

LA-UR-04-4368
Approved for public release;
distribution is unlimited.

Title:

Unified User Interface for Multiple Independently
Developed Instruments

Author(s): Tom Marks
Jose March-Leuba
Joseph Glaser

Submitted to: Presented at the 45th Annual Institute of Nuclear Materials
Management Annual Meeting,
Orlando, FL, July 18-22, 2004

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-04-4368

Unified User Interface for Multiple Independently Developed Instruments

Tom Marks
Los Alamos National Laboratory

P.O. Box 1663, MS E-572
Los Alamos, NM 87545 (USA)

Jose March-Leuba
Oak Ridge National Laboratory

P.O. Box 2008
Oak Ridge, TN-37831-6010 (USA)

Joseph Glaser, Program Manager, HEU-TIP
DOE/NNSA/NA-232
Department of Energy

19901 Germantown Road
Germantown, MD 20874 (USA)

Abstract
Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) have
collaborated to develop an integrated second-generation non-destructive assay (NDA) instrument
for continuous, unattended measurement of UF6 gas flowing in process pipes of a blend-down
facility. LANL was responsible for measuring the U-235 enrichment, and ORNL was responsible
for measuring the fissile mass flow.

The first generation of these instruments utilized completely independent hardware and software
systems with separate and disparate user interfaces. For the second-generation system, a very
high priority was placed on having a unified graphical user interface (GUI). Having a unified
GUI facilitates the infrequent and short-duration inspector visits dictated by the host facility.
This presentation describes the design and implementation of a software architecture that
facilitates the development of a fully-unified GUI while preserving the advantages of
independent instrument development. The unified GUI allows the user to perform all functions
including setup, calibration, reporting and diagnostics on either instrument from either computer.

The largely-independent development described herein accommodated well the challenges
presented by: 1) having a tight schedule, 2) having the expertise for each of the two instruments
residing at separate locations, and 3) needing to thoroughly test each subsystem before
integration and yet assure proper operation of the integrated system with minimal time and effort
at the end of the project. Item three can be especially important if there is insufficient NDA
hardware to mock up the whole system at each location.

The software architecture described here could be used for remote monitoring and control and
could easily be expanded to integrate more than the two systems described here.

LA-UR-04-4368

Introduction
In 1993, the United States and Russia signed a government-to-government agreement to dilute
500 metric tons of highly enriched uranium (HEU) from Russian nuclear warheads into low-
enriched uranium (LEU) fuel for U.S. commercial nuclear power plants. The HEU Transparency
Implementation Program (HEU TIP) was established within the Department of Energy to
provide assurance that the HEU being purchased from Russia is from dismantled weapons, and
that the same HEU is converted, processed, and blended to LEU. As part of the transparency
initiative, Los Alamos National Laboratory and Oak Ridge National Laboratory have produced a
second-generation NDA instrument to provide the assurance needed. The first-generation
instrument is currently installed in two Russian facilities. The new instrument is scheduled to be
installed in a third Russian facility in October 2004 and may be retrofitted as an upgrade to the
other facilities. These instruments are generically known as Blend-Down Monitoring Systems
(BDMS).

The BDMS system is comprised of two major sub-systems. The Enrichment Monitoring (EM)
subsystem measures and records the enrichment in U-235 in each of the three legs at the blend
point. A Fissile Mass Flow Monitoring (FM) sub-system measures and records the mass of
fissile material passing through each of the legs. The data acquisition and control software and
the NDA instrumentation comprising the two subsystems is fully independent for the two
measurements (flow and enrichment). However, the software architecture described in this paper
presents a highly-integrated view of what appears to be a single instrument to the user and host
facility, as required by the sponsor.

Screen Layout
Along the left edge of the application window, there is a hierarchical tree menu presenting to the
user all possible functions that the instruments can perform. The items in the tree menu are a
composite / merging of items provided by both instruments. For development convenience and to
make the tree menu more consistent for the various instruments, the developers agreed on several
of the major headings at the beginning of the project. Below the tree menu are two quick-
navigation push buttons and a clock showing time elapsed. This left-hand portion of the screen is
visible throughout the life of the program. The remainder of the application window is dynamic
and will change depending on the function that the user has selected from the tree menu.

Home Screen
When the Common GUI program starts up, it presents a home screen consisting of several
distinct functional areas. (See figure 1.)

The left-hand edge of the window is the always-displayed tree menu. The remainder of the
window (the dynamic portion) of the home screen is broken into three functional areas.

There are two push buttons in the upper right portion of the window. These allow the user, even
if inexperienced, to quickly produce reports showing a summary of the data for some user-
selected period – usually by month or quarter year.

LA-UR-04-4368

Figure 1. Common GUI Home Screen

The bottom portion of the window is a graph using two colored lines and colored vertical axes to
display both the measured enrichment and measured mass flow as a function of time. The user
may elect to show the most recent day, week, month or year of data.

A graphical representation of the blending area is presented in the upper center portion of the
window. Each of the three legs has identical instrumentation. For each leg there are three colored
buttons that show the overall status of the components. The flow monitor (FM) has two major
components: 1) a source modulator and 2) a detector. The enrichment monitor has a single button
to represent the detector and its associated multi-channel analyzer (MCA). The user may click on
any of these colored buttons and a new status screen will appear, replacing all but the tree menu
portion of the screen. The new screen displays a more-detailed overview of the status of the
particular subsystem component that the user selected (clicked-on). Figure 2 illustrates how each
subsystem may display the same type of information (in this case a summary of status details) in
a manner that is appropriate to each specific subsystem but distinctly different for the two
subsystems.

There are two additional colored buttons in the lower left portion of the graphical blending area
window. These buttons show the status of the respective data acquisition and control (DAC)
software modules that are running as Windows NT system services.

LA-UR-04-4368

Figure 2. Instrument-specific status screens. Screen details are not important here –
notice the tree-menu is the same and otherwise the screens are very different for
EM and FM.

Hardware Configuration
There are two independent computers; each is connected to the NDA instrumentation that it will
control and monitor, either EM or FM. These otherwise independent computers are connected
through Ethernet and to a single printer as illustrated in figure 3.

Figure 3. Hardware Configuration

LA-UR-04-4368

Software Components
Both computers are loaded with the main program, Common GUI, and the two instrument-
specific GUIs, (EMGUI and FMGUI). These software modules are shown above the dashed line
in figure 4. Up to this point, both computers have the same software configuration.

Note that each computer is physically connected to its own specific instrumentation as show in
figure 2. The data acquisition and control software, either EMDAC or FMDAC is installed on
only the computer that is physically connected to the specific instrumentation.

One more item distinguishes the two computers. The data from each instrument is stored only on
the computer connected to that instrument.

Figure 4. Software Configuration

Instrument-specific Hardware Control
Each computer communicates directly to only the instrumentation for its particular measurement.
All of the software required for data acquisition and control (DAC) of the instrumentation is
contained in one of two programs (EMDAC.exe or FMDAC.exe). Because these are Windows
NT system services, there is no user interface provided in these modules. All the required user
interface is contained in the respective GUIs.

LA-UR-04-4368

These DAC modules must be able to run automatically, reliably control the instruments and log
the acquired data because of the unattended nature of the measurements. Setting startup type to
‘automatic’ in the WIN-NT system services DAC modules will cause the DACs to start up
automatically when the computer boots, without the need for any user intervention – not even a
login.

The communication between each instrument-specific GUI and its respective DAC is private to
that subsystem. The subsystems do not need to know anything about the other subsystem’s
internal software or hardware details. The only requirement is that the communication between
the DAC and its respective GUI works across a network.

The architecture allowed each Laboratory to use the most expedient DAC-to-GUI
communication protocol. In the case described here, one instrument uses Remote Procedure
Calls (RPC) and the other uses the Distributed Common Object Model (DCOM) protocol for
communication between the GUI and its associated DAC.

Instrument-specific GUIs
The two instruments / measurements may have very little in common. For example, the EM
system acquires and analyzes gamma-ray spectra using MCAs. This requires that, for example,
the EMGUI allow the user to establish Regions of Interest (ROIs) for the peaks. The FM system
does not use spectral data and therefore does not need to interact with the user to establish
Regions of Interest.

Each Laboratory developed software and user interface screens necessary to meet its
measurement and instrumentation requirements. The Common GUI need only be informed of the
tree menu items and this is done dynamically during Common GUI startup by querying each of
the instrument-specific GUI DLLs. Thus, each instrument developer is free to add, change or
delete functionality for his/her instrument without impacting any other code. The changes are
distributed by providing a new instrument-specific GUI DLL. (The instrument-specific DAC
may need to be changed on the one computer that interfaces to the instrument hardware if the
new or changed functionality requires more computer-instrument interfacing.)

GUI Interface Functions
There are five essential functions that each Instrument-specific GUI (InstrumentGUI; i.e.,
EMGUI or FMGUI) must perform at the request of the Common GUI program.

1. InitializeDLL: Called during Common GUI program startup. Communicates program
instance handle, parent dialog window handle, network addresses and data-share name to
the InstrumentGUI.

2. GetTreeMenuInfo: Common GUI requests a hierarchical list of items to be displayed in
the tree menu. InstrumentGUI returns a structure containing the tree menu items and an
ID for identifying each of the leaves on the tree. Additionally, this call may contain
information to identify which menu tree is being requested. For example, this instrument

LA-UR-04-4368

has an expert mode where all menu items are available and a casual user mode where
only a few menu items are available.

3. ProcessRequest: Common GUI calls the appropriate InstrumentGUI with the ID of the
menu item (procedure) that the user clicked on. All of the menu items and associated IDs
were registered via the structure returned in GetTreeMenuInfo.

4. EndRequest: Common GUI calls InstrumentGUI passing in the ID of the procedure that
is currently active and should be terminated before a new procedure is started.
InstrumentGUI may return FALSE if the currently active procedure cannot terminate
immediately. In this case, the pending ProcessRequest will not be sent.

5. Cleanup: Called just before Common GUI terminates to give InstrumentGUI a chance to
do any program termination or resource de-allocation that is required.

In addition to the basic interface functions above, we found it convenient to add six additional
interface functions specific to our combined instrument software.

1. GetStatus: The home screen has buttons whose color represents the status of the major
components. This function is called periodically and returns a structure containing the
enumerated status colors of each of the status indicators for the particular instrument. The
get-status request can also be triggered by one of the InstrumentGUIs by sending a
message to the Common GUI. This allows each of the instruments to assure that the
displayed status immediately reflects any status change.

2. StatusButtonPushed: The user can drill down to get more detailed information about the
status of a particular major component. This function is used to notify the InstrumentGUI
that the user clicked on a specific status indicator on the main screen. Doing so will take
the user from the screen presented in figure 1 to one of the screens presented in figure 2,
depending on which status button was clicked.

3. GetPlotData: This is called during the Common GUI startup to get the data to plot on the
home page. This process can be triggered later by one of the InstrumentGUIs by sending
a message to the Common GUI.

4. GetStandardReport: The user can request various pre-defined reports via two push
buttons on the home screen. Pushing one of these buttons causes the Common GUI to
present the user with a list of standard reports. When the user selects one of the reports,
Common GUI calls this function for the appropriate InstrumentGUI passing in
information identifying which report is being requested, the report period and information
necessary to either display or print the report, such as a printer dialog or window handle.

5. GetServiceInfo and 6. GetDriverInfo: These functions pass back to Common GUI
information about the instrument-specific DACs and a list of instrument-specific drivers
and their versions for display in the Common GUI About Box.

LA-UR-04-4368

NB: The entire public interface of the software for this combined instrument is comprised of:
• these eleven functions,
• three predefined structures, and
• constants defining colors, predefined menu items etc.

Remote Control and Monitoring
The system we have developed consist of two computers located in the same cabinet with a
simple Ethernet connection. The computers could be placed on a much broader network
connection (e.g., the Internet), thus allowing anyone to run the Common GUI from any computer
on the broader network that will run the Common GUI and the two InstrumentGUIs. With access
to the Common GUI and instrument-specific GUIs, the remote user could monitor and even
control the instrumentation from any remote location that has a network connection to the
instrument computers.

If users are allowed to control the instruments from remote locations, one must be careful
handling colliding or conflicting requests. For the implementation described in this paper, the
users sit next to each other so we relied on “administrative” controls to avoid these problems.

Summary
We have produced a real-world NDA instrument comprised of two subsystems that appear as a
single instrument to the user. Yet, development of the two subsystems was done with nearly total
independence. This independence is well illustrated by the choice of software development tools:
Microsoft Foundation Classes, Microsoft Visual Studio 6.0, C++ and DCOM for the EM
instrumentation at LANL vs. native WIN32 calls, Microsoft Visual Studio .NET, C and RPC for
the FM instrumentation at ORNL.

