LA-UR-04-4360

An International Standardized Utility to Collect Data, MIC

David Pelowitz
Los Alamos National Laboratory
Los Alamos, NM 87545

Presented at the
Institute of Nuclear Material Management
45" Annual Meeting
Orlando, Florida
July 18-22, 2004

= i
Los Alamos

BAT FENAL LABSRATORY

Chris i lindberg

This is a preprint of a paper intended for publication in a journal or proceedings. Because changes may be made before publication, this preprint is made
available with the understanding that it will not be cited or reproduced without the permission of the author.

An International Standardized Utility to Collect Data, MIC

David Pelowitz
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract:

Multi-Instrument Collect, MIC, is rapidly becoming the international standard for safeguard data
collection. First implemented in 1998, it was adopted by the International Atomic Energy Agency
the following year and fielded in numerous locations around the world. This application is capable
‘of simultaneous collection from up to 100 independent instruments. It supports a variety of
instrument types and a variety of communications media. Although created and currently being
maintained by Los Alamos National Laboratory's Safeguards Science and Technology Group, N1,
effort is underway (completion planned mid-year 2004) to open up the architecture promoting
outside or third party development. This effort is nearly unique in the safeguards arena. It provides
a standard user interface philosophy for a multiplicity of hardware vendors. User community
advantages are: enhanced use-ability, decreased training, faster field implementation, decreased user
data collection time, and ultimately lower implementation and maintenance costs. There are also
significant advantages to the instrument developer. For example a variety of pre-existing
communications objects may be used, pre-existing power management capabilities exist, and
extensive data management capabilities. All of these may be leveraged into a vendors' development
effort--significantly decreasing the amount of development effort and consequently decreasing cost,
The presentation will include an oyerview of the existing MIC and MIC utilities from a developers
and a users' point of view, the user interface philosophy, and will discuss the open architecture
allowing third party development. -

Introduction:

Development of 2 new computer program began in 1997 when it was realized that having unique
data collection programs supporting each type of commonly used Non-Destructive Assay, NDA,
instrument presented a training and field support nightmare. At the inception of the project specific
goals were established as developmental guidelines. Each of these goals would address identified
field problems. Although mainly targeting the requirements of the International Atomic Energy
Agency, IAEA, these goals would also address other venues. Multiple quantity of simultaneous
instrument support, multiple type of simultaneous instrument support, high reliability, unattended
data accumulation, rapid data retrieval, and support a quick and simple to understand user interface
were some of the design objectives. Out of the objectives and derived requirements grew the
program called Multi-Instrument Collect, MIC. MIC was designed to meet all of the identified
goals—there was no compromise in any of the goals during its development. Currently, MIC
supports the Jomar Shift Register (JSR), GRAND-III (Gamma Ray and Neutron Detector),
MiniGRAND (Miniature GRAND), Advancded Multiplicity Shift Register (AMSR), Miniature 1k
Analog to Digital Converter (MiniADC), and Ortec DSPEC+ Non-Destructive Assay (NDA)
instruments. It also can control selected models of American Power Conversion’s and Belkin’s Un-
Interruptible Power sources. It indirectly supports data collection from Global Positioning Systems
(GPS), VACOS seals, and event information through the Intelligent Local Node (ILON) Event
Instrument. MIC supports this wide variety of instruments using a simple to learn and instrument to
instrument consistent user interface.

NI
PC —NT4.0 |

Figure 1. Two T) Ypical MIC Configurations.

Over the seven years after MIC was developed new instrument support was added, support for
existing instruments was improved and enhanced, and more adjunct support programs were added
to the suite. During this time MIC became the, if not the major, standard data collection program
approved for use by the IAEA. But of more significance was the emerging new requirement to
support instruments developed by vendors other than LANL and for vendors to be able to add
functionality to MIC to support their instruments. One of the early development derived
requirements of MIC was extensibility. Toward that end MIC was written in C++ to take advantage
of the encapsulation inherent in that language. As new instruments were developed at LANL it was
discovered that adding MIC support would take between six and twelve weeks depending on the
complexity of the instrument interface. Although the time to add new instrument support was
acceptably short and all that advantages of functional encapsulation were employed, MIC was still a
monolithic executable. What this meant was that only its developers could extend it.

instrument Support Object
(MIniGRAND, GRANDS)
150
{MiniADC)

. e,
a2 dEy
ABE. AMSR),

Figure 2. MIC Architecture.

Early in 2004 a project was started to
modify the MIC application to meet this
new requirement. The objective of this
project was to leverage off the existing
architecture (e.g. retain all existing
functionality and not rewrite the
application) in MIC and expose the
existing interface between encapsulated
objects. What this means is that a vendor,
utilizing the exposed interface, could
independently develop instrument specific
support and connect that support into MIC.

A variety of techniques existed in the Windows environment to accomplish the connectivity. The
Microsoft “Common Object Module”, COM, was chosen. An interface control document was
written. That document delineates the types of interfaces and the specific functions a vendor must
use to tie support of their instrument into MIC.

Specifics:

Multi-Instrument Collect may be logically divided into three distinct groups: the core, the
communications support objects, and the instrument support objects. The core portion of MIC can
be considered the glue that holds each of the other components together. It instantiates (creates
instances of) communications support objects and instrument support objects during startup and
subsequently establishes the connection between them. The Communications Support Objects,
CSOs, each provide communications services for MIC. See Figure 2.

Current
ly,
there
are
three
types
of
commu
nicatio
ns
support
objects
provide
d with
MIC:
simple
serial,
ILON
serial, and IPX. Each of these CSOs adheres to the Communications Support Object definitions in
the interface control document. That is to say they all have exactly the same externally accessible
functions and from an external point of view behave in exactly the same manner. For example, the
simple serial CSO provides communications through a serial port. An ISO connects to the CSO and
sends commands out the serial port and receives responses back. The ILON CSO also provides
communications to and from instruments but in its case via an ILON network. In either case an ISO
does not know nor does it need to know whether it is talking to the instrument via an ILON network
CSO or through a serial connection directly as is the case of the Serial CSO. Obviously, not all
ISOs may work with all CSOs. An ISO is designed to support a specific instrument type. That type
of instrument typically supports a particular type of communications, such as simple serial
connection or UDP Ethernet. By disassociating the communications support object from the
instrument support object and subsequently making the logical connection at run time MIC can be
configured in any many instruments to one communication or one instrument to one communication
configuration as needed. When the modified MIC is released each of the CSOs and ISOs will be in

il

g

#

Pl
—
#

Figur,

modules external to MIC. They may be upgraded individually without the need to retest or recertify
any of the rest of MIC, a considerable operational cost savings. If a vendor needs a specialized
communications object it will be a simple task to create one. For example, to create an Ethernet
communications support package could be created which could support not only that vendor’s
Ethernet based instrument but also any other instrument which has a similar Etheret interface.

Project Status:

The project is rapidly nearing completion. Currently all three of the Communication Support
Objects have been converted to external COM objects. Nearly all of the Instrument Support
Objects have been converted with only two remaining. The core of the application is now
supporting run time discovery of ISOs and CSOs. Along with the remaining ISOs the new MIC
will need to be recertified by running the formal acceptance test. As the final part of the project an
instrument developer/vendor will develop a non-LANL based Instrument Support Object and
possibly an associated Communications Support Object.

