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Entanglement beyond subsystems 

L. Viola, H. Barnum, E. Knill, G. Ortiz, and R. Somma 

ABSTRACT. We present a notion of generalized entanglement which goes b e  
yond the conventional definition based on quantum subsystems. This is ac- 
complished by directly defining entanglement as a property of quantum states 
relative t o  a distinguished set of observables singled out by Physics. While 
recovering standard entanglement as a special case, our notion allows for sub- 
stantially broader generality and flexibility, being applicable, in particular, to  
situations where existing,tools are not directly useful. 

1. Introduction 

Since its discovery in the early days of quantum mechanics, the phenomenon 
of entanglement has proved a continuous source of physical, mathematical, and 
philosophical challenges. Interest in entanglement has heightened dramatically in 
recent years, the characterization and quantification of entanglement being nowa- 
days one of the most active research areas within the emerging science of Quantum 
Information (&I) [NC]. So, what is the point about entanglement? Quoting from 
a landmark paper by Schrodinger, where the term entanglement was first intro- 
duced [SI (see also [EPR]), 

“...This is the point. Whenever one has a complete expectation 
catalog - a maximum total knowledge - a q!~ function - for two 
completely separated bodies, ... then one obviously has it  also for 
the two bodies together ... But the converse is not true. Maxi- 
mal knowledge of a total system does not necessarily include total 
knowledge of all its parts, not even when these are fully separated 
from each other and at the moment are not influencing each other 
at all.” ,:, 

Schrodinger’s paper dates back to 1935. Translated in the more modern ter- 
minology we are accustomed to, the above statement corresponds to the general 
definition of entangled states as joint states of a composite quantum system that 
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cannot be expressed as a mixture of products of states of its constituent subsys- 
tems. A lot more has been learned by now about the properties and significance 
of such states from both a physical and an information-theoretic perspective. In 
particular, because no pure state of a classical system can be correlated, the corre- 
lations present in a pure entangled state are intrinsically non-classical, as witnessed 
by the fact that the presence of entanglement is a necessary condition for the vi- 
olation of Bell inequalities [BE, PSI. In addition, entangled states are known to 
provide the defining resource for quantum communication, enabling non-classical 
protocols such quantum teleportation and leading to provable improvements in the 
efficiency of various multipartite tasks [BU]. Finally, although a full assessment 
of the role of entanglement in quantum computational speed-up remains elusive to 
date, entangled states involving unboundedly many qubits turn out to be necessary 
for efficient pure-state quantum algorithms [JL]. 

In spite of such progress, there have been a number of signs recently that the 
theory of entanglement developed so far is too restrictive to be applicable to the full 
variety of both &I and physical settings one might like to consider. In particular, 
the conventional approach to entanglement focuses on analyzing how a quantum 
system is made up from constituent subsystems, and implicitly incorporates the as- 
sumption that the latter are operationally distinguishable. Compelling motivations 
for critically reconsidering the resulting entanglement notion come from situations 
where the operational access to the system of interest is inherently restricted by 
physical constraints. A first example is offered by condensed-matter systems, where 
the consequences of non-trivial (bosonic or fermionic) quantum statistics must be 
taken into account, making the direct identification of particles as “entanglable” 
subsystems problematic. A second example may occur in systems which are subject 
to superselection rules, which restrict the allowed transformations on the system’s 
state spacc and effectively cause sectors of the latter to be operationally unreach- 
able. Both situations are being actively investigated in the &I literature, and no 
attempt will be made here to provide a complete account. While different solutions 
have been examined thus far, they essentially all rely on either appropriately re- 
defining the relevant subsystems to be used as primitive blocks, or the applicable 
measure for quantifying the accessible correlations - leaving, however, the under- 
lying entanglement concept unchanged. We refer the reader to [ON, EK, ZF] 
and [B W, VC] for representative discussions of entanglement for indistinguishable 
particles and in the presence of superselection rules, respectively. 

Our approach takes a different route, bypassing the need of a subsystem decom- 
position in the first place, and reformulating entanglement as a property of quantum 
states which directly depends on physical observables. The investigation of the re- 
sulting notion of generalized entanglement (GE) was undertaken in [BKOV] and 
continued in [BKOSV]. In the following, we further highlight some properties and 
implications of such a perspective. 

2. Entanglement and preferred subsystems 

Let S be a quantum system with associate state space 31, dim (31) = d, for some 
d E K For simplicity, we shall focus on considering pu,re states of S throughout. A 
subsystem of S can be defined in general as a factor (in the tensor product sense) 
of a subspace C C 31 [KLV]. In the simplest case where C = 31, a subsystem 
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decomposition of S is described by a tensor product structure on 31, 

(2.1) 31 = @ X e ,  
e 

where 31e is the state space of the Cth subsystem. Whenever a multipartition of 
the form (2.1) is defined over a proper subspace of 31, an encoded tensor product 
structure is obtained, and the underlying subsystems are sometimes referred to as 
“logical” or “virtual” subsystems [Z]. 

Even in the simplest setting described by Eq. (2.1), it is essential to realize 
that, a priori, the number of inequivalent subsystem partitions that 31 can support 
may be large, reflecting the fact that many possibilities of expressing d as a product 
of integers arise in general ’. Accordingly, entanglement, of a state in 31 is unam- 
biguously defined only once a preferred subsystem decomposition is selected - which 
physically corresponds to a specific way of viewing S as made up from constituent 
parts. Relative to a distinguished multipartite structure, a pure state I + )  E 31 is 
entangled iff is no t  expressible as a product of states in 31e.  Given I$), the state of 
the Cth subsystem is determined by the reduced density operator pe resulting from 
the partial trace operation over the remaining ‘subsystems. Thus, an equivalent 
characterization of standard pure-state entanglement is that I+) is entangled iff pe 
is mixed for some C: entangled pure states are exactly those which appear mixed to 
observers whose operational access to S is restricted to local obseruables acting on 
only a subsystem at a time. 

The above observations suggest that the standard definition of entanglement 
can be equivalently phrased in terms of the observables used to measure the system 
and describe its states, and that perhaps this could serve as a starting point for 
an operational characterization of entanglement under more general circumstances. 
A natural path for capturing such an intuition is to relate the emergence of a 
preferred subsystem decomposition to be used to the set of available interactions 
and measurement capabilities. Such a path, which naturally extends the observale- 
based definition of subsystems in terms of associative algebras introduced in [KLV, 
VKL, Z], has been recently investigated by Zanardi e t  al. [ZLL]. The essence of 
our GE approach, as we shall see, is instead to redefine entanglement so as to make 
it directly dependent upon a physically relevant set  of obseruables - irrespective of 
and without reference to a preferred way for partitioning S into subsystems. 

3. The notion of generalized entanglement 

The key realization underlying the GE approach is that the distinctive fea- 
tures of entanglement are determined by the expectation values of a distinguished 
subspace of obseruables of S. The latter may directly incorporate an operational 
restriction, such as limited means for controlling a d  measuring the system, or more 
generally reflect an insight or condition dictated by Physics. Let such a preferred 
observable subspace be denoted by n. The steps leading to GE may be summarized 
as follows: 

Pure states are unentangled (in the conventional sense) iff every subsystem 
state is pure; 

‘See [Z ]  for a formal definition of equivalent factorizations and the resulting notion of tensor- 
product-structure manifold. 
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States can be represented as positive linear functionals on operator spaces, 
induced by a density operator according to the trace map. Formally, given 
a state of S described by p, this completely specifies a positive linear 
functional X on the space End(3.1) of all operators on 3.1 via the action 

X(X) = tr(pX), X E End(%), 
such that X ( X t X )  2 0 and X(n) = 1. Such a state X can be restricted 
to R End(%), giving a reduced state w = AIR which only determines 
the expectations of operators in R. If, additionally, R is closed under 
Hermitian conjugation, we can define a reduced density operator p r e d  E R 
associated with the state by the relationship 

w(Y) = tr(pY) = tr(p,,dY), Y E R; 
The set R of R-reduced states is convex, that is, closed under probabilistic 
combinations; 
A state in R is pure iff it is extremal, that is, it cannot be expressed as a 
non-trivial convex combination of elements in R. 

We are thus led to the following: 

DEFINITION 3.1. A pure state p = I$)($[ of S is generalized unentangled relative 
to  the distinguished set  of observables R if its reduced state is pure, and generalized 
entangled otherwise2. 

While the above definition is applicable to an arbitrary linearly closed operator 
set R ,  a relevant situation which is often encountered in physical applications occurs 
when R is a Lie algebra of operators acting on 3.1. 

3.1. Lie-algebraic framework and Lie-algebraic purity. Let us focus on 
the case where R = 9 is a semisimple Lie algebra of operators acting irreducibly 
on the representation space %. In order to make the connection with physical 
observables more transparent, we also assume that g is a real Lie algebra consisting 
of Hermitian operators, with a modified Lie-bracket operation defined as follows: 

[X,Y] = i(XY - YX), X , Y  E g. 
Accordingly, the Lie group G generated by will be obtained via the modified 
exponential map X t) e ix .  The reader is referred to [G, HA, HU] for relevant 
background on Lie representation theory. The general case of a reducible action of 
g on 3-1 will be addressed elsewhere (see for instance [SOBKV]). 

Under the above assumptions, one of the key results established in [BKOV] 
(see Theorem 14, part (3)) is the identification of the generalized unentangled pure 
states as the generalized coherent states (GCSs) associated with the Lie algebra 
(see also [K] for a related characterization motivated by geometric invariant theory). 
A review of the theory underlying GCSs and their main physical applications may 
be found in [PR, ZFG]. Recall that GCSs are obtained by extending the definition 
of canonical (harmonic-oscillator) coherent states in terms of a displaced reference 
state within a general Lie-algebraic framework. Beside the Lie algebra with 
associated dynamical group G acting on 3.1, the definition of GCSs requires the 
specification of a normalized reference state IQo) E X which, following Gilmore’s 

’Similarly, a mixed state p of S is generalized unentangled relative to R if it can be written 
as a proper convex combination of generalized unentangled pure states. 
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construction, is chosen as an extremal (lowest-weight) state of the representation. 
Knowledge of G and I@,-,) determines the subgroup Go C G of elements that preserve 
the reference state up to a phase factor. The manifold of GCSs associated to 
($,'?I, I@o)) is then defined by the orbit of the reference state under  coset elements 
in GIGO that is, 

Accordingly, all generalized unentangled states are GCSs and are in the orbit of a 
(unique) minimum weight state of $ under the action of the Lie group. 

Given a pure state I$) E 31, one would like to obtain a quantitative way for 
relating the properties of generalized unentanglement, generalized coherence, and 
purity with respect to the observable subspace. A natural procedure is to consider 
the projection of I$)($JI onto $, as the latter completely determines the expectation 
values of operators in the Lie algebra. This motivates the following: 

DEFINITION 3.2. Let {xi} be a Hermitian and commonly-normalized orthogo- 
nal (tr xixj oc & j )  basis for $. For any I$) E 31, the purity of I$) relative to $ (or 
$-purity) is ' , 

(3.2) : P,dl$)) = x ( t r l M $ I x i ) 2  = l($l~il$)12. 
i i 

REMARK 3.3. Let P, denote the projection map onto $. As defined, the $- 
purity of a state is the square length of the projection P,,(l?,!~)($l) according to the 
trace-inner-product norm. Note that, in principle, different operator norms could 
be used, resulting in different purity functionals for fixed $. 

REMARK 3.4. Let D E G be an arbitrary group transformation. Then P,, (I$))= 
pb(l$)), where the latter is calculated by replacing the operators xi with DtxiD 
in Eq. (3.2). Because &(I$)) = Pb(DI$)), the $-purity is invariant under group 
transformations, as is desirable on physical grounds. 

With the above definitions, the main features of GE within the Lie-algebraic 
framework are summarized by the following: 

THEOREM 3.5. T h e  following characterizations are equivalent f o r  an  irreducibly 
represented L ie  algebra $ on 31: 

(1) p i s  generalized unentangled relative t o  $. 
( 2 )  p = [$)($I with I$) the  unique ground state of some Hamiltonian H in $. 
(3) p = [$)($I with I$) a lowest-weight vector of $. 
(4) p has maximum $-purity. 

A proof of this Theorem is available in [BKOV]. We also refer the reader to  
the same paper for an extended discussion of generalizations of various information- 
theoretic notions (such as local maps and complexity measures) to the Lie-algebraic 
setting and beyond. In the following, we focus on illustrating some aspects of the 
relationship between conventional and generalized entanglement. 

4. Conventional entanglement revisited 

Given the quantum system S and apure state I$) E 31, the purity relative to the 
(real) Lie algebra of all traceless observables $ = su(d) spanned by an orthogonal, 

. .  
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commonly normalized Hermitian basis (21 . . . ZL}, L = d2 - 1, is, according to Eq. 
(3.2), given by: 

where the overall normalization K depends on the dimension d and is determined 
by requiring that the maximum purity value is 1. For an orthonormal operator 
basis, Tr(z,xp) = &,p, K = d / ( d  - l), whereas in the case Tr(x,zp) = d&,p (as 
for ordinary un-normalized Pauli matrices), K = l / (d  - 1). Because any quantum 
state I$) E % can be obtained by applying a group operator D to a reference state 
[ref) (a lowest-weight state of su(d)) ,  

( 4 4  I+) = Dlref), D = e i C * t * s *  ,tLYEG 

any quantum state I$) is a GCS of su(d), thus generalized unentangled relative to 
the f.11 observable algebra: Pb(l$)) = 1 for all I$). 

Let now assume that S is composed of n distinguishable susbsytems, corre- 
sponding to a state-space factorization of the form (2.1), that is, 'H N @e%e, with 
dim(%f) = de, n , d e  = d. In the conventional setting, distinguishability of the 
subsystems motivates the assumption of local accessibility to their individual state 
spaces. Thus, the set of local observables, consisting of operators which act on each 
subpystem independently, is physically distinguished. Let 

1 '  (4.3) 
. .  , /  

denote the corresponding (real) Lie algebra of traceless local observables, acting 
irreducibly on 31. Because standard unentangled pure states are exactly those 
for which all reduced states remain extremal, the GE notion relative to the local 

' observable subspace coincides with the standard notion of pure state multipartite 
entanglement [BKOV]. This may be explicitly appreciated by studying the local 
purity Pb and its relation to the conventional subsystem purities determined by the 
reduced subsystem states. 

4.1. Local purities vs subsystem purities. An orthonormal basis which is 
suitable for calculating Ph = P,,,oc may be obtained by considering a collection of 
orthonormal bases {& ---ztL,}, Le = 4 - 1, each acting on the eth factor alone, 
that is, 

n factors 

(4.4) 

eth factor 

where IIe = I/&. Let also be = span{xaf} be the Lie algebra of traceless Hermit- 
ian operators acting on %! alone, and pe = Trp+e({l$)($l}) the reduced density 
operator describing the eth subsystem's state. We can then prove: 

THEOREM 4.1. For every pure state I$) E 31 the following identities hold: 



7 ENTANGLEMENT BEYOND SUBSYSTEMS 

(4-5) 

(1) For each C, the  puri ty  relative t o  the algebra be i s  proportional t o  the 
conventional subsystem purity: 

( 2 )  The  puri ty  relative t o  the  local algebra is proportional t o  the  average 
subsystem purity: 

PROOF. The state of the Cth subsystem may be represented as 

where ( z a t )  = tr(pezat) = tr(l+)($lzk,) and the last equality follows from the 
definition of reduced density operator. Thus, 

By combining the above relation with the definition of the Pbt-purity, 
Lt de 

pot(\+)) = - ( za t )2xa t ,  
de - af=l  

Eq. (4.5) follows. 

using Eqs. (3.2) and (4.4), reads: 
To derive the second equality, start from the definition of the Po-purity which, 

Clearly, the maximum value of the above quantity will be attained when, and 
only when, each of the terms trpi = 1 e Po, = 1 for all e, corresponding to a 
pure product state of the form I@) = @el+t). ‘This allows to  determine the K‘- 
normalization factor as 

1 - 1 
1 -  

K’ = 
n-Ceg n(l-:ce$)’ 

leading to the expression given in Eq. (4.6). 0 

REMARK 4.2. Note that l/de 5 trpi 5 1 for every C, corresponding to a totally 
mixed and pure reduced state, respectively. Thus, the quantity in round parentheses 
in Eq. (4.5) varies between 0 and 1 - l/de, consistently implying a Po,-purity range 
between 0 and 1. 

REMARK 4.3. In the case of co-dimensional subsystems, de = dove, Eq. (4.6) 
takes the simpler form 
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According to the above Theorem, states corresponding to maximal local pu- 
rity (i.e., generalized unentangled) are exactly the set of standard separable states. 
Note, however, that all pure states of 3-1 - whether they are conventionally unen- 
tangled or not relative to the selected state space decomposition - correspond to 
extremal reduced states relative to the full operator algebra g = 5 4 4 :  accordingly, 
all pure states of 3-1 are generalized unentangled relative to such algebra. Physi- 
cally, this expresses the fact that no distinction between entangled and unentangled 
states is operationally meaningful if full access to arbitrary non-local operators is 
available. In a sense, the emergence of entanglement in this generalized perspective 
appears intimately and directly associated with physical constraints. 

4.2. Multipartite qubit systems. The relevant c a e  of n qubits is recovered 
by letting de = & = 2Ve,  in which case one simply has K' = 2 / n .  A natural choice 
for calculating the local purity via Eq. (3.2) is obtained by choosing standard 
multi-qubit Pauli operators, 

(4.7) 

where 

n 

bloc  = $ 5 ~ ( 2 ) e  = s p a n { d , g ~ , d , . - *  ,g;,gi,oi}, 
e= 1 

n factors 

e'h factor 
and the 2 x 2 matrices g, and 1 are the standard Pauli matrices, satisfying ~2 = 1. 
By noticing that x, = ' o a / f i  in this case, the purity of an arbitrary pure state 
becomes then 

(4.9) 

As above, Pb = 1 in any product state of the form I$) = @tl$l), a multi-qubit 
GCS in this algebra. Using Theorem 4.1, the relationships between local purities 
and qubit reduced states rewrite respectively as follows: 

(4.10) 

(4.11) 

EXAMPLE 4.4. With the above definitions, all pure product states of n qubits 
have maximal purity that is, they are generalized unentangled. On the opposite 
limit, states of the form IGHZ,) = (I tt ... t) + I $4 ... $))/fi or of the form 
[(It$) - l$f))/fi]@n/2 (for n even) will be maximally entangled according to this 
meaure (Pb = 0). 

Because GE relative to the local algebra takes contributions, as quantified by 
the measure Pb , from correlations involving all subsystems simultaneously, one 
could expect such a measure to contain information about overall entanglement 
properties of the system (as opposed, for instance, to the concurrence measure 
which is intrinsic.ally bipartite [w]). A measure Q of global entanglement for pure 
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states of n qubits was recently proposed by Meyer and Wallach in [MW], and shown 
to exhibit correct invariance properties under local unitary operations. According 
to the original construction, the first step to define such a measure is to consider a 
family of maps Zj(b) given by the following action in the computational basis (and 
extended by linearity): 

(4.12) l j ( b )  Ibi , . . . , bn)  = S b b j  Ibi, . . . , bj ,  . . . , bn) ,  

where b and bj are either 10) or Il), and & denotes the absence of the j t h  qubit in 
the resulting (n - 1)-qubit state. Let any pure state in (C2)@n-1 be represented 
in the computational basis, and let lu) = cuil$i)  and Iv) = Cvil$i) be two such 
states. If a distance function on (C?)@n-l @I (C?)@n-l is introduced as 

(4.13) 

the global entanglement of a pure n-qubit state I$) is defined as follows: 

(4.14) 

Interestingly, as announced in [BKOSV], the measures Pb and Q turn out to have 
a simple relationship. 

THEOREM 4.5. Let b denote the  local observable algebra f o r  n qubits as defined 
above. Then  f o r  every pure state I$) E 7-t = (C?)@n the followang cdentaty holds: 

(4.15) 5(1$)) = 1 - &(I$)) 
PROOF. By partitioning the n qubits into the j t h  qubit and the remaining one, 

and by working in the computational bases { I O j ) ,  113)} and { I$i)}, i = 1 , .  . . ,2'+' 
of the j t h  qubit and the rest, respectively, any pure quantum state I$) E (C?)@n 
can be represented as 

(4.16) 

where g! and hi are complex coefficients. Therefore, the action of the map Zj(b) on 
I$) given in Eq. (4.12) is 
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where * denotes complex conjugate. After some algebraic manipulations we get 

thus Eq. (4.17) rewrites as 
D(lj(O)l$),lj(1)1$)) = ,[1-(c:)2-(c5)2-(ff~)2]. 1 

By taking a sum over all qubits and recalling Eq. (4.14), we finally obtain the 
desired result 

0 

Theorem 4.5 together with Eq. (4.11) also implies a direct, linear relationship 
between the global entanglement metric Q of [MW] and the average subsystem 
purity, that is, 

(4.18) 

The above relationship has been independently established by Brennen [BR]. 

5. Generalized entanglement and subsystems 

According to the results of the previous section, GE includes conventional en- 
tanglement as a special case: when a given partition of 3t into subsystems is speci- 
fied, there exists a natural observable subspace (the one describing local actions on 
individual factors) such that entanglement relative to the given subsystem partition 
and GE relative to the associated local algebra coincides for all states. Suppose, 
however, that the opposite point of view is taken, namely that the state space 31 of 
a quantum system is known, along with a distinguished, irreducible Lie algebra 
(or, more generally, an observable set 0). Then the following questions arise: Are 
there preferred subsystem partitions on 3t which may be determined by g? If so, 
does a (possibly fictitious) subsystem partition exist, such that generalized entan- 
gled states relative to g are exactly the set (or are a subset) of ordinary entangled 
states relative to such a partition? In other words, does GE represent a genuine 
extension of the subsystem-based entanglement framework? 

From the physical point of view, the novelty and added generality afforded by 
the GE notion should be already clear from the direct applicability of our prescrip- 
tion to any situation where a laboratory condition or physical constraint singles out 
a special observable set, shortcutting the need for any intermediate subsystem iden- 
tification. From a mathematical perspective, a distinctive innovation with respect 
t o  the traditional framework is that GE ultimately depends only on the convexity 
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properties of observable sets [BKOV]. The the resulting extremality characteriza- 
tion of unentangled states has not, been emphasized in the conventional setting (for 
instance, it is not part of [ZLLI's treatment of the virtual-subsystem approach). 
With these general considerations in mind, however, a thorough analysis of the rela- 
tionships between our approach and the subsystem-based one is an interesting issue 
worth investigating per se. We limit ourselves here to a few illustrative remarks. 

5.1. Observable-dependent subsystems. If, as assumed so far, the dis- 
tinguishable observables form a semisimple Lie algebra h, a natural multipartite 
setting is determined by the fact that h is uniquely expressible as a product of sim- 
ple Lie algebras fj = xkbk [HU]. A Hilbert space irreducibly representing 9 then 
factors as3 7-1 = @k?&, with the algebra h k  acting as the identity over d l  factors ex- 
cept the kth one. In the language of [ZLL], the resulting multipartition is formally 
reminiscent of an observable-induced tensor product structure associated to { bk} 
over 7-1. Similarly, a formal analogy with the emergence of encoded multipartitions 
(C C 7-1) may be expected for a reducible representation of h on 7-1. Note, however, 
that actions on the individual state spaces %k belong to a Lie group representation 
which need n o t  be GL(dim(3Ck)) as for standard entanglement theory [BKOV]. 

5.2. Entanglement without subsystems. A situation which strikingly il- 
lustrates the added flexibility of the GE notion is offered by quantum systems whose 
states space is intrinsically irreducible, that is, d is a prime number. In this case, 
the system is physically elementary, and conventional entanglement is not directly 
applicable. Consider for instance a single spin-1 system, whose three-dimensional 
state space 7-1 = C? carries an irreducible representation of su(2), with usual angu- 
lar momentum generators J,, JV ,  J ,  given by 

1 0 1 0  0 -i 0 1 0  0 
(5.1) J - -  ( 1 0  1 ) ,  J - -  .-;(o i ; ; ; ) , J z = $ k  ; $ " - a  0 1 0  
Suppose that, due to operational limitations, observations on this system are re- 
stricted to observables linear in the above generators of su(2). Given an arbitrary 
pure state I$) E C? , the corresponding reduced state can be identified with the vec- 
tor of expectation values of these three observables (Ja). The set of such reduced 
states is a unit ball in Et3, defined by + (Jy)2 + (J , )2  5 1. The extremal 

. states correspond to points on the surface, resulting from maximal spin component 
1 for some linear combination of J,, Jy, J,. For any choice of spin direction, 7-1 
is spanned by the 11, +l), I l , O ) ,  11, -1) eigenstates of that spin component, for in- 
stance the f direction. Then the extremal states are immediately identified with 
the spin coherent states ll,t), or GCSs for SU(2) [ZFG], 

(5-2) 11,~) = eEJ+-F*J- Ih-l), t E c, 
where the exponential involving the ladder operators J* provides an explicit re- 
alization of the group-displacement 2) of Eq. (3.1), and the lowest-weight state 
IJ = l,Jz = -1) is chosen as the reference state. Note that the states ll,+l) 
and ll,-l) are GCSs, but I l , O )  is not: thus, the latter is a generalized (in fact, 
maximally) entangled state relative to su(2). As also remarked earlier, access to 
the fu l l  operator algebra ( 4 3 )  in this case) causes GE to disappear altogether, 

3Note that this implies &dim(%) to be a non-prime integer. 
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expressing the fact that arbitrary state vectors can be connected through group 
transformations in SU(3). 

Note that, in principle, one could formally regard the single spin-1 system 
considered above as arising from two spin-112 subsystems in a triplet configuration. 
Then states which are generalized unentangled (or entangled) relative to su(2) 
would be associated with ordinary product (or entangled) states of the two fictitious 
subsystems, 

lL+1) f) I r)l I t ) 2 ,  

with self-explaining notation. We would like to stress that, from a physical point 
of view, such a partition is entirely artificial if operational access to the individual 
subsystems is unavailable as assumed above. Moreover, the procedure is every- 
thing but straightforward mathematically. Formally, the above line of reasoning 
requires embedding the original spin-1 irreducible representation of su(2) in the 
tensor product representation of two spin-112 irreducible representations of su(2), 
in such a way that generalized entangled states becomes a subset of the the or- 
dinary entangled states in the extended representation4. While the simplicity of 
the state identification given above is coincidental to the elementary irreducible- 
representation-structure of this example, understanding to what extent a similar 
procedure could be carried out for general irreducible representations of semisimple 
Lie algebras might shed further light on the mathematical relationships between 
GE and abstract subsystem structures. 

6. Discussion 

6.1. Implications for condensed-matter systems. A feature which makes 
the GE framework particularly attractive for applications to condensed-matter sys- 
tems is the possibility to directly formulate entanglement in terms of the algebraic 
operator language (fermionic, bosonic, or other [BO]) which best describes the sys- 
tem. Among such applications, the possibility of gaining a better understanding 
of the nature and properties of the quantum correlations in a system, undergoing 
a quantum phase transition has attracted a growing interest recently] see for in- 
stance [ON, OAFF, VLRK]. The usefulness of the GE framework in the context 
of identifying and characterizing quantum phase transitions has been investigated 
based on the explicit analysis of two integrable models undergoing a broken symme- 
try quantum phase transition - the well known one-dimensional spin-1/2 XY model 
in a transverse magnetic field and the so-called Lipkin-Meshkov-Glick model, re- 
spectively. We refer the interested reader to [BKOSV, OSBKV,  SOBKV] for 
detailed discussions. As these studies reveal, the purity relative to an appropri- 
ate Lie subalgebra of observables of the system provides a useful diagnostic tool for 
characterizing the many-body correlations which play a dominant role at criticality, 
by succeeding at both sharply detecting the critical point and correctly identifying 
the underlying universality class. 

4Clearly, the (conventionally) entangled state spanning the singlet sector has no counterpart 
in the original physical space 31. 
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While the above results are very suggestive and promising, several important 
questions remain to be investigated in more depth. In particular, a general op- 
erational criterion for identifying the physically relevant observable subalgebra for 
Hamiltonians whose ground-state properties are not easily computable is still lack- 
ing. The identification of a minimal  collection of observable algebras able to provide 
a complete description of the system’s critical properties is likewise an open prob- 
lem. Finally, the extension of similar concepts and techniques to more general 
classes of quantum phase transitions (notably, topological quantum phase transi- 
tions) seems likely to require more sophisticated tools than the Lie-algebraic ones 
which suffice when a broken symmetry exists. 

6.2. Outlook and conclusion. We have presented a generalization of entan- 
glement which provides a subsystem-independent, unifying conceptual framework 
for defining entanglement in arbitrary physical settings. Unlike the conventional 
definition which is relative to a preferred decomposition into subsystem, GE is di- 
rectly regarded as an observer-dependent property of quantum states, which is defin- 
able relative to any physically relevant set of observables for the system. Whenever 
the latter possess a Lie-algebraic structure, our approach naturally links entangle- 
ment theory with the theory of generalized coherent states. 

In addition to the condensed-matter implications mentioned above, numerous 
information-theoretic problems also deserve further investigation. Several issues 
concerning appropriate generalizations of local maps, resource scaling, and GE 
measures have been raised and partially addressed in [BKOV]. Additional re- 
search directions might involve exploring possible connections between the presence 
of GE and the violation of Bell-type inequalities [PSI, assessing the potential of GE 
detection via appropriate witness operators [HO, TI, looking at possible charac- 
terizations of GE via uncertainty relations as recently suggested for conventional 
entanglement [HT], and more. Ultimately, we believe that the fresh perspective of- 
fered by our approach will deepen our understanding of entanglement as a physical 
and information-theoretic resource. 
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