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A study of liquid helium scintillation in the presence of an electric filed for the nEDM
experiment

Takeyasu Ito, Steven Clayton, , Maciej Karcz, Chen-Yu Liu, Josh Long, Hans-Otto
Meyer, John Ramsey, Goverdhan Reddy, and the rest of the nEDM collaboration

The nEDM collaboration

Abstract:

The nEDM experiment, currently being developed to be constructed at the Fundamental
Neutron Physics Beamline at SNS at Oak Ridge National Laboratory, will search for the
neutron electric dipole moment (EDM) with a sensitivity roughly two orders of
magnitude better than the current limit. A nonzero EDM, if found, would be a clear
signature of Physics beyond the Standard Model. In neutron EDM searches, the signature
of a nonzero neutron EDM appears as a shift in the neutron spin precession frequency
upon an application of an electric filed. In the nEDM experiment, the neutron spin
precession frequency will be measured with respect to that of *He atoms, which will
occupy the same volume as the neutrons as cohabiting magnetometer. Liquid helium
scintillation light from spin dependent *He(n,p)t reaction will be used to determine the
spin precession frequency difference between neutrons and “He atoms. However, little is
known about the fast liquid helium scintillation as a function of electric field at the
expected operating temperature. We performed a measurement of the liquid helium
scintillation light yield dependence on the strength of the electric field up to ~ 45 kV/em
in the temperature range of 0.2K to 1.1 K. In this talk, the results of the measurements
will be presented, along with their implication for the nEDM experiment.



A Study of Liquid Helium Scintillation in
the Presence of an Electric Field for the
nEDM Experiment

Takeyasu Ito, Steven Clayton, John Ramsey
Los Alamos National Laboratory

Maciej Karcz, Chen-Yu Liu, Josh Long, Hans-Otto Meyer,
Goverdhan Reddy

Indiana University

for the nEDM Collaboration*

3rd APS-JPS Joint DNP Meeting
October 16, 2009
Waikoloa, HI

*The nEDM Collaboration: Arizona State University, Boston University, Brown University, California Institute of Technology,
University of California-Berkeley, Duke University, University of lllinois-Urbana-Champagne, Indiana University-Bloomington,
University of Kentucky, Los Alamos National Laboratory, Mississippi State University, North Carolina State University, Oak Ridge
National Laboratory, Simon-Fraser University, University of Virginia, Yale University



nEDM Experiment at ORNL-SNS i

Principle of the measurement
* Goal:

e —[Z[J,HB = 2dnE]/h - 8d, =102 ecm

» Selected features:

— Superthermal production of
UCN in the measurement

Dilution el
Refrisemtor '\ — 3He comagnetometer
3 . — Use of LHe scintillation to
He Polarized detect neutrons spin
DR LHe Volume Source precession
450 Liters

Re-entrant Insert
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3He as spin analyzer/ ‘He as a Detector

* *He-n reaction cross section |
SHe+n—t+p+760 keV o(parallel) < 10%b
o (anti-parallel) ~ 10*b

 3He-UCN reaction rate
1-p,-p, =1-p,p, cos[(yn - yB)Bt]

« Detect Scintillation light from the reaction products traveling in LHe

— Convert EUV light to blue light using wavelength shifter
— Detect the blue light with PMTs

/10

Yo =Ys| =|Vs

= 4He superfluid filled
o - £ proron = measurement cell
3‘- EN 8)1rilun <«— Mmade of gcryhc and
: - \ e coated with wavelength
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450nm L (" 80nm

e

L

« Signature of EDM would appear as a shift in w,-w,, corresponding to
the reversal of E with respect to B with no change in w,
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Existing data on LHe scintillation in the
presence of an electric field

Hereford and Moss, Phys Rev. 141, 204 (1966). * lonization generated by a
particles.
. | ; 1. » Measurements made at 1.31,
2.17, 4.2 K with E field up to 30
I T kv/cm.
o - 1= * Up to 12% reduction in the
. fa prompt pulse (1 us) intensity
I observed.
g 1"  Po source on a thin wire.
I : 1 Goal of our experiment:
: B Study the dependence of the
| 1, prompt scintillation yield on
A L B L the strength of the electric
F1c. 3. The ﬁe]d-induc::lmrit::‘:]sv in scintillation intensity field up to 40 kV/Cm at 0'4 K

(solid points, left scale) and the collected ion current (open

ints, right scale) versus applied voltage and estimated I 0
poiate, vight scale) verwar appliod soliags s stimated avicage with o particles.



Wwod 71|

*Cell is made of SS cross with
Conflat flanges
*L.He volume is about 600 ml

Apparatus

I & | re| |

/’ HV electrode

DR MC plate Ground electrode

Heat exchanger |
(stack of Au Cryogenic

burst disk

Feedthroughs Emergency He
(HV and sensors) outlet (pipe not
G10 sleeve shown)

UVT acrylic light guide
(top surface coated
with TPB-PS)

Sapphire view port
Hamamatsu

| | R7725mod 2” PMT
\ (operated at ~ 3 K)

4K heat shield for PMT



Apparatus

Ground electrode
20kV HV feedthrough . rou

Burst disk not shown

\
/ / ‘UVT acrylic light guide
G10sleeve  Hy electrode (top surface coated with TPB-PS)



Mixing chamber

HV line

Pressure (



Electrodes
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HV electrode .
(Stainless steel, 0.75” diameter, 0.5” thick, R=0.25")

Ground electrode
(Stainless steel, 0.75” diameter, 0.25” thick, R=0.125",
Am-241 source is deposited in the center, 6mm diameter)

Range of 5.5 MeV a particles in SF LHe ~ 0.3 mm
Field is uniform to 5% at the location of the ionization

Electrode gap: 3.86 mm as built at RT
expected to be 3.58 mm at 0.4 K

Electroplated 24'Am
(activity ~ 300 Bq)

P R e
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| Time of afterpulse following
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Prompt pulse vs. temperature, HV=0 i

| Number of prompt PE vs. temperature, HV=0 |
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FIG. 2, Total luminescence intensity (left scale,
circles) and the scintillation pulse intensity (right scale,
triangles) vs temperature., Absolute values of the two
curves cannot be compared. The solid curves were cal-
culated as described in the text, The chamber radius
was 0,47 cm,



Number of prompt PE vs. high voltage
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Afterpulse intensity vs temperature

Number of afterpulses within 14 us vs. temperature, HV=0 —‘
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time. The curves shown correspond to different helium bath tem-
peratures (220 mK, 360 mK, 500 mK, 670 mK, 780 mK, 830 mK,
temperatu reS 880 mK, 960 mK, 1060 mK, and 1140 mK). The intensity of the

afterpulsing increases as the temperature is raised from 500 mK to
960 mK.



Afterpulse intensity vs. HV

Number of afterpulses within 14 us vs. high voltage
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Afterpulse intensity normalized to

prompt pulse

Number of afterpulses within 14 us per prompt PE vs. high voltage
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Afterpulse intensity is affected more strongly by E-field than prompt pulse.
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Discussion

 Observed a 15 % reduction in the prompt scintillation
yield at 45 kV/cm.

* The reduction is almost linear in E.

 Simple models do not produce the observed linear E
dependence.

* The afterpulse intensity is more strongly affected by
E-field. This is presumably due to extra
recombination required for light emission.
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Summary

 The prompt intensity reduction due to a ~ 50 kV/cm
electric field is about 15%. Good news for nEDM.

* The afterpulse-based particle ID most likely not to
work.

* Theoretical understanding of the data in progress.



Additional Slides

19



EDM Collaboration

* Arizona State University
 Boston University

* Brown University

e California Institute of Technology
* University of California, Berkeley
* Duke University

» University of lllinois, Urbana-Champagne
* Indiana University, Bloomington
* University of Kentucky

* Los Alamos National Laboratory
* Mississippi State University

* North Carolina State University

* Oak Ridge National Laboratory

* Simon-Fraser University

* University of Virginia

* Yale University



21

Flow Diagram

Emergency vent Fill line Pressure relief (10psi)
line/recovery system Pump out port
Needle val
KF40 drop off plate Raalmn s e [ Dt D<———
\h r
/|

Coldrap pjjast tank  He gas source
(40 L) (boil off from LHe

Dewar)

(inflated volume 4m3)

Cell Capillary (0.6 mm ID, 1.8 m long,

thermally anchored at the Still, the
Cryogenic 50 mK plate, and the MC plate)

rupture disk : \
(35 psi) SRR R —-

Weather balloon E

E Heat exchanger/liquefier (3K)

Cryostat



DAQ system 22
W ADC ch0

(LeCroy 2249A)
PMT amp PMT amp
Philips 777 Philips 777
l\ delay
PMT—{ > . 00000 > ADC o
(LeCroy 2249A)
t Computer busy
" cﬂ’ | > Trigger
< ‘ > ADC gate
100
Discriminator ~ Logic Unit Gate generator L100 s
Philips 765  Philips 794
ooy 6218k P P ———> TDC common start
(LeCroy 2277)
< > TDC stop
Discriminator (LeCroy 2277)

LeCroy 621BL

Note: LeCroy ADC 2249A: charge ADC
LeCroy TDC 2277: multi-hit long range TDC (up to 16 hits in 16 us range)



