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1 Introduction

Muons are highly energetic charged particles produced by decaying pions in the upper atmosphere.
They travel at near relativistic speed and have the ability to traverse significant amount of matter. The
induced scattering from the Coulomb interaction of matter and muons has been exploited in passive
imaging of high-Z materials. But not all muons scatter. Lower energetic particles can be stopped.
These stopped particles provide information about the lower Z materials.

This report investigates the feasibility of doing image reconstruction, and the ability to distinguish
among low and medium Z-density materials using the information about stopped particles. We de-
velop an algorithm using maximum likelihood to estimate the stopping density of different materials,
and test it on Geant 4 simulations and some simplified versions thereof . This research is motivated
by the ultimate goal of developing the capability of detecting explosives in light rail mass transit.

The material is organized as follows: Section 2 describes the problem and uses maximum like-
lihood to solve it. Sections 3 presents results of simulations performed assuming the particles have
exponential energy distribution, section 4 investigates the particles energy distribution used in Geant
4, section 5 shows results of simulations using this energy distribution, and section 6 does tomo-
graphic image reconstruction for Geant 4 simulations. We conclude in section 7.

2 Soft Cosmic Tomographic Image Reconstruction using Maximum
Likelihood

We investigate the feasibility of doing tomographic image reconstruction using soft cosmic rays.
Section 2.1 describes the preliminaries of the probelm, section 2.2 computes the likelihood function,
sections 2.3 explores the feasibility of using the Expection-Maximization algorithm (EM) used suc-
cessfully in [6] and [7], section 2.4 presents the direct optimization of the likelihood function and we
conclude discussing some implementation details.



2.1 Preliminaries

A muon with energy £ enters a volume of interest along a path y. It is stopped in the volume if the
resistance along the path y exceeds the energy, that is

Ry= [ ply()ds > E,
where p(-) is the stopping density. Define the indicator variable

- 0 muon is stopped 1n the volume
" | | muon passes through the volume

and assume that the energy £ of the muon, that is unobserved, has cummulative probability distribu-
tion /. It follows that the probability that 2 randomly chosen muon traverses the volume along the
path 7 is

PlZ=1]y] = /IP[Z: |y, E)H(dE)

_ ‘/H{E w5 /p(y(s))ds}[!(dl;‘)

- -n( fows). W

2.2 Likelihood

For ease of exposition, let us consider a layered two-dimensional volume shown in figure 1. The
stopping density in each of the m layers is constant. Let £;; denote the length of the path of the Kt
muon in the j* layer (with the convention that we index from top to bottom), and collect all these
lengths into the vector

Ly= (Ekl o 5 ;gkm)'

We can then rewrite the probability of stopping (1) as

P[Z = 1|y] = 1H(L,p), \‘
where p = (py,..., Pm) is the true vector of stopping densities in \‘
each layer. Given data (y,,Z;),...,(x,Z.), we can calculate the 2y
likelihood to be \

I1i )

z -7 \
ZL(p) = [10 - HLp))*H(Lip)' ™, 2) e
=1 0

and a statistical tomographic reconstruction can be obtained N
by maximizing the likelihood with respect to the paramecter p. (]
There are many numerical approaches to operate this optization.
The challenge is to device algorithms that suitably scale with the Figure 1: Layered volume.

number of layers!.

By analogy with the tomographic image reconstruction from scattered muons, we consider an
application of the Expectation-Maximization (E-M) algorithm. In later sections, we shall discuss
other numerical algorithms for maximizing the likelihood.

'1n real applications, we will voxilize the volume into N voxels. Let L; ;j be the length of the path partilcle i traverses
through voxel j. Within each voxel j, we assume the stopping densily p; to be constant, Then for 0 = (0r,...,py) € RN,
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2.3 The E-M algorithm

Several people have suggested the Expectation-Maximization (E-M) framework to optimize the like-
lihood (2). To do this, let us introduce the (unobserved) auxilliary variables £1,&;, ..., &, that describe
the events that a particular muon traverses each of the m layers, that is

I muon traverses j'* layer
£;=4 0  muon is stopped in j** layer
—1 muon does not enter the j* layer

Remark that the value —1 is introduced to ensure that these random variables are well defined. Next,
observe that the indicator Z; that the &'* muon traverses the volume can be written in terms of these
unobserved random variables (&, ..., Ewn) as

Zy = lr—nlfkj-

j=1

The E-M algorithm starts with an inital guess p(© for the stopping density and iteratively computes
the conditionally expected loglikelihood of the full data given the observed data

Q(p|lp") = kz Epe [log (Ppm [Exts - -,é:knuzk]) ' Zk}
=1
and iteratively find its maximizer
pU+) = argmax Q(p|[p").

2.3.1 The expectation step

Let us focus on evaluating the conditional expectation

Eyu [Iog (H”pm [ékla*--»ékm>zk])

24 .
For Z; = 1, it follows that £;; = &> = - = &, = 1, and hence

.[P[ékl,...,ékm,zk = l] = l—H( [kp)

we can write the resistance along the path of the i'# particle ¥; as

Ry =Lip
to conclude that the probability that it traverse the volume is
P(Z; = 1) =1-H(Lp).
The loglikelihood function of the data is
M
Z(p)= 21 Zilog(1— H(L} p))+ (1 — Zi)log H(L. p), )

where M is the number of incident particles. The problem then is to find p that maximizes . .



Hence

Eow “%( ) [Skts-- ,é.run,zk])‘zk = 1] = log (1 - H(Lip)) Py [&s = -+ = Gum = 1|Z4 = 1]
log (1 — H(Lyp)).

When Z, = 0, either one of the following m disjoint events occur:

Al ékl:o)ék.’lz"'zéka—l,
Az ékl:l)ék-qzo’ék}:"‘:ékm:*ls
A3 51(1:5/(2:1’€+k320>€k4:-'-5km:_1’

A, ékl = -~-ék‘m—l = 1;5km =0.

It follows by definition that

Lot [log [ékl ..... ék,,, lk])|£k E log( o) Akj ) P o) [Akj|Zk = ()].
To evaluate the probability P, [A;], note that A, ; happens if and only if
j=1

;
Y i < Ex < Y bipi,

i=1 i=1

j—1
PyolAy]=H (Eép,) »—H(E&-p,v).
=1

where we use the convention that $2_, £;0; = 0. Since TPyl = 1-P[Z=1]=1-H(Lp), we

deduce that
0 = ( {_lé,-p( )—H(Z €p, )

[~ H(Lp®)

from which it follows that

1 [Axj|Zi =

Pow

This leads us to write

5 : 1
Eye [103 (]Pp(r)[éklw--:ékm«zk]) ‘ Z;=0] =

Jillog< (2@,)—}1(2@,)) P, [AkjlZe = 0].

Some notational simplifications is possible if we define

2.3.2 The maximization step

J
Skj = 2 gkipiv S/(O =0,
=1



and

It then follows that

Q(p||p(’)) = 2 log (1 — H(Skm)) Z Z]og (Skj) — (Sk,j—l))wl((;)-

kiZg=1 ké& =0j=

The reason why people like the E-M algorithm, is that maximization of the original likelihood is
hard but sometimes, maximizing Q(p||p (") is easier. Unfortunately, this appears not to be the case in
the considered problem?. Hence there are no advantages to consider the E-M algorithm in the current
setting and one is likely to be better served to consider direct maximization of the likelihood function.

2.4 Direct Optimization

The E-M algorithm often reduces to making adjustements of one parameter at the time. While such
“coordinate descent” is somewhat slower at reaching the minimum, it has the advantage of requiring
less storage than other types of optimization methods. Managing storage requiremen of the optimiza-
tion algorithm is important to enable scaling its applicability to millions of voxels. Here we discuss
strategies for direct optimization of the likelihood function.

2.4.1 Newton Raphson

Newton Raphson maximizes a twice differenciable function f by iteratively calculating

XD = 40— (VV’f(x(’))> - V().

This procedure is both computationally expensive — it requires solving a N x N linear system — and
requires large storage O(N?2). That is, this procedure does not scale to the size of the problem we are
interested in.

2.4.2 Coordinate descent Newton-Raphson

The numerical difficulties are lessened if the Hessian VV* f (x(’)) is sparse. For example, if the Hessian
is diagonal, then the Newton-Raphson algorithm becomes equivalent to a Newton-Raphson coordi-
nate descent method, that is one iteratively cycle through the parameter space, making each time just
one NR adjustment. Find x = (x|,--- xy € RY that maximizes the function f(x), by iterating over all
J» and by updating each x; at a time as

.

Using the loglikelihood function defined in (3), the first derivate of the loglikelihood is given by,

92 (Lip)

M
~d0; Z - [Zilog(1 — H(Lip)) + (1— Z;) log H(L{p)]

2Because we do not get a simple and easy algorithm, we sy by abuse of language, that the E-M algorithm does not work
for our problem at hand,



We calculate

g L—Z Zi

— (1 =Z)logH(L!p) —Z;log(1 —H(L: = 4h(L A R

()Pj L( ) Ug ( lp) Og( ( !p))] euh( zp) (H(Lip) 1 —[1(/}[-{)))
&;h(Lip)

= HTp)( - H ey (%)~ HLip)),

where h is the density function of the particles” energy, that is H'(x) = h(x). Hence,

0.L(Lp) & ih(Lip) pems L
a0, = 2 mpy =gy LA~ HER). (@

=1

The second derivate of the loglikelihood 1s,

P2LL(Lip) MO(L-Z)E (2 Lp) .,
9p? “E H(Lp (H(L;p)_h(L‘p)>

A RLP)
- S atm (it ®

where A'(+) is the derivate of the density function. Finally, the resistance pj(-kH)

will be calculated as,

in the £+ | iteration

9.L(Lp®))
<A)
(k+1) _ (&) 9p;
0 =P ey (©)
Aoy

2.5 Implementation

The Newton-Raphson update rule (6) fails to be well defined in three instances. The first case is when
Lip = 0. In that case, both the first and second derivatives, see expressions (4) and (5) , are dividided
by 0 = H(0). Since L; > 0, this situation arises if the stopping density is zero along the entire path of
the particle. Similarly, the second instance is when Lp is so large that 1 — H(L!{p) = 0, and thus also
the first and second derivatives are divided by zero. This happens for high energy particles that don’t
stop even though they may go through voxels with high stopping density. To resolve this problem, we
propose the following minor modifications of the first and second derivatives: fix € > 0 small, C; >0
and €3 > 0 large. then the first derivative can be expressed as

DL (Up) | § L) | S LhlLip) P
ap; - = H(Lp) S 1-H(Lp) k
l1ip>e)
Gih(Lip (C I +3 )
{i:Z.,-Z=0} j ( ) 1 {Llp<E)} (Up)
’{L‘p K}
— £ h(LE Y ITTPe - . 7
{i:Z,zil} HiLie) <cz el —H(Lp )) 7



Similarly, the second derivative can be written as

2.(1 5 2(1)
TALp) __ L () - )
ap; (zmoy H(Lip) \H(L;p)
4, W(Lp)
— +H(Lip )
{i:Z,E-l} - (Ltp) < (L’p) ( )

which is approximately

A2 # (L ,
% ~ 2 le (Cl hz L‘,O)—h (Lip)) I{L§p<£}
j {i:2;=0}

— ij iF) et )1 s
{L--yz‘iO} H(L;p) (H(L’-p) (Lip) ) Iijp>e)

2 CZE C2h2 Llp)+h/(Li'p))l{L§p>K}

{Ll,—l}

4 (Lip)

- : H(Lp) )i .
iy - HLP) ( —H(p) " "”> Tt

(8)

9)

The third case is when the second derivate is zero. In that case, the log-likelihood is linear, and

we propose to update the estimate using the rule

( 3.1 p%)
(% >zl | -
p_, - aZ_y(Zl_pk) ¥ a(pjl_\')z =€
k+1 4 ].)2
) — 2 t nk r
Pi < P41 —A) I 2L <8a11d’)—‘4£i
J a(p})
2 t Ak
P¥(1+A) I Z(Lip) <Eand?i£ip—
Y a(p})?

where the gradient and the second partial derivative are defined as in (7) and (9).

(10)



3  Simulations and Image Reconstruction assuming Exponential
Energy Distribution

To apply this methodology, we need to know the distribution of the rays” incident energy. To test
the methodology, for now, we assume that the energy distribution is exponential, and we produce
simulations where the rays’ energy are also exponential as described in section 3.1 . A more realistic
distribution will be studied in section 4. The exponential distribution function, density and its derivate
are defined for all x > 0 to be

H(x) = PX<x)=1-¢*, (0
h(x) Ae™ (12)
dale] —A%e™ M = —Ah(x), (13)
dx

respectively. Substituting in equation (7), the first derivate of the the log-likelihood function becomes,

af(l‘[p) ' ( [{L'p>£} ) é,-jh(L'-p)
e 2h(Lip) [ Clipipeey + - PR
3p; (,230} h(Lip) | Cligp<e) H(Lip) {‘:;;]} | —H(Lp)
! o
>, Lih(Lip) (Clwm} “( 6) Y AL (14)
{£2=0} Lip) {izi=1)

Direct calculations of the second derivative reveals that the sum over all rays that go through (Z; = 1)
vanishes in the exponential case, because h'(x) = —Ah(x), and therefore

2(7¢t !
s ) = TG uip) ~ 201~ H(Lip)) =0

Thus the second derivative only depends on the stopped rays,

e & (hz(z;-p) (L p>>
"L Lip) _ »
09}2 {i:7;0) H (Lﬁp) ”(pr)
2h(L p)
- _ ST (1 p) + AH(L: p
{i:2;=0} [lz(ljip) )
since h(L!p) +AH(L{p) = A. That is,
D) 2 ( Ipspse) )
)  AGR(LEP) [ CPlippcey + —o— |- (15)



3.1 Simulations

We produced simulations of about 1 cubic meter volume, containing three 10em3 objects of different
density: aluminum (Al), iron (Fe), and tungsten (W). The energy distribution of the incident particles
was assumed to be exponential with mean 3GeV (i.e. P(E <x) =1— e~*/3 ). The energy loss
in this simulations is assumed to be 2 MeV/g/cm. Each simulation had about 170,000 rays. To
have a clean stopping signal we produced simulations without any scattering of the particles. In
later numerical experiments, we also produced more realistic simulations, that included scattering of
charged particles.

The image reconstruction of both simulations was done using a coordinate descent Newton-
Raphson method to maximize the log-likelihood function as described in the previous section, We
voxelized the volume in 10cm? voxels, namely 11 x 11 x 9 = 1089 voxels, and calculated the path of
each particle through the volume. For the simulation with scattering the path of each ray is calculated
as the path going through the line defined by the incident point and angle up to the intersection with
the line defined by the outgoing point and angle.

The initial reconstructions took about an hour, so we were concerned that long computing time
would prevent us from making numerous reconstructions as needed for ROC curves based perfor-
mance analysis. We optimized out MatLab code with a goal to make the single scene reconstruction
in less than a minute. The optimized code runs in 48 seconds; this includes reading the files, cleaning
and formatting the data appropriately, running the reconstruction and producing the plots. While in
the near future we are going to switch to more complicated and larger scenes, we expect computing
time not to be a large hindrance at that point. We will however continue to monitor it for make sure
that our ability to make serial simulations is not impeded.

3.2 Results

Scene: ”Aluminum, Iron, Tungsten”. For this simulations, the actual resistance in each voxel is
given by the element’s volume density times the energy loss per traversed centimeter, in this case 2
MeV/g/cm,

MeV v
oy = 29 193 _ 38602
g/em cm cm
MeV MeV
P, = 2—— X T8T-2 = 1580—
e g/cm cm cm
M
g = o s d _ yygMev
Al g/cm cm? cm
MeV
o = MY 0012-5 = 0.0024MY
Air g/cm cm’ cm

Note that according to the particle data book, the energy loss per centimeter is not 2 MeV/(g/cm),
but varies for these three materials, namely Tungsten 1.145 MeV/g/cm, Iron 1.451MeV/g/cm, and
Aluminum 1.615 MeV/g/cm. 3

Our current reconstruction methods are optimized {or nuclear materials detection. For that task,
an overestimation of the signal is not a problem, because the threatening material is still detected.

31f GEANT4 uses these numbers, then contrast between these three materials would be reduced and the "true” values
would be different. We should check to see what results we get with GEANT4 simulations.
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The situation is different for explosives detection, because both underestimation of the signal (e.g.,
misidentification of a TNT block as a round of cheese), and overestimation of the signal (misiden-
tification of TNT block as a car battery) both lead to a decrease of detection efficiency. For this
project, we need to understand, how closely our estimated values are to the true material parameters.
We need to evaluate our current methods and decide which one has the optimal performance for our
application. Figure 2 shows the stopping image reconstruction of three blocks of different materials
for both models: excluding and including scattering. Reconstructed values (energy loss, proportional
to the material density) are close to the simulated ones, confirming the validity of our reconstruction
methods. Large signal spread is noticeable when adding scattering to the simulation. Reconstructed
values for central voxels show some leakage of the signal to the neighboring voxels.

No Scattering Scattering

Reconstruction fidelity: o w0 114~ I Estmated p:  5.396 Reconstruction fidelity: o =0.458. . Eatimated p: ;Zgg
B S~ 18.793 - . X

40.645 i 9.540

| & 3072

r 25686

. 1.059

Al Fa w Al Fe w

Actual 540 1575 3860 Actual 540 1675 3860
Esimated 540  18.79  40.64 Estimated 4.81 954 2569

Figure 2: Stopping Reconstruction of three materials: aluminium, iron, and tungsten.
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4 Soft Cosmic Particles’ Energy Distribution

Given that the reconstruction algorithm based on maximum likelihood seems reasonable assuming
the cosmic rays’ energy distribution is exponential, we will now try to investigate if we can find a
parametric distribution that fits better the actual rays’ energy distribution.

The soft particles we deal with are typically a combination of electrons and muons. Their pro-
portions on any given location and point in time, seem to depend on many factors, particularly, they
depend on the altitude, and the weather conditions, e.g. if it is cloudy, rainy or if their is a fair sky.
At sea level typically there are about 70% electrons and 30% muons, while at higher altitudes, e.g.
in Los Alamos, NM, which is located at 7,200 ft, the muons and electrons’ proportion seems to be
equal.

We generated 10 million electrons and 10 million muons from tables produced using empirical
observations, and anlayze first electrons and muons separately by drawing the corresponding his-
tograms. We considered various well known densities, and plotted the ones that seem closer to the
observed energy histogram, namely, the Gamma, Inverse Gamma, Pareto and Log-Normal densitites,
as seen in figure (3).

Muons’s Energy Density

Electrona's Energy Denaity g 1
] -
— Observed
= = Log-Normal
@ ~—— Inverse Gamma
| — Gamma
w Parato
2z
&4 4
§s
I
&
54
w o
o
a
a 4 2 4 [ ] 10
Enangy « 2167
Enengy < 130
Elesclions
(b) Muons

(a) Electrons

Figure 3: Energy Density

The log-normal density is the closest to the electrons energy density, and it particularly fits the
muons’ energy density rather well. Although we are mainly interested in lower energy particles, that
are more likely to stop, figures (4) and (5) provide a closer look at the tails. Recall that a log-normal
random variable, is such that its logarithm has normal or gaussian distribution, namely for x > 0,

1 _ [in{x) u‘,"Z

T, T ) 16
flxu,0) o= (16)
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Figure 4: A closer look to the Electrons’ Energy Density
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Figure 5: A closer look to the Muons’ Energy Density

Next, we pull all the particles together, with an equal proportions of electrons and muons, and
plot a mixture of the log-normals that fitted the electrons and muons’ density, this is,

where the maximum likelihood estimates are [i
and o = 1

v

af(’r’ I:zch:(l ) aelu‘!) + ( l — a)f(":’ ﬁmuon:’ amuon:)

elect

=327,

12

=1.18,1

muons

=0.76,5

lect

muons

an

= 1.33,



Figures (6) and (7) show that this mixture of log-normals is a fairly good approximation to the
soft cosmic particles’ energy.

Electrons and Muons’ Energy Dansity
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Elactona and Muona’ Enengy
mearm 284 i dev = 8 02

Figure 6: Soft Cosmic Particles Energy Density
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Figure 7: A closer look to the Soft Cosmic Particles Energy Density
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S Simulations and Image Reconstruction using a Mixture of Log-normals

To maximixe the log-likelihood function defined in (3), we need the lognormal distribution, density
and its first derivate. The distribution function is given by

Flx,o.u,0) = /Oxf(y,u,o)dy = % + %ert (In(J/_,u) (18)

where erf is the error function defined as erf(x) = -\/2—7_5 ke ~*dt, and f is the density,

] GRS

fnu,o) = ——=—e¢ 20 (19)

xXo\2m

Finally the first derivate of the density 1s,

df(xu,0) 1 In(x) —
——— =——f(ou,oc) | |+ ———— ). 20
dx Xf(t lu' ) + 0_2 ( )
The corresponding distribution, density and first derivate of the mixture of log-normals, is just the

convex combination of the corresponding functions given in (18) to (20)

H(x)a:“etm » Oetectr Mnmons > Gmu(m:’) = of(x0, Metea s rlu:) +(1—a)F(x,0 Y — mlww)‘r
R(%, L gy s Ooteers Boonss O ) = O, 0 My O )+ (1= @) f (5,0 1 B
AR O ey Outey s s One) o S O e\ O], +(l— )df(x LT .

dx dx dx

We implement exactly formulas (4) and (5) since when substituting /1,4 and dh . nothing simplifies.

5.1 Simulations and Results

We simulated the same scene as described in section 3.1, this i1s about a one cubic meter volume
containing three 10 em? objects: aluminium, iron and tungsten. The energy loss distribution was
assumed to be an a—mixture of lognormals as described in the previous section, where o 1s the
proportion of muons, We varied the proportions of muons and electrons: i) 100% muons (with
a = 1), ii) 100 % electrons (& = 0), iii) the same proportions of muons and electrons (@ = 50%), and
iv) 70% muons and 30% electrons. The energy loss in the simulation is assumed to be 2 MeV/g/cm.
We produced simulations with about 161K rays and with about twice as many rays 322K, and again
we produced simualtions without and with scattering. For each of the scenarios we performed 10
simulations. The results are summarized in figures 9 to 12. The simulation code was written in
Matlab.

The stopping reconstructions for the simulations using only muons (figure 9) look very reason-
able, with obvious improvements by doubling the exposure times, and smaller standard deviations for
the simulations done with no scattering. Similar results are obtained when only using electrons (10) ,
with two main differences: first note that when assuming no scattering, the electrons seem to be more
useful for identifying lower density materials like iron and aluminium, then higher density materials
like tungsten, where the stopping density is somewhat underestimated; and second, adding scattering

14



Scattering Mean p (800K rays,100% Muons)

M R truction fidelity: Estimated p: 3.155
ean Reconstruction fidelity p ol oy
. 1.761

o= 0.166

e F e 35,780

Al Fe W

10simulations, 20 iteratlons
Actual 5.40 156.75  38.60 28-Mar-2009
Estimated 3.16 13.71 35.78

Figure 8: Image reconstruction. Scene: Tungsten, iron, and aluminium

makes the previous situation much worse. Electrons may scatter more when hitting higher density
material, and thus our estimation of the rays’ paths needs to be significantly improved. These effects
get carried over when mixing electrons and muons (11 and 12).
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To verify if the position of the objects matters or not, we run the set of simulations with the twist
that aluminium and tungsten switched places (see figures 14). Again, we find that electrons do a better
job at identifying lower density materials like aluminium and iron, than higher density materials like
tungsten, Interestingly, when including scattering in the simulation, even though the stopping density
of tungsten is still underestimated, it improved considerably (compare figures | land 14).

Scattering Mean p (800K rays,100% Muons)

iy B alit. T [P Estimated p: 2.161

Mean Reconstruction fidelity: I p 36 493
raill T i ’ 13.008

o= 1.427 ,/ RS 3.559

Al Fe w

1Qsimulations, 20 iterations
) Actual 5.40 15.75 38.60 15-Apr-2009
Estimated 3.56 13.01 36.49

Figure 13: Image reconstruction. Scene; Tungsten, iron, and aluminium
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6 Geant Simulations

Having tested the methodology to identify lower Z-material using the more simple Matlab simula-
tions, we created simulations with Geant 4 that uses more realistic particles’ behavior, that include
the incident energy, the energy loss, and the scattering. The landscape was kept simple with four
10cm® cubes of low-medium Z density material, namely iron, aluminium, TNT and water. In each
experiment we used an exposure time of one minute, with a mixture of particles of 50% muons and
50% electrons, and the experiment was repeated 100 times.

We apply our algorithm as described in section 5 assuming the particles’ incident energy is a
mixture of log-normals. Figure 15 shows the mean image reconstruction over all 100 simulations that
uses the mean estimated stopping density in each voxel. It is surprising how well the algorithm can
identify the presence of objects in the different voxels, and on average it also does a very good job at
distinguishing among the different materials. Unfortunately, when taking a closer look at individual
simulations (see figure 16), it is obvious that it is not always clear that one can distinguish among the
different materials. This is confirmed by looking at the boxplots in figure 17 that show the overlap of
the empirical estimated stopping densities distribution of the different materials.

Mean Stopping Reconstruction

e ) % Estimated p: 3715
ull B ES S e 10.04
3.24

Geant Simulations: 100

Estimated p HeQ Ll Al Fe Particles: 50% Muons
Mean 3.24 5.27 10.04 37.15 50% Electrons
Std. Dev, 0.51 0.91 1.79 7.21 Exposure time: 1 minute

p = stopping aensity

Figure 15: Image stopping reconstruction of water, TNT, aluminium, and iron with 1 minute exposure
time
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Boxplots illustrate differences between empirical distributions without making assumtions on the
underlying statistical distribution. A boxplot is construted using the lower and upper quartiles (end of
the box), the median (the line inside the box) and the samples minimum and maximum (whiskers).
Thus the lenght of the box is the interquartile range (IQR). Any point that lies 1.5 times the IQR from
aboxe the third quartile or below the first quartile is considered an outlier and is individually displayed
with a point.

Boxplots for Stopping Densities

s0

b |

o . e |

o T T T T — 7‘7*1
HZD TNT Al =]

Exposure time: 1 minue (100 smulaions)

Figure 17: Boxplots of estimated stopping densities of water, TNT, aluminium, and iron with T minute
exposure time

The inability of the algorithm to clearly distinguish between different materials is resolved by
doubling the exposure time. The stopping reconstruction was performed using 50 simulations of the
same scene (four 10cm? of water, TNT, aluminium, and iron) with an exposure time of 2 minutes
each. Figures 18 and 19 compare the stopping reconstruction scattering plots and boxplots with one
and two minutes exposures. The two minute exposure plots clearly show the material separation.
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Figure 18: Estimated stopping densities of water, TNT, aluminium, and iron. 50 simulations.
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Figure 19: Estimtaed stopping densities of water, aluminium, TNT, and iron. 50 simulations.

Finally, figure 20 shows the mean image reconstruction using the fifty 2 minutes simulations.

Mean Stopping Reconstruction
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0 = stopping density

Figure 20: Image stopping reconstruction of water, TNT, aluminium, and iron with 2 minutes expo-
sure time
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7

Conclusion

Analysis of stopped charged particles provide a complimentary view to scattering tomography and
helps resolve medium and low Z materials. Combining scattered and stopped particles has the po-
tential of increasing the dynamic range in the reconstruction at little or no costs in terms of exposure
times and complexity of the measurement apparatus. This opens the door for a broader range of ap-
plication for passive tomography, with possible applications ranging from the detection of explosives
to passive imaging of buildings and dams.
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