is much improved over that obtained be-
fore noise was removed from the system. Also shown
in Figure 17 is the minimum cycle time obtained over
50 cycles. It can be seen that the minimum time very
closely matches the expected performance. The min-
imum time represents those cycles of the application
that were least effected by noise. Thus it appears that
further optimizations may be possible that will help
reduce the average cycle time down towards the mini-
mum cycle time.

The effective performance for the different configu-
rations tested prior to noise removal and after is listed
in Table 2. Listed are the cycle time for the differ-
ent configurations. However, the total processing rate
across the system should be considered in comparing
the performance as the number of usable processors
varies between the configurations. The achieved pro-
cessing rate of the application that is the total number
of cell-updates per second is also listed. This is derived
from the cycle time as the processor count x cells per
processor + cycle time. The cells per processor in all
the SAGE runs presented here was 13,500 cells. Note
that the default performance on 8,192 processors is an
extrapolation from the 4,096 processor performance
using a linear performance degradation observed in
the measurements of September/November 2002.

FINDING #3

nodes 0 and 31 removed from each cluster is only
15% below the model’s expectations.

We expect to be able to increase the available pro-
cessors by just removing one processor from each of
node 0 and 31 of each cluster. This will allow the oper-
ating system tasks to be performed without interfering
with the application, while at the same time increase
the number of usable processors per cluster from 120
(30 out of 32 usable nodes) to 126 (with only two pro-
cessors removed). This should improve the processing
rate by a further 5% just by the increase of the usable
processors by 6 per cluster while not increasing the ef-
fect of noise.

6 Discussion
In the previous section we have seen how the elimina-
tion of a few system activities benefited SAGE with a
specific input deck. We now try to provide some guide-
lines to generalize our analysis.

In order to estimate the potential gains on other
applications we provide insight on how the compu-
tational granularity of a balanced bulk-synchronous
application correlates to the type of noise. The in-
tuition behind this discussion is the following: while
any source of noise has a negative impact on the over-
all performance of the application, a few sources of
noises tend to have a significant impact. As a rule of
thumb, the computational granularity of the applica-
tion is deemed to “enter in resonance’’ with noise of a
similar harmonic frequency and duration.

In order to explain this correlation, consider the
barrier benchmark of Figure 16 for the three opti-
mized configurations with 0, 1 and 5ms of compu-
tational granularity For each of these cases we ana-
lyze the barrier-synchronization latency for the largest
node count. For example, in such a configuration
the barrier takes 0.19 ms, 2 ms, and 7 ms respectively
In each case we consider the cumulative latency dis-
tribution, as shown in Figure 18. Each graph de-
scribes how different sources of noise affect the barrier-
synchronization latency.

Figure 18(a) shows the results for a sequence of bar-
riers without any computation (which represents an
extreme case of fine grained computation). We can see
that 66% of the delay is caused by fine-grained noise,
generating computational holes of less than 4 ms. The
heavyweight, but less frequent, noise generated by
node 0 in each cluster impacts the barrier latency by
only 17%.

With 1 ms of computational granularity, the impact
of the fine-grained noise is reduced to only 33% while
the relative effect of the heavyweight noise grows
to 27%, as shown in Figure 18(b). The primary source
of degradation is the medium-grained noise generated
by RMS on node 31 and on each cluster node.

Finally, we can see that with 5 ms of computational
granularity (Figure 18(c)), more than half of the bar-
rier latency is caused by node 0, while 33% is caused
by RMS on node 31 plus the cluster nodes.

10

TABLE 2: SAGE effective performance after noise removal

Configuration Usable Cycle
processors time

~ _ _ - I _ . - ~ -

Unoptimized system 8,192 1.60
3 PEs/node 6,144 0.64
Without node 0 7,936 0.87
Without nodes 0 and 31 7,680 0.86
Without nodes 0 and 31 (best observed) 7,680 0.68
Model 8,192 0.63

Processing rate
(lo6 cell updateshec.)

Improvement
factor

69.1
129.3
123.1
120.6
152.5
178.4

-N/A-
1.87
1.78
1.75
2.21
2.58

to improve performance falls short and that traditional
performance analysis tools alone are incabable of yield- - FINDING #4
ing maximal application performance. Instead, we de-
veloped a performance-analysis methodology that in-
cludes the analysis of that degrade applica-
tion performance yet are not part of an application.
Our methodology employs exotic tools such as analyt-

I ’
Given that there is a strong correlation bemeen the

computational granularity of an application and the
granularity of the noise, we can make the following
observations: compiling the executable.

ical performance models and application-specific mi-
crobenchmarks. The net result is that we managed to
almost double the Performance of SAGE without mod-
ifying a single line of code-in fact, without even re-

Load balanced, coarse-grained applications that do
not communicate often (e.g., LINPACK [ll) will
see a performance improvement of only a few per-
cent from the elimination of the noise generated by
node 0. Such applications are only marginally af-
fected by other sources of noise. Intuitively, with
a coarse-grained application the fine-grained noise
becomes coscheduled as illustrated in Figure 14(b).
Because SAGE is a fine-grained applications it ex-
periences a substantial performance boost when the
medium-weight noise on node 31 and on the cluster
nodes is reduced.
Finer-grained applications, such as deterministic Sn-
transport codes r3] which communicate very fre-
quently with small messages, are very sensitive to
the fine-grained noise.

7 Conclusions

The primary contribution of our work is the method-
ology presented in this paper. While other researchers
have observed application performance anomalies, we
are the first to determine how fast an application could
potentially run, investigate even those components of
a system that would not be expected to significantly de-
grade performance, and propose alternate system con-
figurations that dramatically reduce the sources of per-
formance loss. A secondary contribution includes our
notions of “noise” and “resonance”. By understanding
the resonance of system noise and application struc-
ture, others can apply our techniques to other systems
and other applications.

The full, 8,192-processor ASCI Q only recently be-
came operational. Although it initially appeared to be
performing according to expectations based on the re-
sults of LINPACK [l] and other benchmarks, we de-
termined that performance could be substantially im-
proved. After analyzing various mysterious, seemingly
contradictorv Derformance results. our uniaue method-
ology and peFformance tools and techniqies enabled
us to finally achieve our goal of locating ASCI Qps miss-
ing performance.

To increase application performance, one traditionally
relies upon algorithmic improvements, compiler hints,
and careful selection of numerical libraries. communi-
cation libraries, compilers, and compiler options. Typ-
ical methodology includes profiling code to identify
the primary performance bottlenecks, determining the
source of those bottlenecks-cache misses, load imbal-
ance, resource contention, etc.-and restructuring the
code to improve the situation.

This paper describes a figurative journey we took to
improve the performance of a sizeable hydrodynamics
application, SAGE, on the world’s second-fastest super-
computer, the 8,192-processor ASCI Q machine at Los
Alamos National Laboratory. On this journey, we dis-
covered that the methodology traditionally employed

“Nobody reads a mystery to get to the middle. They
read it to get to the end. If it’s a letdown, they won’t
buy anymore. The first page sells that book. The last
page sells your next book.”

- Mickey Spillane

References
[I] J. J. Dongarra. Performance of various com-

puters using standard linear equations software.
Technical Report CS-89-85, Computer Science

11

Department, University of Tennessee, Knoxville,
Tennessee, 1989. Available from http : //urn.
netlib.org/benchmark/performance.ps.

[2] E. Frachtenberg, E Petrini, et al. STORM:
Lightning-fast resource management. In Proceed-
ings of SC2002. Baltimore, Maryland, Nov. 16-
22 2002. Available from http: //sc-2002. org/
paperpdf s/pap . pap297. pdf .

[31 A, Hoisie, 0. Lubeck, et al. A general pre-
dictive performance model for wavefront algo-
rithms on clusters of SMPs. In Proceedings of
the 2000 International Conference on Parallel Pro-
cessing (ICPP-2000). Toronto, Canada, Aug. 21-
24,2000. Available from http : //urn. c3. lanl .

Cumulative Noise Distribution. Barrier Synchronization
l - . , . I ' , '

o.8 - 17% RMS Cluster Nodes +
91 Node 31 '6
Z 0.6 -

0.015 0.062 0.25 I 4 16 64 gov/par-arch/pubs/icpp.pdf.
Noise Latency (ms)

[41 D. J. Kerbyson, H. J. Alme, et al. Pre-
(a) Barrier synchronizations with no intervening computa- dictive performance and scalability modeling
tion of a large-scale application. In Proceedings

of SC2002. Denver, Colorado, Nov. 10-16,
Cumulative Noise Distribution, Barrier Synchronization, 1 ms Granularity

(' 1 4 . I * I I . t b n I . I ' 1 1

2001. Available from http: //www . sc2001. org/
papers/pap . pap255. pdf.

27%. Node 0 [SI D. J. Kerbyson, A. Hoisie, et al.

2 2003. World Scientific Publishing.

- 2 [6] K. Koch. How does ASCI actually complete
a - 0 5 6 B multi-month 1000-processor milestone simula-

tions? In Proceedings of the Conference on
High Speed Computing. Gleneden Beach, Oregon,

0.015 0062 025 I 4 16 64 256 Apr. 22-25, 2002. Available from http : //ww .
ccs.lanl.gov/salishan02/koch.pdf.

Use of pre-
dictive performance modeling during large-scale 0.8 - ,

.- I system installation. Parallel Processing Letters,

- 1 s

0.2 33%. Cluster Nodes
-

0

Nowe Latency (ms)

(b) lms [7] E Petrini and W. Feng. Improved resource uti-
lization with Buffered Coschedulinn. Journal of
Parallel Algorithms and Applications;l6: 123-14,
2001. Available from http: //urn. c3, lanl .
gov/"fabrizio/papers/paaOO.ps.

[8] E Petrini, W. Feng, et al. The Quadrics
'6 network: High-performance clustering technol-

om. IEEE Micro, 22(1):46-57, Jan./Feb. 2002.
ISSN 0272-1732. Available from http: //www .
computer.org/rnicro/mi2002/pdf/mi046.pdf.

[9] J. C. Phillips, G. Zheng, et al. NAMD: Biomolec-
ular simulation on thousands of processors. In

0.015 0.062 0.25 I 4 16 64 256 Proceedings of SC2002. Baltimore, Maryland,
Nov. 16-22 2002. Available from http : //urn .

[lo] Quadrics Supercomputers World Ltd. RMS Refer-

Cumulative Noise Distribution, Barrier Synchronization, 5 ms Granularity

0.8

2
Z 0.6

-

-

a
0.2 -

- I

Noise Latency (ms)

(c) 5ms sc-2002.org/paperpdfs/pap.pap277.pdf.

Figure 18: Cumulative noise distribution for different
computational granularities

ence Manual, Jun. 2002.

12

