
LA-UR-
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

05-2705

A STUDY OF THE COLLAPSE OF SPHERICAL SHELLS

Jason E. Pepin
Ben H. Thacker
David S. Riha
Peter C. McKeighan

46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural 
Dynamics, and Materials Conference
Austin, TX
April 18 - 21, 2005
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Southwest Research Institute, San Antonio, TX, 78228

The focus of this study is to generate accurate probabilistic structural response
simulations using numerical models of commercially available, stainless steel spherical
marine floats, under collapse loads, and compare with experimental results.  The spherical
marine float geometry was chosen because of its simple shape, yet highly complex nonlinear
deformation behavior, leading to complex states-of-stress.  The probabilistic validation of the 
current work is performed in two phases.  Initially, the deterministic spherical marine float
model is validated against the experimentally observed collapse load.  Next, variations in
geometric shape parameters (i.e., surface geometry and thickness) are characterized using 
random fields to quantify test data from actual float geometry.  Uncertainties in material
properties (i.e., stiffness, strength, and flow) are also included in the probabilistic model.
Finally, the probabilistic numerical model is validated by comparison to the predicted and 
observed variation in collapse load. 

Nomenclature
COV = coefficient of variation 
MV = mean value
CDF = cumulative distribution function
CMM = coordinate measuring machine
LHS = latin hypercube sampling
PDE = partial differential equation

I. Introduction
erification and Validation (V&V) of engineering models is a current topic of great interest to both government
and industry. In response to a ban on the production of new strategic weapons and nuclear testing, the

Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship Program (SSP) program. An 
objective of the SSP is to maintain a high level of confidence in the safety, reliability, and performance of the
existing nuclear weapons stockpile in the absence of nuclear testing. This has challenged the national laboratories to
develop high-confidence tools and methods that can be used to provide evidence needed for stockpile certification in
the complete absence of full systems testing.

V

The overall focus of this effort is to develop a validated model for the collapse load of stainless steel spherical 
shells crushed between two platens. The spherical geometry was chosen because of its simple shape, low cost, and 
highly complex nonlinear deformation behavior. The collapse behavior is also sensitive to variations in material
properties and geometry. The variability is not uncommon, and principally due to manufacturing variabilities,
forming processes, and inherent variations in materials.

The uncertainty analysis is performed using the NESSUS1 probabilistic analysis software. NESSUS simulates
uncertainties in loads, geometry, material behavior, and other user-defined uncertainty inputs to compute reliability
and probabilistic sensitivity measures. To facilitate analyses of a broad range of problem types, a large number of
efficient and accurate probabilistic methods are included in NESSUS.2,3
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II. Model Verification and Validation
Verification and Validation (V&V) are the primary processes for quantifying and building confidence (or

credibility) in numerical models. Verification is the process of determining that a model implementation accurately
represents the developer’s conceptual description of the model and the solution to the model. Validation is the
process of determining the degree to which a model is an accurate representation of the real world from the 
perspective of the intended uses of the model.4 In short, verification deals with the mathematics associated with the 
model, whereas validation deals with the physics associated with the model.5 A review of V&V is given in Ref. 6.

The definition of validation deserves further clarification: The phrase “process of determining” emphasizes that
validation is an iterative activity that concludes when acceptable agreement between experiment and simulation is 
achieved. The phrase “degree to which” emphasizes that neither the model output nor experimental data are known
with certainty, and consequently, will be expressed as an uncertainty, e.g., as an expected value with associated
confidence limits. Finally, the phrase “intended uses of the model” emphasizes that the validity of a model is defined
over the domain of model form, inputs, parameters, and responses.

Uncertainties will exist in the outputs of computational simulations due to inherent and/or subjective
uncertainties in the model inputs or form of the model. Likewise, the measurements that are made to validate these
simulation results will also contain uncertainties. While the experimental observations are taken as the reference for
the validation, the validation process does not presume the experiment to be more accurate than the simulation.
Rather, the validation process seeks to quantify the accuracy of the model considering all uncertainties in the model
and the experiment.7

The model V&V process is shown schematically in Figure 1. The right branch represents the process of
developing and exercising the model, and the left branch represents the process of generating relevant and high-
quality experimental data via physical testing.
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The Reality of Interest represents the physical system for which a validated model is sought. Although beyond
the scope of this paper, it is recommended that a hierarchy of experiments and models be constructed beginning with
simple (single physics) unit problems and ending with the complete system.

The Conceptual Model represents the collection of assumptions, algorithms, relationships, and data that describe
the Reality of Interest. The Mathematical Model includes the partial differential equations (PDEs), constitutive
equations, geometry, initial conditions and boundary conditions needed to describe mathematically the relevant
physics and uncertainties.

The Computer Model represents the implementation of the Mathematical Model, usually in the form of
numerical discretization, solution algorithms, miscellaneous parameters associated with the numerical
approximation, and convergence criteria. The Computer Model is generally a numerical procedure (finite element,
finite difference, etc.) for solving the equations prescribed in the Mathematical Model with a computer code. The 
codes used for mechanics problems typically include methods for discretizing the equations in space and time, along 
with algorithms for solving the approximate equations that result.

The Computer Model also includes the uncertainty analysis method, uncertainty characterizations, and
associated convergence criteria. Typical nondeterministic theories include probabilistic methods, fuzzy sets,
evidence theory, etc. Uncertainties are characterized in the form of the model used to represent the uncertainty, for
example, a probability distribution used to represent the variation in elastic modulus, or intervals to represent
bounded inputs. Uncertainty Quantification is performed to quantify the effect of all input and model form
uncertainties on the computed simulation outcomes. Thus, in addition to the model response, Simulation Outcomes
will include quantified error (or confidence) bounds on the computed model response.

The experimental (left) side of Figure 1 begins with the Validation Experiment. The purpose of a Validation
Experiment is to provide information needed to validate the model; therefore, all assumptions must be understood,
well defined and controlled in the experiment. Pre-test Calculations can be performed, for example, to identify the
most effective locations and types of measurements needed from the experiment.

Experimentation involves the collection of raw data from the various sensors used in the physical experiment
(strain and pressure gauges, high speed photography, etc.) to produce Experimental Data such as strain
measurements, time histories of responses, videos and photographs, etc. If needed, experimental data can be
transformed into experimental “features” to be more directly useful for comparing to simulation results. To support
the quantification of experimental uncertainties, repeat experiments are generally required to quantify the lack of
repeatability due to systematic error (bias) and uncontrollable variability.

Uncertainty Quantification is then performed to quantify the effect of measurement error, design tolerances, as-
built uncertainties, fabrication errors, and other uncertainties on the Experimental Outcomes. Experimental
Outcomes will typically take the form of experimental data with error bounds as a function of time or load.

The Statistical Analysis of Experimental and Simulation Outcomes may take the form of a statistical statement
of the selected validation metrics. For example, if the validation metric were the difference between the simulation
and experimental outcome (or simply “error”), the Statistical Analysis would quantify the expected accuracy of the
model, e.g., “we are 95% confident that the error is between 5% and 10%.”

III. Deterministic Float Collapse Load Prediction 
The spherical shells are commercially available marine floats commonly used by the petrochemical industries for

liquid level measurements. The floats are manufactured from 304L stainless steel with a 9-inch outside diameter, 16-
gage shell thickness, and no external piping connections.

The floats are manufactured by pressing flat circular plate stock into a hemispherical die using a hydraulic press.
Once pressed, two hemispheres are placed on an automatic turning fixture and welded together. The pressing
process creates regions in which the material properties are different due to different degrees of cold working. This
variation was characterized using small compression coupons taken from different locations on a single float. As a 
result, the float model was divided into three different regions having different material properties.8

To characterize radius and thickness, twelve floats were cut in half orthogonal to the weld and measured using a 
coordinate measuring machine (CMM). This information was used to assess the variability in radius and thickness in
both the longitudinal (pole to pole) and latitudinal directions. Based on our knowledge of the manufacturing process,
we expected that latitudinal variations would not be significant, but that longitudinal variations could be significant.

For each hemisphere, two contour lines were measured in the longitudinal direction. The CMM measured 181
points along each contour line on both sides of the hemisphere. The distance between the inner and outer point was
calculated to determine thickness and the midpoint was used to find radius. A limited number of measurements were
also taken in the latitudinal direction. The measurements indicated that the random variation in thickness and radius
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is relatively constant along each line of latitude.9 The CMM information was used to construct a one-dimensional
random field model (pole to pole only) to simulate the spatial variability in radius and thickness. Further details of
the material property testing and geometry characterization are given in Ref. 9.

The simulation of a marine float being crushed between two platen strokes was performed using DYNA3D3.10

The float, shown in Figure 2, was meshed with 16,144 quadrilateral shell elements into three regions, the weld, a 
center band, and poles. This mesh refinement was selected after performing a mesh refinement study.9 A tabular
elastic-plastic material model was used to model the material in each region.

Figure 2. The mesh and platens used for the float crush analysis. 

Average (non-constant) values of thickness and radius from the CMM were used to create the nominal float 
mesh. A single rigid hexahedral element was used to mesh each of the platens. The bottom platen is held fixed and 
the top platen is moved toward the bottom platen at a constant velocity of 5 m/s to crush the float. This speed was
selected after performing a series of runs at different speeds to balance computational efficiency (as fast as possible)
and quasi-static response (as slow as possible).

Two confirm the simulation results, twelve floats were crushed experimentally at Los Alamos National
Laboratory (LANL). The load-stroke curves for these floats are compared to the predicted results (shown in red) in
Figure 3. The hydraulic press used to crush the floats has a maximum stroke of four inches. Consequently, the floats
were crushed in two steps resulting in the unloading and then reloading seen between 3.5 and 4 inches. Also, the
load cell used with the hydraulic press could not measure forces greater than 55,000 lbf and, therefore, did not
measure the maximum force required to crush the floats.

To explore the effect of variations in radius and thickness, an additional simulation was performed using a
perfect (constant radius and thickness) 16-gauge steel sphere. The load-stroke curve for the perfect sphere is shown
in green in Figure 3. In spite of the experimental limitations noted above, the prediction using actual geometry data
is qualitatively close to the experimental measurements. Because the collapse load (point at which the load first
decreases) is clipped, however, the uncertainty in collapse load could not be measured from the twelve LANL
experiments. This will be addressed in a subsequent section on validation testing.

American Institute of Aeronautics and Astronautics
4



Figure 3. Comparison of experimental and deterministic force vs. stroke.

IV. Probabilistic Float Collapse Load Prediction 
The uncertainty analysis is performed using a probabilistic approach. The random variables are modulus of

elasticity, yield stress, radius and thickness. The coefficient of variation (COV), which is the standard deviation
divided by the mean value, for modulus of elasticity and yield stress are taken from Ref. 11 for 304L stainless steel.
The yield stress random variable is designed to treat both hardening curves for the float, the center band and the
top/bottom region, as one random variable. For this special case, an average initial yield stress is taken from the two
curves and an average standard deviation is then calculated based on the COV. When the yield variable is perturbed
during the probabilistic analysis, both hardening curves shift up or down with the perturbation.

Radius and thickness are modeled as random fields to account for the correlated spatial variations. The
correlation structure was measured using the CMM data and used to generate the variance-covariance matrix. Based
on the small fluctuations observed in the latitudinal direction CMM data, random variations in radius and thickness
were only considered in the longitudinal (pole to pole) direction. The NESSUS random field preprocessor was used
to perform the spectral decomposition. To retain 90% of the uncertainty (in L2-norm space) required only four 
vectors each for radius and thickness. Complete details of the probabilistic analysis and random field
characterization are given in Ref. 9. The random variable data used for the probabilistic analysis are summarized in
Table 1. 

The cumulative distribution function (CDF) of collapse load was obtained using the NESSUS software, shown in 
Figure 4. The y-axis is on a normal probability scale, i.e., zero implies zero standard deviations from the mean,
which is equal to 50% probability. The mean-value (MV) first-order method was used to approximate the CDF with
a small number of DYNA3D solutions. To verify the correctness of the approximate MV solution, a Latin
Hypercube Simulation (LHS) was performed with 25 samples. As shown, the agreement between MV and LHS is
relatively good near the zero standard normal point.
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Table 1. Probabilistic data for the float model random variables.
Variable Distribution Mean COV

E (psi) Lognormal 2.8E+07 0.0238
R1 (in) Normal -39.153 -0.00137
R2 (in) Normal -8.9002 -0.00367
R3 (in) Normal -5.327 -0.00249
R4 (in) Normal 2.127 0.00459
T1 (in) Normal -0.405 -0.0195
T2 (in) Normal 0.0117 0.299
T3 (in) Normal 0.305 0.0102
T4 (in) Normal 0.0127 0.149
Sy (psi) Normal 0 0.10
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Figure 4. CDF of float collapse load.

V. Collapse Load Validation Testing 
Traditional experiments are performed to improve fundamental understanding of physics, improve mathematical

models, estimate values of model parameters or assess component or system performance. Data from these
experiments are usually not adequate for model validation because of lack of control or documentation of some
experimental parameters or inadequate measurement of specimen response.

In contrast, validation experiments are performed to generate high quality data for the purpose of validating a
model. A validation test is a physical realization of an initial-boundary value problem. To qualify as a validation
test, the specimen geometry, initial conditions, boundary conditions and material constitutive behavior must be
prescribed accurately. The response of the test specimen to the loading must also be measured with high accuracy. 
Data collected during the test should include the applied loads, initial conditions, and boundary conditions, which
might change throughout the test. Ideally, this will provide as many constraints as possible on the model inputs,
requiring few if any assumptions on the part of the modeler. Generally, data from the archive literature are from
traditional experiments and do not meet the requirement of validation testing. Therefore, it is usually necessary to
perform experiments dedicated to model validation.

The experimental data are the standard for the model output. Therefore, it is essential to determine the accuracy
and precision of the data from experiments. Uncertainty in the measured quantities should be estimated so that the
predictions from the model can be credibly assessed. Uncertainty and error in experimental data include variability
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in test fixtures, installations, environmental conditions and measurements. Sources of nondeterminism in as-built
systems and structures include design tolerances, residual stresses imposed during construction and different
methods of construction. It is unreasonable to expect a model to predict inaccurate or imprecise data.

To validate the uncertain collapse load prediction, 33 replicate collapse tests were performed at Southwest
Research Institute (SwRI) in which the load was applied in one stroke (no load-unload cycles) and the peak load was
not clipped. The floats tested were obtained from the original manufacturer as a separate purchase. A 200 kip load
frame used to perform the testing, shown in Figure 5. Careful attention was given to ensuring that the load platens
were rigid and remained aligned during the test. Complete details of the SwRI validation testing are given in Ref.
12.

Figure 5. SwRI 200 kip load frame and float testing apparatus.

The load-displacement experimental data for the 33 floats are shown in Figure 7. The data is qualitatively similar
to the LANL data with the exception that the initial peak load is not clipped and the load is applied in one stroke. As
shown, the response up to about 5 in is similar from float to float. The response after 5 in, including the collapse
load, is highly variable.

To look at the uncertainty in the observed collapse load from the SwRI experiments, the peak loads shown in 
Figure 7 were recorded from the 33 experiments. These 33 collapse loads were then used to generate an empirical
CDF, which is shown in Figure 8 and labeled “Observed.” The “predicted” CDF shown in Figure 8 is the
approximate “MV Method” CDF shown in Figure 4.

(a) (b)

Figure 6. Before (a) and after (b) pictures of a float being crushed.
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Figure 7. SwRI float test load-displacement data (33 tests).
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Figure 8. Predicted and observed CDF of the float collapse load.

Qualitatively, the predicted and observed CDF shown in Figure 8 are reasonably close. The observed CDF is 
approximate in that only 33 data points were used. The predicted CDF is approximate in that only a first-order
probabilistic analysis was used to make the prediction. Consequently, comparisons between the two CDF should be
limited to the mean value prediction (at 0 on the y-axis) and the standard deviation (slope of the CDF). These
statistics are tabulated in Table 2. 
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Table 2. Measured and predicted float collapse load statistics.
Mean (kips) Standard Deviation (kips) Coefficient of Variation

Predicted 60,022 6,732 11%
Observed 57,309 4,954 9%

As shown in Figure 8 and tabulated in Table 2, the predicted mean value is slightly higher than the observed
mean value, and the predicted standard deviation is significantly higher than the observed standard deviation. The
fact that the model predicts more uncertainty in the collapse load than what was observed is due to either the model
input uncertainties being too large, or the physics of the float crush simulation not being sufficiently accurate. The
coefficient of variation (COV) nondimensionalizes the comparison and is arguably a fairer comparison metric. As 
shown in Table 2, the model predicts only a 2% difference in COV than observed.

VI. Conclusions
In this paper, the predicted uncertainty was compared to the observed uncertainty in the collapse load of 33 

spherical shells. The comparison metric was the cumulative distribution function (CDF) of the initial collapse load.
The probabilistic shell collapse model considered uncertainties in material parameters (yield stress and modulus of
elasticity) and geometry (radius and thickness). A random field model was used to simulate the spatial variability in
both radius and thickness.

The difference between predicted and observed coefficient of variation was 2%. While this level of agreement is
quite good, there are several aspects to the model development that still need to be addressed:

1. Improve the characterization of material properties. The cold-work process used to manufacture the shells
creates variation in material properties as a function of location. This spatial variation as well as the
inherent variation in material properties needs to be characterized and included in the probabilistic
collapse model.

2. Validate the model under different conditions. As a step towards assessing the models predictive
accuracy, the model should be validated under different conditions, e.g., new material, dynamic loading,
etc. Some fundamental physics problems may need to be validated first, e.g., high strain rate behavior of
stainless steel. 

3. Quantify the predictive accuracy of the collapse model. Based on the validation results (comparison to
experimental data), the predictive accuracy of the model should be quantified. This will provide expected
error bounds on the outputs of the model that reflect the level of confidence in the model.
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