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ABSTRACT

Discrete Diffusion Monte Carlo (DDMC) is a hybrid transport-diffusion method for Monte Carlo
simulations in diffusive media. In DDMC, particles take discrete steps between spatial cells
according to a discretized diffusion equation. Thus, DDMC produces accurate solutions while
increasing the efficiency of the Monte Carlo calculation. In this paper, we extend previously
developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for
grey Implicit Monte Carlo calculations. First, we employ a diffusion equation that is discretized
in space but is continuous time. Not only is this methodology theoretically more accurate than
temporally discretized DDMC techniques, but it also has the benefit that a particle’s time is
always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an
optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in
an optically thin region. In addition, we treat particles incident on an optically thick region using
the asymptotic diffusion-limit boundary condition. This interface technique can produce accurate
solutions even if the incident particles are distributed anisotropically in angle. Finally, we develop
a method for estimating radiation momentum deposition during the DDMC simulation. With a set
of numerical examples, we demonstrate the accuracy and efficiency of our improved DDMC
method.

KEYWORDS : radiative transfer, Monte Carlo, hybrid transport-diffusion

1. INTRODUCTION

The Implicit Monte Carlo (IMC) method [1] has been shown to be an effective technique for
solving radiative transfer problems via Monte Carlo simulation. In IMC, the absorption and
emission of radiation by the material within a time step is approximated semi-implicitly by an
effective scatter process. This effective scattering helps stabilize the calculation and allows larger
time steps to be used than in a purely explicit method [2, 3] (where radiation absorbed in a given
time step cannot be re-emitted until the following time step). However, in optically thick regions
not only is the mean-free path of a particle small, but also the collisions are dominated by
effective scatters. Thus, the transport process can be characterized as diffusive, the particle
histories are extremely long, and the Monte Carlo simulation becomes computationally
inefficient.

Due to the diffusive nature of such problems, one would like to employ a hybrid method that uses
standard transport theory in optically thin regions and the diffusion approximation in optically



thick regions. Ideally, this hybrid technique would produce accurate solutions while being more
efficient than a pure Monte Carlo calculation. One such hybrid transport-diffusion method is the
Random Walk (RW) technique [4, 5]. In RW, several Monte Carlo transport steps are replaced by
a macrostep over a spherical subregion of the cell centered about the particle’s current position,
thus increasing the overall efficiency of the simulation. Each RW step is governed by an analytic
diffusion solution within the sphere, and the minimum allowable sphere radius is limited to
ensure the accuracy of the diffusion solution. As a particle nears a cell boundary, the radius of the
sphere is reduced, RW is disabled, and the particle is transported by standard Monte Carlo. Thus,
the efficiency gain when employing RW decreases with increasing spatial resolution.

A new hybrid transport-diffusion method that is currently under development is Discrete
Diffusion Monte Carlo (DDMC) [6–8]. In DDMC, particles take discrete steps between spatial
cells according to a discretized diffusion equation, with each discrete step replacing many small
transport steps. Since a particle can travel to a new cell each DDMC step, as opposed to across a
spatial subdomain within a cell, DDMC should be able to provide a greater efficiency gain over
standard Monte Carlo than RW.

Urbatsch, Morel, and Gulick [6] have developed a DDMC method for steady-state neutron
transport problems, while the DDMC technique of Evans, Urbatsch, and Lichtenstein [7] is
designed to work with the equilibrium diffusion equation [9]. Gentile [8] has successfully applied
DDMC (which he refers to as Implicit Monte Carlo Diffusion) to IMC simulations. In this paper,
we extend these previously developed DDMC methods in several ways that improve the accuracy
and utility of DDMC for grey (i.e. frequency-independent) IMC calculations.

First, we employ a diffusion equation that is discretized in space, but is continuous in time. In
addition to being theoretically more accurate than temporally discretized DDMC
implementations [7, 8], our methodology always retains the time of a particle. Thus, there is no
ambiguity regarding what time to assign a “DDMC particle” (i.e. a particle transporting in an
optically thick region according to DDMC) that leaves an optically thick region and is converted
into a “Monte Carlo particle” (i.e. a particle transporting in an optically thin region according to
standard Monte Carlo).

Second, we use an improved interface method for converting Monte Carlo particles incident on
an optically thick region into DDMC particles [10]. This technique, which is based on the
asymptotic diffusion-limit boundary condition [11], produces accurate solutions in the interior of
optically thick regions regardless of the angular distribution of the incident Monte Carlo particles.
Previous DDMC implementations that employ the Marshak boundary condition [6, 7, 12] can
behave poorly if the incident Monte Carlo particles are strongly anisotropic [10].

Finally, we develop a method for calculating radiation momentum deposition during the DDMC
simulation. In coupled radiation-hydrodynamics problems, the calculation of fluid motion
requires estimates of both the energy and momentum deposited in the material by the
radiation [13, 14]. The estimation of energy deposition is straightforward in both Monte Carlo
and DDMC simulations; when a particle is absorbed its energy is allocated to the material.
However, the calculation of momentum deposition in DDMC is difficult since momentum is a
direction-dependent quantity, and DDMC particles have no angular information. To avoid this
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difficulty, our momentum deposition estimator is based on the rate at which DDMC particles
cross cell surfaces. Thus, angular information is extracted from the direction a particle travels to a
new cell.

In the remainder of this paper we briefly overview the analytic equations governing grey thermal
radiative transfer, the corresponding IMC method, and difficulties with IMC when the opacity is
large. We then develop our improved DDMC method, and show how it can be combined with
standard Monte Carlo in an IMC simulation. Next, with a set of numerical examples, we
demonstrate both the accuracy and improved efficiency over standard Monte Carlo of our new
DDMC method. We conclude with a brief discussion.

2. BACKGROUND

In the absence of internal sources and scattering, the planar-geometry, grey radiative transfer
equations are [13–15]

1
c

∂I
∂t

+µ
∂I
∂x

+σI =
1
2

σacT 4 , (1)

and

Cv
∂T
∂t

=
∫ 1

−1
σ
(

I −
1
2

acT 4
)

dµ . (2)

Here, 0 < x < X is the spatial variable, −1 ≤ µ ≤ 1 is the angular variable, t > 0 is the temporal
variable, I(x,µ, t) is the radiation intensity, T (x, t) is the material temperature, σ(x,T ) is the
opacity, Cv(x,T ) is the heat capacity, a is the radiation constant, and c is the speed of light. To
complete the problem description, appropriate initial conditions apply to I and T at t = 0, and to I
for incoming directions at the left (x = 0) and right (x = X) boundaries.

In order to solve Eqs. 1 and 2 using IMC, we first prescribe a temporal grid 0 = t0 < t1 < t2 < · · · .
Then, within each time step tn < t < tn+1, the emission source on the right side of Eq. 1 is
semi-implicitly approximated using Eq. 2. The resulting equations governing the IMC method
are [1]

1
c

∂I
∂t

+µ
∂I
∂x

+σnI =
1
2

(1− fn)σn

∫ 1

−1
I(x,µ′, t)dµ′ +

1
2

fnσnacT 4
n , (3)

and

Cv
∂T
∂t

=
∫ 1

−1
fnσn

(

I −
1
2

acT 4
n

)

dµ , (4)

where the subscript n refers to a material property evaluated at the beginning of the time-step
temperature. In addition, the Fleck factor fn is given by

fn =
1

1+βnσnc∆tn
, (5)

where

βn =
4aT 3

n
Cv,n

, (6)

and ∆tn = tn+1 − tn is the size of the time step.
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Within each time step, Eq. 3 can be solved for I using standard Monte Carlo simulation. The
initial conditions are given by the prescribed initial radiation intensity and material temperature
for the first time step, or by the results of the previous time step for subsequent time steps. Note
that we have divided the physical opacity σn into an isotropic effective-scattering opacity
(1− fn)σn and a corresponding effective-absorption opacity fnσn. Thus, the IMC method
approximates the absorption and emission of radiation within a time step by isotropic scattering.
Accordingly, the emission source has been reduced by a factor fn. After I has been determined,
the material temperature is updated using the radiation absorbed and emitted over the time step to
evaluate Eq. 4.

In addition to the net radiation energy deposited in the material, coupled
radiation-hydrodynamics calculations also require an estimate of the radiation momentum
deposited in the material. The specific momentum deposition (the momentum deposited per unit
volume per unit time) corresponding to Eq. 1 is given by [13, 14]

p(x, t) =
σ
c

∫ 1

−1
µI(x,µ, t)dµ . (7)

Integrals of this form can be estimated by Monte Carlo simulation in a straightforward manner. In
this paper, we employ a track-length estimator [16], and approximate the opacity by its explicit
value σn.

Eqs. 3 and 4 provide a systematic method for solving Eqs. 1 and 2 via Monte Carlo. However, in
materials where the opacity is large, the Monte Carlo simulation can become inefficient. Not only
is the mean-free path between collisions small, but also, from Eq. 5, the Fleck factor is small and
the collisions are primarily scattering events. Thus, the problem is highly diffusive and the Monte
Carlo histories are extremely long. In the next section we develop a hybrid transport-diffusion
technique for solving Eq. 3 that is much more efficient than standard Monte Carlo when the
opacity is large, and still yields accurate results.

3. DISCRETE DIFFUSION MONTE CARLO

We now develop the equations governing our improved DDMC method. This technique is based
on a diffusion approximation to Eq. 3, so it should yield accurate solutions when used in
appropriate regions (i.e. when σn is large and fn is small). In addition, we will show later that the
DDMC transport process consists of discrete steps between spatial cells. Thus, DDMC should be
more computationally efficient than a standard Monte Carlo simulation of Eq. 3.

We begin by considering a subregion XL < x < XR of the problem domain that has been
designated for simulation by DDMC. In this region we develop a cell-centered discretization of
the diffusion equation corresponding to Eq. 3. This derivation is similar to the work of Szilard
and Pomraning [17], except that we only discretized the spatial variable and treat time
continuously. Integrating Eq. 3 over all directions, we have

1
c

∂φ
∂t

+
∂F
∂x

+ fnσnφ = fnσnacT 4
n , (8)
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where the scalar intensity is

φ(x, t) =
∫ 1

−1
I(x,µ, t)dµ , (9)

and the radiative flux is given by

F(x, t) =
∫ 1

−1
µI(x,µ, t)dµ . (10)

Next, we divide the DDMC region into a spatial grid XL = x1/2 < x3/2 < · · · < xJ+1/2 = XR
consisting of J cells. Integrating Eq. 8 over spatial cell j yields

1
c

d
dt

φ j +
1

∆x j

(

Fj+1/2 −Fj−1/2
)

+ fn, jσn, jφ j = fn, jσn, jacT 4
n, j . (11)

In Eq. 11, the cell-averaged scalar intensity is given by

φ j(t) =
1

∆x j

∫ x j+1/2

x j−1/2

φ(x, t)dx , (12)

the cell-edge flux is
Fj+1/2(t) = F(x j+1/2, t) , (13)

∆x j = x j+1/2 − x j−1/2 is the cell width, and we have used appropriate cell-averaged quantities for
the material properties.

3.1. Interior Cells

We continue our derivation of a cell-centered discretized diffusion equation for cells 2 ≤ j ≤ J−1
in the interior of the DDMC region. We approximate the cell-edge flux using Fick’s law [12, 17],

Fj+1/2 = −
1

3σn

∂φ
∂x

∣

∣

∣

∣

x=x j+1/2

. (14)

Employing a finite-difference approximation to Eq. 14, we can express Fj+1/2 in cell j as

Fj+1/2 = −
2

3σ−
n, j+1/2∆x j

(

φ j+1/2 −φ j
)

, (15)

or in cell j +1 as

Fj+1/2 = −
2

3σ+
n, j+1/2∆x j+1

(

φ j+1 −φ j+1/2
)

. (16)

In Eqs. 15 and 16, φ j+1/2 is an appropriately defined cell-edge scalar intensity. In addition, we
have used a face-averaged approximation for the opacity in each cell. We will discuss the
evaluation of these opacities later in this paper.
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Next, equating Eqs. 15 and 16 and solving for the cell-edge scalar intensity, we have

φ j+1/2 =
1

σ−
n, j+1/2∆x j +σ+

n, j+1/2∆x j+1

(

σ+
n, j+1/2∆x j+1φ j +σ−

n, j+1/2∆x jφ j+1

)

. (17)

Then, using Eq. 17 to evaluate Eq. 15 or 16, an approximate expression for the cell-edge flux is

Fj+1/2 = −
2
3

1
σ−

n, j+1/2∆x j +σ+
n, j+1/2∆x j+1

(

φ j+1 −φ j
)

. (18)

Substituting Eq. 18 and a similar expression for Fj−1/2 into Eq. 11, the DDMC equation for cells
2 ≤ j ≤ j−1 is

1
c

d
dt

φ j +
(

σL, j +σR, j + fn, jσn, j
)

φ j

= fn, jσn, jacT 4
n, j +

1
∆x j

(

σL, j+1φ j+1∆x j+1 +σR, j−1φ j−1∆x j−1
)

. (19)

In Eq. 19, we have defined the left-leakage opacity as

σL, j =
2

3∆x j

1
σ+

n, j−1/2∆x j +σ−
n, j−1/2∆x j−1

, (20)

and the right-leakage opacity as

σR, j =
2

3∆x j

1
σ−

n, j+1/2∆x j +σ+
n, j+1/2∆x j+1

. (21)

We now give Eq. 19 a Monte Carlo interpretation. This equation can be viewed as a
time-dependent infinite medium transport problem for each cell. Thus, DDMC particles have no
position or angular information, but their current cell and time are always known. DDMC
particles stream in time (but not in space) at the speed of light until experiencing a collision. The
time to collision τ can be sampled similarly to the usual method of sampling distance to
collision [16],

τ = −
1
c

1
σL, j +σR, j + fn, jσn, j

lnξ , (22)

where ξ is a random number uniformly distributed between 0 and 1.

If the time to collision is less than the time remaining in the time step, the DDMC particle
experiences an appropriately sampled collision type. From the second term on the left side of
Eq. 19, a collision can be an absorption reaction, a left-leakage reaction, or a right-leakage
reaction. If the collision is an absorption reaction, the particle history is terminated, as in standard
Monte Carlo. If the DDMC particle undergoes a leakage reaction, it is transfered to the
appropriate neighboring cell and the simulation continues.
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If the time to collision is greater than the time remaining in the time step, the DDMC particle
reaches the end of the time step and is stored for simulation in the next time step. Since in the
next time step DDMC may not be used in the current cell, the DDMC particle is placed uniformly
and isotropically within the cell.

The right side of Eq. 19 contains not only the usual emission source term, but also source terms
corresponding to DDMC particles undergoing leakage reactions in neighboring cells and being
transferred to the current cell. These leakage source terms can be interpreted as the total rate at
which particles experience appropriate leakage reactions in adjacent cells (i.e. the rate per
volume times the volume of the cell) divided by the volume of the current cell, such that these
leaked particles are distributed evenly over the cell.

It is interesting to note that as the opacity increases, not only do the leakage opacities decrease
(from Eqs. 20 and 21), but also the absorption opacity fnσn is O(1) (from Eq. 5). Thus, from
Eq. 22, the time between collisions is not excessively small, the collisions are primarily
absorptions, and DDMC particle histories are relatively short. This is exactly the opposite effect
that a large opacity has on a standard Monte Carlo simulation of Eq. 3.

We now discuss the evaluation of the opacities in Eqs. 20 and 21. According to Szilard and
Pomraning, if one of the opacities is very large, then the entire expression can be small and
radiation will not propagate [17]. This lack of propagation is commonly seen when the opacity is
strongly temperature dependent and the material is cold. To prevent this unphysical behavior,
Szilard and Pomraning suggest evaluating the opacities at a common cell-edge temperature. For
example, in Eq. 21 we calculate σ−

n, j+1/2 using the material properties in cell j, and σ+
n, j+1/2

using the material properties in cell j +1. However, both opacities are evaluated at the following
cell-edge temperature [17]:

Tn, j+1/2 =

(

T 4
n, j +T 4

n, j+1

2

)1/4

. (23)

A similar technique can be used to calculate Eq. 20.

3.2. Interface Cells

Next, we develop a technique for interfacing DDMC with standard Monte Carlo by deriving a
cell-centered equation for cell 1 on the left boundary of the DDMC region. A similar analysis can
be performed for cell J. Writing Eq. 11 for j = 1, and using Eq. 18 for F3/2, we have

1
c

d
dt

φ1 +(σR,1 + fn,1σn,1)φn,1 −
1

∆x1
F1/2 = fn,1σn,1acT 4

n,1 +
1

∆x1
σL,2φ2∆x2 , (24)

where we have made use of Eqs. 20 and 21. To complete this derivation, we must find an
approximate expression for the flux at the boundary of the DDMC region.

Instead of using the usual Marshak boundary condition [12, 17], we consider the asymptotic
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diffusion-limit boundary condition [11],

2
∫ 1

0
W (µ)Ib(XL,µ, t)dµ = φ(XL, t)−

λ
σn

∂φ
∂x

∣

∣

∣

∣

x=XL

. (25)

In Eq. 25, Ib is the radiation intensity incident on the boundary of the DDMC region due to
Monte Carlo particles, while λ ≈ 0.7104 is the extrapolation distance. In addition, W (µ) is a
transcendental function well approximated by

W (µ) ≈ µ+
3
2

µ2 . (26)

Eq. 25 can be derived in an asymptotic analysis of Eq. 3 as σn becomes large and fn becomes
small. This is exactly the situation in which DDMC is employed. In addition, the incident
intensity is weighted by W (µ), which takes into account the angular distribution of the Monte
Carlo particles. An interface method based on Eq. 25 will be able to produce accurate results in
the interior of the DDMC region even if the incident intensity is anisotropic [10]. In contrast, the
Marshak boundary condition treats all angular distributions identically, and can produce
inaccurate solutions for strongly anisotropic incident particles [10].

To express F1/2 using Eq. 25, we approximate the derivative on the right side with a finite
difference. We then have

2
∫ 1

0
W (µ)Ib(XL,µ, t)dµ = φ1/2 −

λ
2σn,1∆x1

(

φ1 −φ1/2
)

, (27)

where σn,1 is the cell-averaged opacity in cell 1, and φ1/2 is an appropriately defined cell-edge
scalar intensity. Solving Eq. 27 for φ1/2 yields

φ1/2 =
2λ

σn,1∆x1 +2λ
+

2σn,1∆x1

σn,1∆x1 +2λ

∫ 1

0
W (µ)Ib(XL,µ, t)dµ . (28)

Next, we use Eq. 16 to represent F1/2,

F1/2 = −
2

3σn,1∆x1

(

φ1 −φ1/2
)

, (29)

where we have evaluated the face-averaged opacity with the cell-averaged value, i.e.

σ+
n,1/2 = σn,1 . (30)

Substituting Eq. 28 into Eq. 29, an expression for the flux at the boundary of the DDMC region is

F1/2 = −
2

3σn,1∆x1 +6λ

(

φ1 −2
∫ 1

0
W (µ)Ib(XL,µ, t)dµ

)

. (31)
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Using Eq. 31 in Eq. 24, the cell-centered equation for cell 1 is

1
c

d
dx

φ1 +(σL,1 +σR,1 + fn,1σn,1)φ1

= fn,1σn,1acT 4
n,1 +

1
∆x1

(

σL,2φ2∆x2 +
∫ 1

0
P(µ)µIb(XL,µ, t)dµ

)

. (32)

In Eq. 32, the left-leakage opacity for cell 1 is given by

σL,1 =
1

∆x1

2
3σn,1∆x1 +6λ

, (33)

instead of Eq. 20, and P(µ) is defined as

P(µ) =
4

3σn,1∆x1 +6λ

(

1+
3
2

µ
)

. (34)

Eq. 32 has a Monte Carlo interpretation similar to that of Eq. 19. The only difference on the left
side is the expression for the left-leakage opacity. On the right side there is now a source due to
Monte Carlo particles incident on the boundary of the DDMC region. We note that the rate at
which radiation energy is incident on the DDMC region boundary for a given direction µ is µIB.
Then, P(µ) has the interpretation of being the probability that an incident Monte Carlo particle
will be converted into a DDMC particle. This interface methodology is somewhat similar to the
treatment developed by Brockway [18], except our technique is based on the asymptotic
diffusion-limit boundary condition, whereas Brockway’s is developed from the Marshak
boundary condition.

We implement the conversion of Monte Carlo particles into DDMC particles in two separate
ways. First, if the DDMC region is away from the problem boundary (e.g. XL 6= 0), we sample
based on Eq. 34 to determine if the incident Monte Carlo particle is converted. If the particle is
converted, it begins transporting via DDMC in cell 1. Otherwise, the particle is returned
isotropically to the optically thin region. DDMC particles that undergo left-leakage reactions in
cell 1 are also placed isotropically on the boundary of the DDMC region. Although this is not the
correct asymptotic albedo condition, it can be shown to be a good approximation [19].

If the DDMC region is on the boundary of the system (e.g. XL = 0), then the incident Monte
Carlo particles are actually source particles due to a prescribed surface source. In this case, we
split the particles according to Eq. 34. The converted portion of the particle begins transporting
via DDMC in cell 1, while the unconverted portion is tallied as escaping energy. DDMC particles
that experience left-leakage reactions in cell 1 are also treated as escaping energy.

There are two difficulties when evaluating the conversion probability, Eq. 34. First, the
conversion probability, along with the left-leakage opacity given by Eq. 33, vanishes as the
opacity becomes large. Thus, no radiation can pass through the DDMC region boundary if the
first cell is too optically thick. We correct this by adjusting the conversion probability and leakage
opacity to ensure the correct flux is maintained at the boundary. For brevity we do not repeat this
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analysis here, although documentation is available [20]. In addition, Eq. 34 must have a valid
probabilistic interpretation, i.e.

0 ≤ P(µ) ≤ 1 . (35)

In our DDMC method, we require that spatial cells are large enough such that Eq. 35 is always
satisfied.

3.3. Estimation of Momentum Deposition

As was discussed earlier, coupled radiation-hydrodynamics calculations require an estimate of
not only the radiation energy deposition in the material, but also the radiation momentum
deposition. The estimation of energy deposition in DDMC is the same as in standard Monte
Carlo; when a particle is absorbed its energy is allocated to the material. The specific momentum
deposition is given by Eq. 7,

p(x, t) =
σ
c

∫ 1

−1
µI(x,µ, t)dµ , (36)

and is straightforward to estimate in a standard Monte Carlo simulation. However, the estimation
of momentum deposition in DDMC is difficult, since there is no angular information available to
evaluate Eq. 36.

Instead, we use Eq. 10 to write Eq. 36 as a function of the radiative flux at a surface. For
example, at x = x j+1/2, we have

p j+1/2 =
σn, j+1/2

c
Fj+1/2 , (37)

where we have employed an appropriate face-averaged value of the opacity. Then, for each cell
we average the two cell-edge values of the momentum deposition in order to estimate the
cell-averaged value:

Pj =
1
2c

(

σ+
n, j−1/2Fj−1/2 +σ−

n, j+1/2Fj+1/2

)

. (38)

Note that we have evaluated Eq. 37 using the same face-averaged opacities used to calculate the
leakage opacities (Eqs. 20, 21, and 33).

The flux in Eq. 38 can be calculated easily during a DDMC simulation. For instance, Eq. 18 can
be expressed using Eqs. 20 and 21 as

Fj+1/2 = σR, jφ j∆x j −σL, j+1φ j+1∆x j+1 . (39)

Eq. 39 has interpretation of the rate at which particles undergo right-leakage reactions in cell j,
minus the rate at which particles undergo left-leakage reactions in cell j +1. Similarly, Eq. 31
can be written using Eqs. 33 and 34 as

F1/2 =
∫ 1

0
P(µ)µIb(XL,µ, t)dµ−σL,1φ1∆x1 , (40)

which can be interpreted as the rate at which Monte Carlo particles incident on the DDMC region
boundary are converted into DDMC particles, minus the rate at which DDMC particles undergo
left-leakage reactions in cell 1. Eqs. 39 and 40 can be used to evaluated Eq. 38 for each spatial
cell in the problem.

American Nuclear Society Topical Meeting in Mathematics & Computations, Avignon, France, 2005 10/19



Table I. Infinite Medium Timing Results

σ0 (keV3/cm) Monte Carlo Time (s) DDMC Time (s) Speedup

100 670 197 3.4

500 2.70E3 47 57

1000 5.25E3 27 190

5000 2.56E4 12 2100

10000 5.11E4 10 5100

4. NUMERICAL RESULTS

To demonstrate the accuracy and improved efficiency of our new DDMC method, we consider a
series of radiative transfer problems simulated with IMC using both DDMC and standard Monte
Carlo. In these problems we measure energy in gigajoules (gJ), time in nanoseconds (ns), and
temperature in kiloelectron-volts (keV). In addition, unless otherwise stated, the material has a
temperature-independent heat capacity of Cv = 0.1 gJ/cm3/keV, and an opacity inversely
proportional to the cube of the material temperature,

σ =
σ0

T 3 . (41)

In the following simulations we use several values of σ0 to test our improved DDMC method
under various conditions.

4.1. Infinite Medium Problems

In the first set of problems, we examine a 1.0 cm thick slab with reflective boundary conditions.
The matter and radiation are initially in equilibrium at 1 keV, and should remain in equilibrium
indefinitely. We use a cell size of 0.1 cm, a time-step size of 0.1 ns, and 10,000 particles per time
step. For each value of σ0 we ran the simulation for an elapsed time of 10 ns using each of
DDMC and standard Monte Carlo over the entire problem domain.

Every simulation, both standard Monte Carlo and DDMC, retained the correct equilibrium
solution. The timing results of these simulations are give in Table I. Here, we have defined
speedup as the computer time required by standard Monte Carlo divided by that required by
DDMC. From these results we see that DDMC always increases the efficiency of the IMC
calculation, from a factor of about 3 to over 5000. As expected, DDMC becomes more efficient,
relative to standard Monte Carlo, as the opacity becomes larger.

4.2. Thermal Waves

The next set of problems consist of thermal waves driven by a surface source at 1 keV incident on
the left boundary of the system. The material and radiation are initially in equilibrium at 0.001
eV. In these simulations the cell size is 0.005 cm, the time-step size is 0.01 ns, and we use
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Table II. Isotropic Surface Source Timing Results

σ0 (keV3/cm) Monte Carlo Time (s) DDMC Time (s) Speedup

1000 5.40E4 1.09E3 49.5

5000 2.05E5 8.06E2 254

10000 3.59E5 7.82E2 459

Table III. Normal Surface Source Timing Results

σ0 (keV3/cm) Monte Carlo Time (s) DDMC Time (s) Speedup

1000 5.12E4 1.15E3 44.5

5000 1.99E5 7.89E2 252

10000 3.56E5 7.46E2 477

100,000 particles per time step. Again, for each value of σ0, the IMC calculation was performed
using standard Monte Carlo or DDMC throughout the entire problem. Each simulation was run
out to an elapsed time of 10 ns.

We first consider a thermal wave where the surface source is isotropic. The timing results from
these simulations are presented in Table II. From this table, we see that DDMC improves the
efficiency of the IMC calculation, with an increasing improvement as the opacity increases. For
these problems the speedup ranged from about 40 to over 400.

We also plot the material temperature and momentum deposition at 10 ns for
σ0 = 1000 keV3/cm in Figures 1 and 2, respectively. These plots are characteristic of the results
for other values of σ0. From Figure 1, the DDMC temperature agrees well with the standard
Monte Carlo solution. Also, as seen in Figure 2, the momentum deposition results tend to match,
especially near the wave front. However, both the DDMC and standard Monte Carlo momentum
deposition estimates suffer severe statistical noise. This large amount of statistical error is
characteristic of momentum deposition calculations.

In addition to an isotropic surface source, we also examine thermal waves driven by a normally
incident surface source. This anisotropic incident intensity will induce a boundary layer and test
the effectiveness of our improved interface method. The timing results for these simulations are
give in Table III. Again, DDMC is more efficient than standard Monte Carlo, with a greater
efficiency gain as the opacity increases.

The material temperature and momentum deposition at 10 ns for σ0 = 1000 keV3/cm are plotted
in Figures 3 and 4, respectively. As with the isotropic surface source problems, these plots are
characteristic of the results for other values of σ0. From these figures we see that the DDMC
solution matches the Monte Carlo results quite well. Again, both estimates of momentum
deposition suffer from high statistical error. We also note that the temperature is slightly higher
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Figure 1. Isotropic Surface Source Material Temperature, σ0 = 1000 keV3/cm
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Figure 2. Isotropic Surface Source Momentum Deposition, σ0 = 1000 keV3/cm
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and the wave has progressed slightly farther in Figure 3 than in Figure 1. If we had employed a
Marshak boundary condition as opposed to the asymptotic diffusion-limit boundary condition to
develop our interface method, the material temperature calculated by DDMC would be identical
in Figures 3 and 1, which is incorrect for a normally incident intensity.

4.3. Hybrid Problems

We now consider two problems with both optically thick and optically thin regions. We model
the optically thick region with an opacity given by Eq. 41 with σ0 = 1000 keV3/cm. The
optically thin region has a temperature-independent opacity of 1 cm−1. The material and
radiation are initially in equilibrium at 0.001 eV, and the left boundary has a surface source at 1
keV. In these simulations, the cell thickness is 0.005 cm in the optically thick region, 0.02 cm in
the optically thin region, the time-step size is 0.01 ns, and we use 100,000 particles per time step.

To solve these problems we employ standard Monte Carlo in the optically thin region, and either
standard Monte Carlo or DDMC in the optically thick region. The pure Monte Carlo calculation
serves as our benchmark solution, while the hybrid Monte Carlo-DDMC simulation will test the
accuracy and efficiency of DDMC.

In the first problem the surface source is isotropic, and the left-most region consists of 0.1 cm of
optically thick material followed by a 0.4 cm optically thin region. The right boundary is
reflective such that the problem will eventually reach equilibrium at 1 keV. Each simulation was
run to 150 ns.

The material temperature at 10, 20, and 150 ns is plotted in Figure 5. From this figure we see that
the DDMC results agree fairly well with the standard Monte Carlo solution, and both methods
produced the correct equilibrium solution. In Figure 6 we plot the specific momentum deposition
at 10 ns. From this plot it appears that the DDMC simulation overestimates the peak momentum
deposition with respect to standard Monte Carlo. This error is most likely caused by DDMC
momentum deposition being estimated at cell edges, while standard Monte Carlo momentum
deposition is estimated as a cell average. The standard Monte Carlo simulation required 120
hours of computer time, while DDMC used 5.6 hours, for a speedup of over 20.

In the second problem the surface source is normally incident, and the left-most region is 1 cm of
optically thin material followed by 0.5 cm of optically thick material. Each simulation was run
for an elapsed time of 50 ns. Since the optically thin region is a mean-free path thick, the
intensity reaching the optically thick region is fairly anisotropic. Thus, using our improved
interface method is important.

The resulting material temperature at 0.5, 1.5, and 50 ns is plotted in Figure 7. Again, the DDMC
results agree well with the standard Monte Carlo solution. In addition, we plot the specific
momentum deposition at 0.5 ns in Figure 8. Most momentum deposition occurred only in a few
cells. However, the DDMC estimate was within 1.6% of the standard Monte Carlo solution at the
peak value. For this problem standard Monte Carlo took 28.6 hours, while DDMC required 2.2
hours, for a speedup of about 13.
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Figure 3. Normal Surface Source Material Temperature, σ0 = 1000 keV3/cm
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Figure 4. Normal Surface Source Momentum Deposition, σ0 = 1000 keV3/cm
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Figure 5. First Hybrid Problem Material Temperature
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Figure 6. First Hybrid Problem Momentum Deposition
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Figure 7. Second Hybrid Problem Material Temperature

0 0.5 1 1.5
−2

0

2

4

6

8

10

12

14

16
x 10−4

x (cm)

Sp
ec

if
ic

 M
om

en
tu

m
 D

ep
os

iti
on

 (g
/c

m
2 /n

s2 )

Monte Carlo
DDMC

Figure 8. Second Hybrid Problem Momentum Deposition
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5. CONCLUSIONS

We have extended previously developed DDMC methods in several ways that improve the
accuracy and utility of DDMC for grey IMC simulations. First, we base our DDMC method on a
temporally continuous diffusion equation. This lack of temporal discretization results in a
theoretically more accurate DDMC calculation, and no ambiguity regarding what time to assign
to DDMC particles that are converted to Monte Carlo particles. Also, we employ a technique for
interfacing standard Monte Carlo and DDMC based on the asymptotic diffusion-limit boundary
condition. This technique can produce accurate results regardless of the angular distribution of
incident Monte Carlo particles. Finally, we develop a method for estimating momentum
deposition in DDMC simulations. This momentum deposition estimate is required to correctly
calculate fluid motion in coupled radiation-hydrodynamics problems.

With a set of numerical calculations, we have demonstrated the accuracy and improved efficiency
of our new DDMC method as compared to standard Monte Carlo. However, our estimates of
momentum deposition, both using DDMC and standard Monte Carlo, exhibited a large amount of
statistical error. The reduction of this statistical noise is the subject of current research.

We also note that, in our numerical simulations, the region in which DDMC was employed was
always determined a priori. In order for DDMC to be used in practical calculations, a technique
for automatically determining when and where to employ DDMC must be developed. In
addition, the one-dimensional, grey DDMC method presented here must be extended to
multi-dimensional, frequency-dependent problems. These issues remain for future work.
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