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Theory of Magnetic Seed-Field Generation during the Cosmological 
First-Order Electroweak Phase Transition 

Trevor Stevens 
Department of Physics, West Virginia Wesleyan College, Buckhannon, 'Vest Virginia 2G201 

Mikkel B. Johnson 
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

We present a theory of the generation of magTletic seed fields in bubble collisions during a first
order electroweak phase transition (EWPT) possible for some choices of parameters in the mil1im~\l 
supersymmetric Standard Model. The theory extends earlier work and is formulated to assess tlw 
importance of surface dynamics in such collisions. We are led to linearized equations of motion with 
0(3) symmetry appropriate for examining collisions in which the Higgs field is relatively unp(·;rturbed 
from its mean value in the collision volume. Coherent evolution of the charged VV fields within 
the bubbles is the main source of the em current for generating the seed fields, with fCrllliol1s 
also contributing through the conductivity terms. We present numerical simulations within this 
formulation to quantify the role of the surface of the colliding bubbles, particularly the thiekl1()ss 
of the surface, and to show how conclusions drawn from earlier work are modified . The main 
sensitivity arises such that the steeper the bubble surface the more enhanced the seed fields hecoll1c. 
Consequently, the magnetic seed fields may be several times larger and smoother over tlw collbioll 
volume than found in earlier studies. Our work thus provides additional support to the supposition 
that magnetic fields produced during the EWPT in the early universe seed the galactic IUHl extra
galactic magnetic fields observed today. 

PACS numbers: 98.62.En,98.80.Cq,12.60.-i 

Keywords: Cosmology; Electroweak Phase Transi
tion; Bubble Nucleation 

1. INTRODUCTION 

Identifying the source of the observed large-scale 
galactic and extra-galactic magnetic fields remains 
an unresolved problem of astrophysics [1]. One of 
the interesting possible sources is cosmological mag
netogenesis, where the seed fields would have arisen 
dming one of the early-universe phase transitions. In 
this work our interest is seed field production dur
ing the electroweak phase transition (EWPT) dur
ing which the Higgs and the other particles acquired 
their masses. 

If magnetogenesis occurred during the EWPT, it 
most likely required a first-order pha..se transition. 
A first-order phase transition proceeds by a process 
in which bubbles of matter in the broken phase nu
cleate within the unbroken phase, similar to the fa
miliar process of steam condensing to water as the 
water-vapor mixture is cooled. Although it is gener
ally believed that there can be no first-order EWPT 
in the Standard Model [2], there has been a great 
deal of activity in supersymmetric extensions [3], 

and for certain minimal extensions of the St.andard 
Model there can be a first-order phase trml.sit.ion [4--
6]. Limits on parameter-space of the minimal exten
sion of the standard model (MSSM) placed by elec
tric dipole moment mcasmemellt.s and dark matter 
searches allow a first-order EWPT which could lead 
to sllccessful electroweak baryogcucsis [7] alHl the 
possibility that we are exploring, namely t.hat seed 
fields respollsi ble for the large-scale magnetic fields 
seen today are created during the Na of tlw EvVPT. 

Interest in these issues has Icd to quant.itative 
studies of EWPT magnetogenesis based OIl the so
lution of equations of motioll (EOM) derived from 
specific models. In the Abelian Higgs modd, the 
first-order phase transition developcd as the U ni
verse condensed into bubbles consisting of localized 
regions of space filled by Higgs field in a broken 
phase. This model was one of the earliest at.tempts 
t.o describe seed field production during th(~ EWPT. 
The EOM related the seed fields to gradient.s in the 
phase of the Higgs field that were produ(:(;d when 
bubbles merged following nucleation [8 10]. Simple 
and transparent solutions t.o the EOM evolV(~d from 
specific field configurations applied at. t.he point of 
collision in a relativistic 0(1 ,2) symmetric model. 

The production mechanism of seed fields within 
an EOM approach has been purslwd mor(~ recently 
within the framework of the MSSM [11, 12] along 



the lines of the Abelian Higgs model in Ref. [8-10] 
in which 0(1,2) symmetric solutions evolved from 
specific field configurations applied at the point of 
collision. In this work, new EOM were derived from 
the MSSM Lagrangian, and accordingly the bubbles 
developed a coherent mode of charged W± fields. 
As the bubbles merged, the charged gauge fields re
placed gradients in the phase of the Higgs field as 
the source of the electromagnetic em currents pro
ducing the magnetic seed fields, and the mechanism 
by which this occurred was developed in detail. N u
merical results [12] showed that the MSSrvl produced 
seed fields of a size similar to the Abelian Higgs 
model even though the source of the current in the 
two approaches was quite different. 

Although these earlier studies gave insight into the 
production mechanism of seed fields in a first-order 
EWPT, applying boundary conditions at the time 
of the collision as implemented in the 0(1,2) for
mulations did not permit an assessment of the role 
of the dynamics of the bubble surface in the seed 
field gcneration. To explore the role of the surface 
it is necessary to specify the values of the W fields 
and their time derivatives on a surface (t = to , r, z) 
before the collision occurs. Thus, incorporating the 
initial stages of evolution of individual bubbles on 
the collision is an aspect of physics absent from the 
treatments found in Refs. [8-12]. 

In our more recent studies [13, 14] results of cal
culations were presented in which bubble surfa.ce dy
namics were taken into account. We identified a 
source of quantitative sensitivity to the bubble sur
face, and the results presented therein showed that 
the magnetic fields produced could be as large as, 
and possibly even larger than, those calculated in 
their absence. Encouraged by these results, in the 
present work we develop and extend the EOM for
mulation within the MSSM upon which this earlier 
work was based, along lines identified there. 

We begin, in Sect. II, by reviewing our EOM ap
proach. We also discuss briefly the nature of a first
order EWPT and some of the issues associated with 
the dynamics of the bubble surface that our theory 
is intended to address. In Sect. III we present our 
extended theory developed in 3 + 1 dimensions in 
a regime where the bubble collisions may be consid
ered "gentle" [11, 12J. For gentle collisions the EOM 
linearize and display a transparent connection to the 
earlier work of Refs. [8- 10, 12J. Various theoretical 
considerations necessary for assessing the role of the 
bubble surface in magnetic field generation, includ
ing the importance of establishing appropriate initial 
conditions, a.re developed. 
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Out theory is applied in a specific model along 
the lines of Ref. [12, 14] in Sect. IV. Because in our 
present formulation boundary conditions aJ"(~ i\pplied 
before the collision occurs, we are able to examine in 
addition to collisions, the nucleatioll process, which 
is the evolution of the bubbles bdore the colli::;ion 
takes place. The numerical solutions of Il1I(:leation 
and collisions in this model are then presentt'd in the 
following two sections. 

In Sect. V we examine the W fields, the current 
produced in collisions, and the magnetic field. For 
colliSions, find the magnetic field to be larger in both 
scale and magnitude compared to our earlier 0(1,2) 
results [12]. In Sect. VI we estilllate the .'ellsitivity 
of the seed fields to the steepness of the surface of 
the scalar field, and in Sect. VII the sensitivity to the 
bubble wall speed and conductivity of the medium. 
Compared to results given in Refs. [14\, we find that 
the magnetic seed fields are not only larger in mag
nitude but extend over substantially larger spatial 
scales than the results shown there. 

II. MAGNETIC FIELD CREATION 
DURING A FIRST-ORDER EWPT IN THE 

MSSM 

The EOM of this work are bas(~d on th(, SelIne un
derlying MSSM Lagrangian as that of rref. [12]. This 
Lagrangian is assumed to support a first-order phase 
transition and is of the form 

£1 +£2 

+ leptonic, quark, and supersymmetric 

partner interactions 
1 . . 1 

- - W' VV"1V - - B Bf1.V 
4 ILV 4 I'" 

I(if:) - 9.. T . W - g' B )<1>12 
J.I. 2 f1. 2 1'· 

V( <1>, T) , (1) 

where T is the temperature and 

(2) 

Here Wi, with i = (1,2), are the W+, W- fields, 
<1> is the Higgs field, and Ti is the 8U(2) generator. 
Fermions are not explicitly considered since earlier 
work to which we want to compare likewise igllored 
them. Because we are working within the framework 
of the MSSM , the bubbles that form as the phase 
transi tion progresses naturally cOllsist of a fl'gion of 



space filed by the Higgs field along with a cloud of 
other constituents of the MSSM Lagrangian in the 
broken phase. 

As in Ref. [12], we first derive"exact" EOM using 
an effective Lagrangian at the classical level from 
which the supersymmetric partners have been pro
jected out as explicit degrees of freedom, but whose 
effect is retained by a renormalization of the effective 
potent.ial to maintain the properties of the first-order 
phase transition. These EOM are complicated non
linear partial differential equations coupling the W, 
B , and <I> fields. From their solution one may obtain 
the physical Z and A em fields, 

1 ( 'W3 + B) 
/ 2 '2 9 I" 9 I" 

yg + 9 

Z -I" - 1 (W3 _ 'B) 
/ 2 ' 2 9 I" 9 I" . 

yg + 9 
(3) 

In the picture we are developing, the Higgs field 
plays a central dynamical role in EW bubble nucle
ation and collisions, and therefore the effective (now 
appropriately renormalized) Higgs potential V (<I>, T) 
is an essential element in the theory. Although this 
potential is not known at the present time, depend
ing as it does on the unknown parameters of the 
MSSM as well as the properties of the plasma in the 
early Universe at the time of the EWPT, its spe
cific form is not relevant for the purposes of this 
paper. We require only that it should produce a 
first-order phase transition, consistent with certain 
MSSM extensions including for example those with 
a light right-handed Stop [15J. 

The various parameters are discussed in many 
publications [4J. For our calculations we use the lab
oratory values, 

9 e/ sin Bw = 0.646 , 
g' 

mw 

9 tan Bw = 0.343 , 

80.4 GeV , (4) 

where mw is the mass of the W± bosons, and we 
define 

G == gg' / Vg2 +g'2=0.303. (5) 

In this section and throughout the paper units are 
such that fi = c = I, with distance and time ex
pressed in units of mw. 

A. First-order electroweak phase transition 

Coleman's model [16] provides a conceptual 
framework based on a Lagrangian for underst.and-
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ing the phase transitioll. Although oversimplified in 
that. it lacks medium effects, which can lead to an 
asymptotic wall speed Vwall < 1 dcpendillg on the 
pressure difference in the true and fa.lse vacuum, it 
is seminal in that it was one of the earliest EOM 
descriptions of the physics of a first order phase 
transition. In his model, prior to nucleatiOll, the 
dynamics of bubbles is formulated in the Euclidean 
metric, which is 0(4) symmetric. After nucleation, 
the bubble expands in 0(1, 3)-symmetric Minkowski 
space-time [16]. As t.he phase transition develops the 
bubbles start to merge or "collide". Eventually they 
completely merge, at which point, the phase tran
sition is completed. In subsequent work IllHglletic 
fields have been underst.ood to be created in the col
lisions of bubbles. 

In the Lagrangian of Eq. (1), the EWPT i~ driven 
by nucleation of the scalar Higgs field just as imag
ined in Coleman's model [16J. In this picture, the 
vacuum state of the Universe corresponds to a local 
minimum in V(<I>, T). The phase transition occurs 
as the temperature T is lowered through the tran
si tion temperature Tc when V (<I>, T) develops a de
generate second minimum at a larger value of < <I> > 
separated from this minimum by a barrier. As the 
universe continues to expand and cool, the depth 
of t.he second minimum increa<:;es, rncmling til at the 
Universe can low(~r its energy by moving from the 
original, now metastablc, false vaCUllJl1 to the lower 
energy true vacuum. Because the two minima arc 
separated by a barrier, the transition from the false 
to the true vacuum is delayed <'1.<; the temperature 
continues to drop, a process referred t.o as super
cooling. This delay influences bn bble characteris
tics, and a first-order phase transition is accordingly 
cla.ssified as weak or strong depending on the degree 
of supercooling. A comprehensive phenollwllo]ogi
cal study of the kinetics of cosmologiccu first-order 
phase tranSitiOns, such as the EWPT, ill terms of 
such an effective potential is given for example in 
Ref. [17J. 

B. Bubble dynamics and magnetic field 
creation with 0(1,2) Symmetry 

III their analysis of the Abelian Higgs model, Kib
ble and Vilenkin [8] obtained magnetic fields as bub
bles merge in a regime of gentle collisiolJs. They 
obtained EOM in this ca.se by making all expan
sion about point p(x) = Po (the "Kibble-Vilenkin 
point"). From these EOM, expressed in terllls of 
the variables (z, T = vt2 - r 2 ), where t is the time 



and r = J x 2 + y2 is the clistance of a point from the 
z-axis, they obtained 0(1, 2) symmetric solutions us
ing jump boundary conditions applied at the time of 
collision. They demonstrated that when the phase 
of the Higgs fields is initially clifferent within each 
bubble an axial magnetic field forms as the bubbles 
merge and that this field has the structure of an 
expanding ring encircling the overlap region of the 
colliding bubbles. 

In our earlier work in the MSS1VI [12], EOM were 
obtained by making an expansion about the Kibble
Vilenkin point. First, p(x) was expressed as 

p(x) = Po + aop(x) , (6) 

with Po the magnitude of the mean scalar field at 
the center of a single bubble and aop fluctuations 
of the magnitude in the scalar field once the bubbles 
merged. Making an expansion in a as in the Abelian 
Higgs model we obtained linearized equations within 
the bubble overlap region. Collisions in which the 
Higgs field is relatively unperturbed from its mean 
value when the bubbles merge were termed "gentle." 

Then, assuming as in the Abelian Higgs model 
that the collision begins at time t = to (called tc 
in Rf. [12]), when the bubbles first touch at z = 

0, we used jump boundary conditions to determine 
the charged W ± fields in 0(1,2) symmetry and the 
magnetic field . These boundary conditions recognize 
that in some collisions the sign of the z-components 
of the W+ field at leading order in a is opposite 
in the two colliding bubbles while the z-components 
for W- has the same sign, and that for others the 
phases are the same for IV± in the two bubbles. For 
the first case, referred to with a superscript I, the 
boundary condi tion was 

w c(z) 

0 , (7) 

where c(z) is the sign of z, and for the second, iden
tified with a superscript II, 

wzII (T = to, z) = W 

.!!....WzII(T = t z) 0 (JT 0, . (8) 

Comparing to the Abelian Higgs model we found the 
two magnetic fields to be of similar size. 

C. Effects of the medium: bubble surface 
motion and conductivity 
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Because effects associated with the surface break 
0(1,2) symmetry, a theory forrnulatf:d with this 
sylIlrnetry and the associated (z, T) variables sHch 
as that of Ref. [12] is nnsuitable for exploring the 
consequences of surface dynamics. To explore such 
effects, the theory has to be formulated ill :l + 1 di
mensions, and the appropriate symmetry group is 
00)· 

Additional drawbacks of 0(1 , 2) symmetry include 
the restriction that Vwall = c and difficulty includ
ing electrical conductivity in Milxwell's equations. 
Values of VwQ,1l < 1 have been obtained in diverse 
stuclies including modeling collisions of bubbles with 
constituents of the plasma [18] and solving EOM 
including nonlinear terms based on all .fvISS1'.{ La
grangian [19]. 

A value Vwall i- 1 and finite conductivity both 
directly affect the seed field. This has he n dis
cussed comprehensively and their effect pstimated 
in Refs. [8-10] within the context of the Abelian 
Higgs model. It was found there that fillite con
ductivity would lead to the decay of the currents 
(and therefore the magnetic field) with a c:hanH.: ter
istic time td ~ a 1m [8] with m the gauge boson 
mass. An additional consequence of the large con
ductivity arises as follows. Since the magnetic fields 
propagate with the speed of light, for slowly expand
ing bubbles these fields would very qnickly escape 
fr0111 the region of the bubble collision ill the ab
sence of conductivity. However, because of the large 
conductivity the magnetic fields become "frozen" or 
confined to the region of the bubbles, hinderiug the 
escape of magnetic f1lL,( into the surrounding false 
vacuum. Kibble and Vilenkin show(~d that the loss 
of flux is negligible provided that a Rev> > 1, where 
Re is the bubble radius at collisioll time. With val
ues of conductivity that are believed to (:h~u·i:\.(:terize 
the plasma, currents and magnetic fields persist on 
time scales that are long compared to those of the 
symmetry breaking scale. 

III. EQUATIONS OF MOTION IN THE 
MSSM WITH 0(3) SYMMETRY 

In this section we develop a general framework 
in 0(3) symmetry extending our earlier work in 
Refs. [12, 14] based on the MSSM. Our formulation 
is intended to be capable of following the evolution 
of bubbles with a given wall speed VwfLll ill 3 + 1 



dimensions, starting at time of nucleation, and de
termining the magnetic field generated in collisions 
including effects of finite conductivity. 

We begin the development of our theory in 
Sect. III A by extending the concept of a gentle colli
sion to the case where the surface is explicitly consid
ered. We then derive, in Sect. III B, EOM by making 
an expansion of the scalar field for a pair of bubbles 
about the mean scalar field. The expansion, justified 
for gentle collisions, leads to linearized EOM, thus 
simplifying the theory. In Sect III C we discuss some 
of the new issues that are encountered in solving the 
EOM when the bubbles are initially separated. As 
shown in Sect. III D, the same expansion leads to an 
expression for the em current in terms of the Wand 
to a corresponding Maxwell equation. 

A. Gentle collisions in electroweak theory 

When the surface is considered, we generalize 
Eq. (6) by writing 

p(x) = p(x) + aJp(x) , (9) 

with p(x) a simple function approximating the mean 
scalar field at any point x in the medium in the col
lision. The quantity aJp(x) is, as above, the change 
of the magnitude in the mean scalar field induced 
by the collision. In this paper we will obtain, as in 
R.ef. [12], linear approximations to the exact non
linear EOM by expanding them in terms of the pa
rameter a appearing in Eq. (9). The resulting EOM 
are similar to those of Ref. [12], but because we now 
have the surface to consider they differ in a num
ber of essential ways and require the development of 
completely new techniques to solve. 

The justification of the expansion in terms of a in 
the present case arises as follows. Clearly, when two 
colliding bubbles are completely separated p(x) for 
these bubbles is, to a very good approximation, the 
sum of the scalar fields of independent bubbles, and 
there are no Significant fluctuations that need to be 
considered (a ~ 0) to the extent that one has con
fidence in the choice made for the scalar field in an 
individual bubble. Additionally, for two completely 
interpenetrating bubbles p(x) within the central re
gion is approximately the same as the scalar field at 
the center of a single one of the colliding bubbles, 
and the justification of the expansion is the same 
there as it was in Ref. [12]. 

The new issue is to justify the expansion in the 
peripheral region when two bubbles first begin to 
merge. The critical point to recognize is that in this 
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region the size of a and hence the accuracy of the 
expansion will depend on how well the Ul(;an field 
p(x) that appears in the EOM approximat(~s the ex
act scalar field for the colliding bubbles. We come 
back to this issue below. 

B. EOM in electroweak theory for gentle 
collisions 

The fact that 'I/; and W d (for d = (1,2)) enter 
quadratically in the p-equatioll (Eq. (8) of Rd. [12]) 
places two important constraints on these quantities: 
(1) 'I/; and W d must have an expansion in odd powers 
of a1/ 2 , if we require the square of these qwwtities 
be analytic in a; and, (2) expanding this equation 
to leading order in a1/ 2 , we find that the terms '1/;(0), 
W(O)l, and W(0)2 must vanish. This is most easily 
seen in the Euclidean metric, from the fact that the 
square of each enters with the same sign. However, 
the same must be true in the Minkowski metric as 
well by analytic continuation. In view of these con
siderations, 'l/;v and W~ for d = (I, 2) haV(~ the fol
lowing expansion 

It is natural that an expansion ill the same paraDl
eter a 1/ 2 remains appropriate for d = J. However, 
there is no requirement that the leading term vanish , 
so we take 

With a :::::; 0 we may take p(x) :::::; p(x) , and the 
B-, e-, and TV-equations then give, to first order in 
a1/ 2 , 

where now 

( 2 12)1 / 2 
".(1)( ) = a e - 9 + 9 z(l) 
'f'cx x" 2 "'. (15) 

Equations for WS1)d may be obtained by expanding 
th(~ B- and TV-equations through order a1/ 2 . For d = 
1 or 2 (corresponding to d' = 2 or 1, respectively), 



we obtain the pair of equations 

o 

where m(x) is the mass of the W field, 

(17) 

The corresponding equation determining WS1)d for 
d = 3 is 

(PW[1)3 - oJ). w(1)3 = p(X)2g'V;Sl) , (18) 

which can be solved once the driving term 'V;(l)(X) 
has been independently determined from the solu
tion of Eqs. (13,14). The considerations for fixing 
the boundary conditions for W[l)d and W[1)3 are sim
ilar and discussed below. 

This field WSO)3 appearing in Eq. (16) is found to 
be the solution of 

(19) 

Because no mass appears in this equation, W occu
pying this mode propagate at the speed of light and 
experience no interaction with the scalar field of the 
bubble to lowest order in a, unlike the W described 
by wP)d. Because of this, there is no appreciable 
coupling to w[O)3, and Eq. (16) becomes 

o = 02W~ - 01/0· WO + m(x)2w~ . (20) 

We see t.hat for suffiCiently gentle colliSions, all rele
vant equations are linear in W. 

Simplifying the non-linear p equation (Eq. (8) of 
Ref. [12]) using the fact that w~ and 'V;I/ in leading 
order go as a 1 / 2, we find that to leading order in a 
p(x) satisfies the equation 

oV o = 02p(X) + p(x) Op2 (21) 

and the solution of this equation is clearly identified 
with p(x) appearing in Eq.(9). Methods for solving 
Eq. (21) are discussed in many places, for example 
Ref. [20J. 

In 0(3) the complete set of EOM for describing 
bubble collisions with the surface considered has now 
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been derived and consists of coupled partial differen
tial equations for the relevant fields. Strictly speak
ing, the set is non-linear because the solution of 
Eq. (21) is coupled to the W field through the mass 
of the lV, evident in Eq. (17). 

However, because Eq. (21) docs not depend on 
w~ , the coupling of the magnitude of the scalar field 
p(x) to the charged lV fields W;l(X) in Eqs. (20,21) 
is particularly simple and allows p( x) for a system 
of colliding bubbles to be determined once and for 
all. Equation (20) is then effectively uncoupled from 
Eq. (21) and may be solved directly to obtclin w~(x) 
for all x, effectively linearizing the EOM and result
ing in an enormous simplification. That tlw EOM 
are effectively linear implies that for gentile collisions 
thc coupling of the W to the Higgs dominates the 
self-coupling of the W fields. 

c. Surface effects and W± fields in bubbles 

With the solution of Eq. (21) nearly constant at 
p(x) = Po in the broken phase comprising the in
terior region of single or overlapping bubbles, our 
previous work [12J was simplified. However, now 
that we are considering as well the surface, where 
p(x) begins dropping to its value in the symmetric 
phase p(x) = 0 outside we cannot ignore the spa
tial dependence of the mass as given in Eq. (17). 
The spatial dependence in the surface not only in
troduces a few technical challenges but also, as we 
will see, new physics with quantitative siguificance 
not present in [12J. 

One of the consequences of the spatial dependence 
of the W mass can be seen by taking the four
divergence of Eq. (20). By so doing, we obtain the 
aux-iliary condition 

XO(x) = 0 , 

where 

Equations (22,23) require 

wa ·om2 

o· WO = - --;:;---
m2 

(22) 

(23) 

(24) 

Thus, in contrast to the calculation in Ref. [12], it is 
no longer true that o· w(" = 0, and a.s a consequence 
we find that the equations of motioll for the lV fields 
more complicated. 



The physics becomes clearer by using the relation
ship in Eq. (24) to rewrite the EOM in Eq. (20) as 

2 a wo. om2 

O >:l + >:l + m2w~: . = u Wv U v 2 v 

m 
(25) 

The solution to this set of equations is equivalent to 
the set in Eq. (20) provided the auxiliary condition 
Eq. (22) is maintained for all (t , x). 

The transformed EOM Eq. (25) reveal that the 
spatial dependence of the W± mass provides a 
perhaps unexpected sensitivity to the bubble sur
face. The sensitivity occurs through the term wa 

. 

om2 1m2, which becomes in fact divergent in the 
limit of an infinitely sharp bubble surface. At this 
point one cannot rule ou t significant modifications 
to results obtained in 0(1 , 2), where the surface is 
ignored . 

To see how the auxiliary condition Eq. (22 ) may be 
maintained for all (t , x), note that Eq. (25) requires 
XO(x) to satisfy the Klein-Gordon equation 

02Xa (X) + m(x)2x a (x) = O. (26) 

By choosing the initial configuration of wa(x), at 
time t = t o, to satisfy 

(27) 

and 

OXO(to, x) = 0 
at ' 

(28) 

we assure that Xa (x) = 0 for all future times since 
Eqs. (27,28) are boundary conditions for the trivial 
solution Xa(t , x ) = 0 of Eq. (26). Thus, Eqs. (27 ,28) 
provide constraints on the initial conditions for the 
W ± fields. 

To establish the initial conditions requires the 
choice of a time to at which the initial values of the 
W fields in the bubble are specified. In Ref. [12] the 
counterpart of to was the pOint of first contact of 
the bubbles. In the current approach to may be in 
fact much earlier, in particular it could be as early 
as the time of nuclea tion tn. The choice of initial 
conditions is further discussed in the context of a 
our model in Sect. IV E 3 below. 

These observations make it natural to distinguish 
two categories of initial conditions when the surface 
effects are considered. The first, which we will refer 
to as boundary conditions , consists of the initial W 
fields that may be chosen freely. The second consists 
of the set determined by Eq. (27,28), which we will 
refer to as the constrained initial conditions. 

The definition of XO given in Eq. (23) requires 
m(x)2 > 0 everywhere as it would be in the mean
field approximation adopted in Sect . IVD. 
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D. Maxwell's equations 

We may find the Maxwell equation for the em field 
AZm. (x) by t aking the linear combination of the W(3) 

and B indicated in Eq (3). An expression for the 
corresponding em current j ,, (x) consisting of t(~rms 
quadratic and cubic in the three fields Wi(x) imme
diately follows [1 2]. 

The result for j ,, (x) may also be simplified by ex
panding the A em and W fields ill powers of (£1 / 2 . 

Letting aSn)(x) refer to the terms in the cxpallsion 
of A~m(x), we find that to leading order A~1fl (X) = 

aS2
) (x ) and satisfies the following Maxwell equation, 

0,,0' a (2) 

G €ob3(wP )bo ' wO)(' 

WL1)OO"W(1)J"b + 2w(1)a . OWS1 )b) 

47rj:m(x) , (29) 

whf'!re we have introduced the coupling parameter G 
defined in Eq. (5). From this we ]earn that the first 
non-vanishing contribution to the em current is of 
order a3 / 2 and that it depends OIl the components 
WS1

)'i of the chargedW fields (i = 1 and 2), calculated 
at order a 1/2. Expressing the currr.nt in terlllS of G, 
we find 

G€ab3(W~1 )bO' W( l )« 

w11)oovW(1)J"b + 2wO)u . owS1)b)(30) 

It is easy to prove tha t this current is conserved, 

o· j em(x)=O (31) 

using the fact tha t at the classical level 
[w~ (x),w~ ( x')l = 0 and the fact that the W 
fields appearing in Eq. (30) satisfy th('! EOM, 
Eq. (20) . 

So far the bubble has been considered to consist 
purely of the scalar Higgs field and the associated 
cloud of charged W gauge bosons coupled to it. Ob
taining the contribution of the charged gauge W± 
fields, Eq. (30), to the em current for collisions of 
such bubbles is one of the important results of this 
derivation. 

However, fermions also contribute to the em cur
rent and have a significant impact on magnetic seed 
field production. One contribution W&i dis(;u,<;s~d re
cently in Ref. [19] and estimated there for the nucle
ation phase of the collision. Another, discussed in 
Sect. II C, occurs through the cOllductivity of the 
medium (5. This is one of the most important and 



best-known contributions and may be taken into ac
count through its associated current ]c(x), 

(32) 

where the usual assumption that Jc(x) is propor
tional to the electric field E has been made. De
tailed calculations of (/ in the early universe are avail
able [21]. 

To find MaX\vell's equation for the magnetic field 
§, 

v x ;tern , 

we multiply Eq. (29) by EijkOj, obtaining 

EijkOjOk O ' Aem 

EijkOjjzm . 

Expresing Eq. (33) in components, 

we immediately find the desired result, 

02§ = § x;em . 

(33) 

(34) 

(35) 

(36) 

IV. MODELING BUBBLE COLLISIONS IN 
0(3) SYMMETRY 

We will assess the importance of surface effects 
by making numerical simulations that can be mean
ingfully compared to earlier work in Refs. [12, 14]. 
The common dynarillcal framework is summarized ill 
Sect. IV A, with common geometrical aspects spec
ified in Sect. IV B. The representation of the mean 
scalar field for two bubbles p(x) = p2(X) in this ge
ometry, along with the arguments for its choice, is 
given ill Sect. IV C. The presence of other bubbles 
are taken into account in a mean-field approximation 
in IV D. Illitial conditions on the W fields , including 
boundary conditions and the constraints imposed by 
surface geometry, are ctiscussed in Sect. IV E. We 
specialize the theory to cylindrical coordinates in 
Sect. IV F. The model is applicable to both weak 
and strong first-order phase transitions and incor
porates some important medium effects absent from 
our former work. 

A. The dynamical framework 

The familiar conceptual features of our MSSM 
theory have been presented in Sect. II A. When the 
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Higgs couples to the other fields as it does in the 
MSSM through the Lagrangian of Eq. (I), strong 
and highly non-perturbative couplings arise forming 
a tightly coupled many-body system as the phase 
transition develops. SpeCific consequences of this 
were suggested and embodied in l1ef. [12], and these 
apply as well to the present work. 

One of the identified consequences of this coupling 
is that as the bubble growth occurs, the W± (and 
other constituents that we are iglloring here) that 
enter the bubble from the plasma gain their mass at 
the expense of thermal energy, a cooling process that 
continues as volume available to the VV increases 
with the bubble expansion. Another is that the cou
pled fields tend to follow the evolution of the Higgs 
field coherently. As they lose thermal energy, the VV 
passing into the bubble enter a single mode, a solu
tion to the EOM discussed in the previous section. 

This mode plays a special role, anct it is quite 
different from the more familiar ineoherCllt thermal 
modes outside the bubbles. One may think of it as 
a coherent state, much like a state of electrons in 
a superconductor (except that the Ware bosons). 
The mode of course evolves in time according to the 
EOM, and as the bubble expallds and displaces more 
of the volume of the plasma the occupation of this 
mode also grows. The dynamics driving it is clearly a 
non-equilibrium component of the pha.-.;(' transition, 
and it is a basic assumption of our EOM approach 
that these coherent fields give rise to the seed fields 
as bubbles merge before thermal equilibrium is re
established. 

There are of course many such field c:onfigmations 
that satisfy the EOM, and the one that is realized 
in a given bubble in the phase transition depends on 
the overall history of the process just discllssed. To 
calculate the net magnetic field produced ill bubble 
collisions properly, one would have to evaluate the 
field corresponding to each possible initial configura
tion and average over the ensemble of configurations. 

The net effect of this averaging procedure was ex
amined in Ref. [12] and found to be factor less than, 
but the order of, unity. Thus, to get a f,,1jr estimate 
of the net magnetic field it is not Jlecessary to explore 
the full range of possible initial conditions; rather, 
it is sufficient to examine one initial condition char
acteristic of the entire ensemble of possibilities. 

B. Bubble collision geometry 

For the application of our theory to the collision 
of two bubbles, we will be assuming, as in Ref. [14], 



that the bubbles are nucleated simultaneously at 
time t = tn at points z = ±zo located symmetrically 
about the origin on the z-axis with nucleation radii 
rns. Additionally, here we assume that the bubbles 
are well separated and non-overlapping before they 
collide. 

The scalar field of a single bubble may be repre
sented in general as 

(37) 

where r(t, x) is the shape of the field and Pc is its 
magnitude at the center. The r (t, x) that we will 
use in this paper, essentially equivalent to that in 
Ref. [14], is defined in Appendix A in terms the bub
ble nucleation time tn, nucleation radius r ns , surface 
speed Vwall, and surface diffuseness as· The surface 
diffuseness is approximately half the (listance over 
which the scalar field falls from its 10% to 90% at 
tn for large bubbles, i.e. bubbles with rns ~ 2as . 

The bubble nucleated at z = Zo > 0 is referred to 
as the right-hand (R) bubble and the one nucleated 
at z = - Zo < 0 as the left-hand (L) bubble. We 
assume axial symmetry so that the relevant spatial 
coordinates (r, z) for a point are its axial coordinate 
r = Jx2 + y2, its distance from the z-axis, and its 
longitudinal coordinate z, its distance from y - z 
plane that passes through the origin at z = O. 

It is helpful to trunk of the collision in terms of the 
evolution of spatial sm-faces that separate regions 
of the collision occupying true vacuum from those 
of false vacuum. The connectedness of the surfaces 
change as the collision process proceeds. 

Initially, for times t", < t < te, where tc is the 
collision time or time of merging of the bubbles, the 
boundary consists of two disconnected surfaces, one 
for the left-hand bubble i = L and the other for 
the right-hand bubble i = R. For times t 2: te the 
bubbles coalesce to form a region i = c with a single 
boundary surface, Se. 

The radius of the bubble smface RI /2 (t) is defined 
as the dis tance from the center of the bubble (its 
nucleation point) to the point at which the scalar 
field has fallen to half its central value. It of course 
depends on our choice of scalar field, whose details 
are given in Appendix A. The collision time may 
then be taken to be the time at which the radius of 
either bubble becomes equal to the distance of its 
nucleation point from the origin of the coordinate 
system, i.e. when R 1/ 2 (te) = zoo The solution of 
trus equation for our scalar field is given in Eq . (A9). 

The spatial points forming the boundary surfaces 
are then determined by the equation 

R(r, z) = R 1/ 2 (t) , (38) 
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where 

R(r, z) RR(r,z)B(z) + Rdr, z)B( - z) , (:~9) 

with 

RR(r, z) = Jr2 + (z - ZO)2 (40) 

being the dist ance from the center of the right-hand 
bubble at Zo to the point (r, z) OIl the surfa 'e, and 

Rdr, z) = Jr2 + (z + zo)2 (41) 

being the distance to the same point from the cellter 
of the left-hand bubble at - zo o 

After the bubbles merge, the right-hand clnd left
hand surfaces intersect on the x - y plane iu a circle 

of radius b(t) = J R 1/ 2(t)2 - z5 that expands at. a 

rate 

R 1/ 2(t) dR1/ 2 (t) 
-- -

b(t) dt 
db(t) 

( 42) 
dt 

Our model of scalar fi eld in the collision of two bub
bles, including the region of c:oalescence is given in 
Sect. IV C. 

Since the bubble collision geometry i~ axially sym
metric with the relevant spatial coordinate::; being 
(r,z), where z is the dis tance of a pOint from t.he 
y - z plane on the z-axis , and r = J x2 + y2 being 
its distance from the z-axis, cylindrical coordinat.e~ 
is the natural coordinate system for expressillg re
sults. In this coordinate system, the W fields may 
be t.aken to have the following form , 

w~(t,r,z) 

w~(t, r, z) 
w~(t,r, z) 

wo(x), v = 0 

xvwa(x), V = (1,2) 

WU(x) v = 3 z ' , (43) 

with w~ = _WZIt and we; = WO a . Corr(~sp()ndingly, 
we write the em current in cylindrical coordinates as 

j v (t, r, z) = (jo (t,r, z), ij (t,r, z), j z (t,r, z)) . (44) 

C. Mean scalar field in two colliding bubbles 

An expression for the mean scalFtf field p( x) = 
P2(X) for a pair of colliding bubbles may be expressed 
in terms of the non-overlapping portion of the scalar 
field, /::"p(x) , 

/::"p( x) pdx)(I- PR(X)/p(J 

+PR(x)(1 - pdx)/pc) , ( 45) 



where the scalar fields in the left-hand and right
hand bubbles, while still separated, are taken as 

pdt, T, z ) 

PR(t, T, z) 
Pcf"(t,T, Z + zo) 
Pcf"(t,T ,Z - zo) 

with f"(t,T ,Z) and Pc given in Eq. (37). 

( 46) 

Now, if the scalar fields were to simply add in the 
overlap region (which we know is not the case [12]) 
the scalar field would be 

pdx) + PR(X) , (47) 

which is as large as twice the size of that when they 
are well separated. What we have learned from the 
calculation in Ref [12] is that the scalar field , when 
the bubbles have completely merged , is actually half 
this value, so if we define 

1 
P2(X) = tlp(x) + 2(pdx ) + PR(X) - tlp(x )) , (48) 

then we obtain our ansatz, which is in agreement 
with the results of Ref. [14]. 

Because there is not much a priori gl.lidance on 
how to define 15(X) in the region where the bubbles 
begin to overlap, the accuracy of the expansion in 
terms of a appearing in Eq. (9) is accordingly dif
ficult to establish for any given 15(x). However , be
cause the peripheral region extends over a small vol
ume relative to that of the two bubbles, it is likely 
that the corrections for any reasonable choice will be 
rela tively insignificant. 

The evolution of the scalar fi eld in a collision with 
P2(X ) defined in Eq. (48) is shown in Fig. 1. This fig
ure shows the scalar field on which the calculations 
of Sect. V are based. The individual bubbles nucle
ate a t time tn = 0 on the z-axis centered at z = ±zo, 
with zo = 35 and nucleation radius Tn. .• = 20. Their 
scalar fields taken to have wall thickness as = 4 and 
Vwall = 1. Aside from our choice of surface diffuse
ness and some compensating adjustment in Tns and 
zo (the parameters zo and Tns are a bit larger than 
the ones used there so that with the thicker surface 
the bubbles do not overlap at t = to) the parame
ters and collision geometry closely matches that of 
Ref. [14]. Because of the larger surface diffuseness, 
this corresponds to a somewhat weaker phase tran
sition than that of Ref. [14] and thus provides an in
teresting contrast to the calculation presented there. 

The collision time is found from Eq. (A9) to be 
t = tc ~ 11 . The bubble radii at this time are 
R 1/ 2 (tC) = Zo = 35. For times t < tc the scalar field 
is approximately confined to two isolated regions, 
the two individual bubbles, and that after this time 
to just one region, the collision region. 
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FIG. 1: Evolution of scalar field in the collision of two 
bubbles. Nucleation is at tn = O. Field is plotted as fl 

full ction of z for r = 0 over the time interval 0 ~ t ~ 40. 

D. Medium containing many bubbles 

In a medium undergOing a fir st-order pha.se tran
sition there are many distinct regions 8; of scalar 
potential, each of which is either a single bubbl or 
a collection of mutually overlapping bubbles. The 
net scalar field p(x) for this system may thus be ex
pressed as a sum over the scalar fields p(i) (x) for 
each of the N regions, 

N 

p(x) = L l i)(X) (49) 

For such a system, the mass of a W± boson at any 
point x continues to be given by Eq. (17), where p(x) 
is the net scalar potential at the locat ion of the W. 

In this paper we are interested in the evolution of 
a t most two bubbles in this sum. But in tracking 
their evolution, we should not ignore the presence 
of the ot.her bubbles. We will account for them in 
a mean-field approximation by averaging over their 
locations and representing their collective effect by 
an average scalar field Pov, 

N' 

Pav (LP(i)(X)) 

_ ~./ d3 x fp (i)( t ,i) , (50) 
'L 

where V is the total volume over which the int.egral 
runs and the prime on the sum means we exclude 



the region(s) of explicit interest in the average. The 
quantity Puv thus acquires its specific value from the 
presence of other bubbles that appear as the phase 
transition develops. 

Since Puv is essentially the average scalar field aris
ing from the bubbles in the medium at the time of 
interest, at the onset of the phase transition Pav ~ 0 
and at the completion of the phase transition the 
scalar field becomes uniform with Pu-v ---> PO. Thus, 
Puv/ Po, with 0 < Pav/ Po < 1, is not only a mea
sure of the extent to which the phase transition has 
evolved but also tracks the relative density of the 
bubbles in this evolution. One might expect that 
the binary collisions that are of most interest in this 
paper dominate for Pa-v/ Po :s 0.1 - 0.2 and that for 
larger values simultaneous collisions of multiple bub
bles begin to contribute significantly. 

Accordingly, taking into account the average value 
of the mean scalar field Pav, and as long as Pav/ Po :s 
0.1 - 0.2, the variation of the mass of a W in the 
left-hand and right-hand bubbles when they are sep
arated is given by 

(51) 

respectively. In general, for a pair of bubbles in a 
medium experiencing any degree of overlap, m( x) is 
given by 

2 

m(x)2 = ~(P2(X) + Pav)2 , (52) 

where P2(X) is defined in Eq. (48). 
With m(O) referring to the mass at the center of 

one of the regions Si of the collision, clearly 

2 

(0) 2 - 9 2 2 
m = 2 Po =mw . (53) 

Since it is also true from Eq. (52) that 

2 

m(0)2 = 9
2 

(p2(0) + Pav)2 , (54) 

and the scalar potential P2(0) = Pc it follows that at 
the center of a bubble in the medium the scalar field 
is 

Pc = Po - Pav . (55) 

The quantity Pu'v determines the mass of the Win 
the bubble surface and thus plays a role in confining 
the W to the region of the bubble. Beyond this, the 
results of the theory are relatively insensitive to the 
specific value of Puv' 
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E. Initial conditions on W fields 

A meaningful comparison of the present theory 
to those of Refs. [12, 14] clearly requires that similar 
initial conditions be applied. In contrast to Ref. [12], 
th(~ initial conditions are imposed here on W fields 
in bubbles that are initially separated. 

Although our intent is to assess thc importance 
of surface dynamics by comparing the results of our 
present paper to those of Refs. [12, 14], we should 
keep in mind that there is no well-defined limit in 
which the present theory, which exhibits 00) sym
metry, exactly coincides with that of Ref. [12], which 
exhibits 0(1,2) symmetry. 

1. Boundar:1I conditions fOT individual bubbles 

As indicated earlier, in the dynamical framE~work 

of Refs. [12, 14] as a bubble expands it Ji .. places 
W in the thermal plasma which enter the bubbl<' in 
a single mode. The normalization of this mode in 
tht~ bubble (that is, in the true vacuum) is deter
rrJ..ined by requiring that the average nwnber density 
of W± in the bubble be equal to the number density 
of the W± quanta in the clisplaced plasma. This 
condition maintains the average density of W + to 
be roughly constant as a function of time and equal 
to the density of the W- inside the isolated bubble. 
As a consequence 

(56) 

with random relative phases. The linearity of the 
EOM in Eq. (20) guarantees Eq. (56) in isolated 
bubbles if a some initial time to w;' has the same 
magnitude and shape for both a = el, 2), 

a-I ( -) wl-'- to,x 

[) a=I( -) 
[)t WI-' to, X (57) 

where 0: is an arbitrary phase. 
Because the electromagnetic current in Eq. (30) 

is antisymmetric in the labels a and b this ClIrrent 
will vanish since the field W

U (x) for a = 1 has the 
same dependence on x as that for a = 2. Thus, in 
an isolated bubble the electromagnetic curn~nt will 
vanish. 

However when two bubbles, each Uleeting the con
dition in Eq. (56) collide, it is in general not the 
case that w~ (x) satisfying the equations of motion 
will be proportional in the region of overlap, and as 
a consequence em currents will form. This is the 



reason why magnetic fields are in general produced 
when bu bbles collide. We model this below by solv
ing the equations for the W fields with different sets 
of boundary conditions on w~ for a = 1 and a = 2. 

2. Boundary conditions for bubble collisions 

With Eq. (57) in mind, we turn our attention to 
finding boundary conditions for collisions so that 
the W± fields are as similar as possible to those of 
Refs. [12 , 14] . By requiring that the bubbles be sepa
rated at the initial time t = to [14] and tha t Eq. (57) 
is satisfied there is no field produced until the col
lision occurs, as in Refs . [12, 14] . 

The analog of the jump boundary conditions in 
Eqs. (7,8) at to in 0(3) are then 

W;(to, r, z) wdr, z) - wR(r, z) 

awi (to, x) awdr, z) aWR(r, z) 
(58) 

at at at 

and 

w;I(to,r,z) wdr, z) + wR(r, z) 

aw~I (to, x) awdr, z) aWR(r, z) 
(59) 

at at + at 
The functions wdx) and WR(X) are clearly the pro
files of the W fields in the left-hand and right-hand 
bubbles, respectively, at time t = to . To coincide 
with Eqs . (7,8), the sign of W~=l has been chosen 
opposite to that of W~=2 in one of the bubbles, while 
W~=l and W~=2 have been chosen to have the same 
sign in the other. The reason for the choice of the 
initial time derivatives is explained below. 

As discussed at the end of Sect. IV E 1, at t = to 
and the functions w L (55) and w R (55) have the same 
magnitudes and shapes. Thus we write 

nw f1JJ(to, r, z + zo) 
nw fW(to, r, z - zo) , (60) 

where fw(to, r, z ± zo) chosen similar to J«to, r, z ± 
zo) of the scalar field so that the W fields fill the 
bubbles uniformly [12] . The normalization constant 
nw is determined as in Refs. [12, 14] allowing W! in 
Eq. (ll) to be identified with wS1)d rather than with 

al /2 wS1
)d. Of course for times t > to the distribution 

of the W in the bubble will differ hom that of the 
scalar field since these fields evolve through different 
EOM. 

Boundary conditions on all the fields w~ and their 
time derivatives are also required to solve the EOM. 
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According to the requirements of Sect. IV E, w" and 
wg should be empty at t = to, so the boundary con
ditions on these quantities are 

WI (to, x) 

w~ (to, x) 

w I1(to, x) = 0 
11 -Wo (to, x) = 0 . (61) 

Boundary conditions on their time derivatives are 
determined by the constrained initial conditions, dis
cussed below. 

The initial time derivatives in Eqs. (58,59) assure 
tha t W of the plasma displaced by the expanding 
bubble end up populating the coherent mode inside 
the bubble in our 0(3) formulation. To achieve this, 
we take 

awdx,y,z) 
at 

aWR(r, z) 
at 

where the choice of nw is discussed in Appendix B. 
As long as Vwall > vw, nw is determined by j'w and 
r according to Eq. (B8)l. In general , nw --f nw, 
and the simple and natural choice f W = r a t t = to 
gives nw = nw. Perhaps unexpectedly, with the 
motion of the surface taken into account in our 0(3) 
formulation, the analog of the boundary condition 
on the derivative of the W z field in Eqs. (7 ,8) of the 
0(1,2) formulation that maintains the average den
sity of the W is not n,v = O. 

With the motion of the surface taken into ac
count in this fashion , the bounda ry condition on 
the derivative of the field continues to be the mech
anism by which the average density of the W re
mains e:onstant inside the bubble and expands with 
it. This happens in the 0(1 ,2) formulation of 
Ref. [12] as a consequence of the boundary condi
tionawz(To ,z) /aT = O. 

Choosing the distribution in Eq. (60) to have the 
shape of the scalar field J<(t, r, z) in Fig 1, the 
boundary conditions wi (to, r, z) and wi [ (to: r, z) are 
shown in Figs. 2 and 3 (with nw = 1). We will see 
explicitly how the em currents and associated mag
netic fields begin to form in the collision once the 

1 Note that the speed of a W boson in the surface of the 

bubble is given by vw "'" pwlVp'"f.,., +mfv where Pw ~ 
iii R.ns (to) is determined by the zero pOint. motion of the 
IV in the bubble and mw is the IV mass in the surface of 
bubble. For cases of interest Vw is expected to be less than 
V'W("tl· 
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FIG. 2: The initial condition w~ (to, r, z) for 'r = O. 

wI< 
- '-

FIG. 3: The initial condition w;I(to,r,z) for r = O. 

bubbles begin to overlap when we solve the EOM in 
Sect. V. 

For these calculations, we find it convenient to 
normalize the w~ fields to unity inside the bubbles 
rather than to nw and nw as in Eqs. (60,62). The 
normalization re-enters the calculation as a factor 
in the normalization of the em current as found in 
Sect. IVF. 

3. Auxiliary condition and constmined initial 
conditions 

We have used the freedom in choosing the bound
ary conditions to match our calculation to that in 
Refs. [12 , 14] . However, as discussed earlier, the ap
pearance of a spatial-dependent mass m(x) means 
that not all of the initial conditions are independent 
and must satisfy the constraints in Eqs. (27,28). Al
though t.his is a complication that was not a sig
nificant issue in Ref. [12], in 0(3) symmetry they 
are easily maintained in cy lindrical geometry, which 
is used for obtaining numerical results in subsequent 
sections. We will use these conditions to fix the time 
derivatives of w a and Wo at t = to using results found 
in Appendix C. 
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F. Cylindrical coordinates 

In view of the axial symmetry of the collision as 
specified in Sect. IV B wi th cylindrical coordinates 
the natural coordinate system for expressing results, 
the EOM in Eq. (25) with w~(x) given in Eq. (43) 
and em currents in Eq. (30) with jv(x) given in 
Eq. (44) are expressed in cylindrical coordinates in 
Ref [14]. For convenience, they are reproduced here, 

02 02 1 0 02 
o (- - - - ----+m2)wt+2 

ot2 or2 r or oz2 

o 

o 

o ( a 0 In m a 0 In m _ a 0 In m, ("'3) 
x ot Wo ot + rw or W z 0 Z ) l-' 

02 02 3 0 02 
2 fL 2 

(ot2 - or2 - -:; or - oz2 + m)w --:; 

o ( a 0 In mao In maO In m )("' ) 
x or Wo ----at + rw ----a:;:- - W z -----a;- y4 

02 02 1 0 02 
2 ( 

(&2 - or2 - -:;or - oz2 +m )w;+2 

o ( a 0 In mao In m _ a 0 In m )(6 ) 
x 0 z Wo ----at + rw ---a;:- W z -----a;- 5 

These EOM are equivalent to Eqs. (20) when 
constraints imposed by the auxiliary condition of 
Eq. (22) are satisfied; see Appendix C for the details. 
When these constraints are satisfied, Eqs. (G3,G4,G5) 
determine the W fields, w~. 

Equation (44) expressed in terms of these w~ pro
vide the em currents given in Ref. [14], 

(66) 

47Tj(X) 

(67) 

(68) 



With these expressions, current conservation 

ol/jl/(t,r, z) = 
ojo(t, r, z) 1 or2 j(t, r, z) 

ot +;- or 

ojz(t,r,z) =0 (69) 
oz ' 

can be shown to be satisfied as expected, and 
Maxwell's equation for B, Eq. (36), gives the de
sired seed fields. From these results we can infer 
the importance of surface dynamics for generating 
magnetic fields in bubble collisions. 

Adopting the convention that w~ with BCI and 
BCII are normalized to unity (in units of mw) in 
the bubble at t = to, the overall normalization 
of the em current is the product of the factor G 
and the square of nw introduced and discussed in 
Sect. IV E 2. Thus 

G--tn~G, (70) 

where G is calculated using the values of 9 and g' 
quoted below Eq. (3) and the value of nw is spec
ified in Eq. (72) of the Appendix of Ref. [12], fix
ing the average number density of W in the bubble 
equal to the number density of those W quanta in 
the thermal plasma that can make a traIlSition into 
the bubble without violating energy conservation. In 
this way, we find that Eq.(70) becomes 

n~G ~ -38.5 + 1.36Tc GeV 

2.32mw, (71) 

taking the transition temperature (in GeV) to be 
Tc = 166 from Ref. [17]. 

With the em current having the form given in 
Eq. (44), one can show that the solution of Eq. (36) 
takes the form 

B = (-y,x,O) B'" , 
r 

(72) 

where (-y,x,O)/r is a unit vector in the azimuthal 
direction. Thus, the magnetic field generated in the 
bubble collision lies in the azimuthal plane, with 
x and y components only, and encircles the z-axis, 
just as in the Abelian Higgs model and our earlier 
work [12]. 

Using Eqs. (36,72) and including the conductivity 
current from Eq. (32), we immediately obtain B4! in 
cylindrical coordinates as the solutioll of 

14 

where 

47rj '" = 47r ojz(x) + 47rr oj(x) (74) 
or OZ 

and we have used the fact that 

(75) 

In obtaining the above results, the following iden
tities are useful, 

a owg a owa ow~ 
o . w = at + 2w + r or - oz' (76) 

(77) 

and 

V. NUMERICAL RESULTS, as = 4 

Because the magnetic field is critical for determin
ing whether present day galactic fields <:ould have 
been seeded during the primordial EWPT, it is the 
most important prediction of our theory and the fo
cus of our numerical study. In the process of de
termining it we will explore the role played by the 
bubble surface in the production of these fields, as 
this has not been examined in previous studies. To 
achieve this understanding we will examine the W 
fields , the source of the em currents in our MSSM 
formulation, as well as the currents themselves. 

In this section we assume Vwall = 1. Although 
our theory as formulated accommodates wall speeds 
V'wall < 1 and (J #- 0, we postpone discussion of these 
effects to a later section. 

Our scalar fi eld in an isolated bubble for as = 4 
is the same as the one in our example of Sect. IV C. 
With the scalar field of an isolated bubble chosen 
in this way, the scalar field describing the collision is 
the same as the one shown in Fig. 1. The collision 1:).S

sumed to take place in an average scalar background 
field of Pav = .1mw (Pau/PO = 0.046), correspond
ing to a collision early in the evolution of the phase 
transition . 



With this scalar field, at t = to the radius of each _ 
bubble is R1j2(tO) ~ 24, so the bubble surfaces are 
separated on the z axis by 2(zo - R1j2(tO)) ~ 22. 
Although we show results for to < t < tc + 20, 
we have solved the EOM over the longer interval 
to < t < tc + I5tmax , where with ISt max = 29, at 
which time the radius of each bubble has increased 
to R1j2 (40) ~ 64. The numerical accuracy of the 
solution deteriorates rapidly for 1St > 20. 

We show results for both nucleation and colli
sions. The nucleation stage corresponds to times 
t < t c = 11 , during which time the bubbles may be 
considered as evolving approximately independent 
of one another. Collisions then correspond to the 
interval tc < t < t c + 20. 

A. Nucle ation stage of bubble evolution, a. = 4 

D1ll'ing the nucleation stage of evolution, prior to 
the collision, both colliding bubbles have scalar fields 
with approximately the same shape and wall speed. 
In this case, the W a fields are proportional for a = I 
and a = I I, and it is therefore sufficient to examine 
the fi elds in just one of the two bubbles. For this 
reason, for nucleation we drop the superscript dis
tinguishing the two boundary condi tions. To sim
plify the discussion of nucleation, we calculate the 
W fields in a coordinate system translated so that 
nucleation originates at the origin, Zo = O. 

The boundary conditions for our numerical simu
lations of nucleation are 

wo(to,X') 
w(to, X') 

w z (to, r, z) 

a 
at w z (to, r, z) 

o 
o 
fW(to ,r,z) 
ar(to , r, z) 

at 
(79) 

where fW(to , r, z) is the same quantity appearing in 
Eq. (60). Because these are the bubbles that initiate 
the collisions presented in Sect. V B below, the pa
rameters of j'w (to, r, z) are clearly the same as those 
for the collision (with nw = nw). Using the bound
ary conditions of Eq. (79), Eq. (C I7) specifies the 
initial condition for aw(to,X')/at and Eq. (CI8) the 
initial condition for awo(to, X')/at. The W fields are 
then calculated solving the EO M given in Sect. IV F 
with boundary conditions specified in Eq. (79) with 
the scalar field of the bubble appearing in the exam
ple of Sect. IV C. The resulting W fields are shown 
as a function of (t , z ) for r ~ 0 in Figs. 4,5,6. 
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FIG. 4: Evolution of 'W z field in a bubble after nucleation . 
The field is plotted as a function of (t, z) for ".. ~ O. 

0.02 
~ 0.0 
~ 

o 

tmw 

FIG. 5: Evolution of w fi eld in a bubble after nucleation. 
The fi eld is plotted as a function of (t, z) for r f'>j O. 

It. is clear from the results that the tV fields un
dergo a time-dependent evolution from nucleation at 
t = t Tl = 0 to the time of collision at t = t c = 11 . 
The dominant component of the field is of course 
wAt,r,z), since Wo and w vanish at nucleation by 
choice of the boundary conditions. These smaller 
components of the field grow with time in part be
cause their time derivatives, given by the initial con
ditions, are finite at t = to. There is no magnetic 
field associated with a single bubble during this in
terval for reasons discussed in Sect. IV E 1. However, 
there is a small field generated prior to t = t ,. in the 
collision of two bubbles as their surfaces, which have 
a finite diffuseness, begin to interpenetrate. 



FIG. 6: Evolution of Wo field in an isolated bubble. The 
field is plotted as a function of (t,z) for r ~ o. 

B. Bubble collisions, a. = 4 

We turn our attention to collisions, the source 
of magnetic fields. Using the boundary conditions 
given in Eqs. (58,59) and shown in Fig. 2 and 
Fig. 3 and the boundary conditions in Eqs. (61), 
Eqs. (CI3,C14) give the constrained initial condi
tions for ()wJJ(to,x)/()t and ()wJ~to,x)/at. Like
wise, initial conditions for ()w/(to,x)/at and 
()wb(to, x)/at are given in Eqs. (CI5,CI6). 

With the scalar field describing the collision as 
shown in Fig. 1, the profile of the region of bubble 
overlap in the collision at t = tc + 20 ;:::; 31 is shown 
in Fig. 7. At this time, the collision region extends 
along the z-axis from -R1/ 2 (31) - Zo = -91 < z < 
R1/ 2 (31) + Zo = 91. 

The fields w~(t, r, z), wo(t, r, z), and wa(t, r, z) for 
the collision are determined by solving the EOM 
given in Sect . IV F on the interval to :::; t :::; t c +8tmax , 

where to = 0 and 6tmax = 29. The results are illus
trated showing w; in Fig. 8 plotted in the x-z plane 
at t = tc + 8t with 8t = 20. The region over which 
W z ~ 0 delineates the region i = c of bubble coa
lescence, with the bubble collision region clearly in 
evidence. 

The em cm-rent jz(t,r,z), j(t,r,z) and jo(t,r,z) 
given in Eqs. (66,67,68) and calculated using these 
W fields at time t = t c +20 is shown in Figs. 9,10,11, 
respectively. The current is confined to a region that 
extends over a distance of ~ ±40 into the x - z 
plane and a distance of;:::; ±20 along the longitudinal 
direction. This region is quite comparable to the 
bubble overlap region at this time as shown in Fig. 7. 
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FIG. 7: Showing the projection of the surface Be of the 
collision region onto the x - z plane at time tf = tc + 20 
with Vw ,,11 = 1. The surfaces Be is defined by Eq. (38) 
with R 1/ 2 (tf) = 55. 

wi o. 
mw 

FIG. 8: w;(t,x) in the .r - z plane at t = tc + 20 for 
collisions of bubbles. 

In Fig. 12 we show the current J";(x) appearing in 
Eq. (73) for the azimuthal magnetic field. 

C. Magnetic fields in bubble collisions, as = 4 

The magnetic field calculated from Maxwell's 
Equation, Eq. (73), with the em current shown above 
and with boundary conditions as discussed is shown 
in Fig. 13. To facilitate comparison with the analo
gous results of Ref. [12J with 0(1,2) symmetry it has 
been plotted at intervals 8t following the onset of the 
collision comparable to the results given there. As 
expected, the magnetic field moves away from r = 0 
and increases in magnitude with t. 



4JTjz o. 
~ 

FIG. 9: Current 47rj.(t,x) in the x-z plane at t = tc+20. 

4 JTrj o. 
~ 

FIG. 10: Current 47rrj(t, x) in the x - z plane at t 
tc + 20. 

The corresponding fields calculated from Ref. [12] 
are shown in Fig. 14. Comparing Figs. 13,14 our 
magnetic field is about twice as large. As in the 
0(1,2) model, it is confined predominately to the 
region of bubble overlap shown in Fig. 7. The mag
netic field is also apparently smoothed out by the 
surface so that our result in Fig. 13 does not show 
the oscillations apparent in Fig. 14 and fills the re
gion of bubble overlap more uniformly. 

Thus, bubble surface dynamics seems to produce 
fields significantly larger in scale as well a.s magni
tude. It is possible that bubble walls of even smaller 
surface thickness might grow even larger. We quan
tify this in Sect. VI. Calculations for the magnetic 
field including conductivity and wall speed Vwall < 1 
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FIG. 11: Current 47rJo(t, x) in the x - z plane at t = 
tc + 20. 

FIG. 12: Current 47rl'(t,x) in the;J: - z plane at t = 
tc + 20. 

are given later in Sect. VII. 
We close this section by illustrating the impor

tance of the boundary condition owz(to)/&t. Re
sults for our present theory with nlv = 0 are shown 
in Fig. 15. Comparing Figs. 13 and 15 it is seen 
that the magnitude a.nd spatial scale of the mag
netic field both decrease by setting nw = O. This 
can be understood as follows. There are two points 
to be made. 

First, as noted in Sect. IV E 2, in the absence of a 
mechanism for W of the plasma to enter the bubble 
as it expands (nw = 0), the initial speed of expan
sion Vw (t = to) of the W field is determined by the 
zero point motion of the W in the bubble and its 
mass in the surface. With our choice of paramekrs, 
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FIG. 13: Magnitude of the azimuthal magnetic field in 
the transverse plane at z=O as a function of r· for a series 
of times t = tc + St, where St =5 (solid curve), 10 (short 
dash curve), 15 (medium dash curve) and, 20 (long dash 
curve). Field is calculated as in this work for as = 4, 
nw = 1, Vwall = 1, and (J = o. 
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FIG. 14: Magnetic field calculated in Ref. [12] in the 
transverse plane at z=O as a function of r for times t = 
tc + St. Legend is the same as in Fig. 13. 

the momentum arising from the zero point motion 
is 

1 
Pw ~ -R = 1/24:::::0 0.042, 

Os 
(SO) 

and the value of its mass in the surface is mw = 

gPav/-i2 :::::0 .0457. This suggests that as the expan
sion begins, 

pw 
vw(t = to) :::::0 

/ 2 2 
VPw +mw 

~ 0.68, (SI) 

which is both smaller than the speed of the bubble 
wall, V'wall = c, and close to the speed of expansion 
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FIG. 15: Magnitude of the azimuthal magnetic field in 
the transverse plane at z=O as a function of r. Legend 
is the same as in Fig. 13. Field is calculated as in this 
work for as = 4 and nw = 0, Vwa.ll = 1, and (J = o. 

the magnetic field seen in Fig. 15. As time proceeds 
the spatial scale of the W field, and hence the em 
current, increasingly lags the growth of the bubble 
wall. Eventually, mw approaches mw and the VV 
becomes even more confined to the interior of the 
bubble. The second point is that by choosing nw = 
1 so that the number of W populating the bubble 
grows in proportion to the volume displaced by the 
bubble, the ern cmrent natmally grows as well and 
leads to the larger magnitude seen in Fig. 13. 

This discussion gives the rationale for the specu
lation made in Ref. [14] that the scale and magni
tude of the magnetic field might be sensitive both to 
the boundary condition for owz/ot as well as to the 
steepness of the bubble surface. 

VI. SENSITIVITY OF MAGNETIC FIELDS 
TO BUBBLE WALL THICKNESS 

Since our theory accounts for surface dynamics, 
we expect its consequences to be quite different from 
earlier studies that did not address this aspect of the 
collisions. This expectation is based on the obser
vation [14] that when the surface is considered new 
terms appear in the EOM that manifest a strong sen
sitivity to the steepness of the scalar field in the bub
ble surface. Based on the observations given here, 
one might expect the importance of the surface to 
gTowas the surface becomes steeper and, conversely, 
less striking for a more difluse bubble surface. 

A quantitative measure of the sensitivity to the 
steepness of the scalar field in the surface may be ob
tained by comparing the calculation shown in Fig. 13 



to calculations with sharper walls. This sensitivity 
has, to our knowledge, never been studied quantita
tively in previous work. To obtain this quantitative 
measure, we compare here calculations with differ
ent surface diffuseness, as = 4 and as = 3. We show 
how the magnetic seed fields behave for as = 2 by 
comparing to the results of Ref. [14]. 
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FIG . 16: Magnitude of the azimuthal magnetic field in 
the transverse plane at z=Q as a function of T for a series 
of times t = te + Dt. Legend is the same as in Fig. 13. 
Field is calculated as in this work for as = 3 and nw = 1, 
Vwall = 1, and u = Q. 

The calculation in Fig. 16 is identical to the one in 
Fig. 13 but with as = 3. Comparing the magnetic 
fields in these two figures confirms that the peak 
size of the seed field Btlax(t = tc + 20, as)/m~ in
creases as the wall becomes sharper. In particular, 
decreasing as from as = 4 to as = 3 results in nearly 
doubling this peak field. 

What about the peak field for as = 2? Comparing 
Fig. 15 (as = 4) to Fig. 3 of Ref. [14] (as = 2), 
both of which are calculated with nw = 0, we see 
that decreasing as from as = 4 to as = 2 results 
in nearly a 5-fold increase in the peak field. Since 
Btlax(t = tc + 20,as = 4)/m~ = 8 from Fig 13, we 
conclude that with nw = 1 the peak field would be 
Bf!Jax(t = tc + 20, as = 2)/m~ = 40! 

VII. SENSITIVITY OF MAGNETIC FIELDS 
TO Vwalt AND CONDUCTIVITY 

Taking Vwall < 1 and (J =f 0 would of course mod
ify the results found in the previous section. To 
quantify their effects in our model, we examine the 
case as = 4, taking Vwall = 1/2 [19], and the same 
boundary conditions, shown in Fig. 2,3. 
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FIG. 17: Showing the projection of the surface Se of the 
collision region onto the x - z plane at time t f = to. + 20 
with Vwall = 1/2. The surfaces Se is defined by Eq. (38) 
with R 1/ 2 (tf) = 5.5. 
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FIG. 18: Magnitude of the azimuthal magnetic field in 
the transverse plane at z=O as a fUllction of T for a series 
of times t = te + 8t. Legend is the same as in Fig. 13. 
Field is calculated as in this work for 0." = 4 and n~l' = 1, 
Vwall = 1/2, and u = O. 

We first show the sensitivity to Vwall taking u = O. 
Results are shown in Fig. 18. To interpret them, it 
is useful to refer to Fig. 17, showing the region of 
bubble overlap at t = tc + 20 for Vwall = 1/ 2. There 
are several points to make. 

First, note that the scale of the magnetic field in 
Fig. 18 exceeds that in Fig. 13. This is because the 
magnetic field propagates with the speed of light and 
thus quickly escapes the bubble into the surrounding 
plasma. Secondly, we see that the peak magnetic 
field is larger than the peak magnetic field in Fig. U. 
The reason for this behavior is that the current is due 
to t.he W fields, which propagate in the plasma with 
an effective mass that is less than mw; hence, even 
though the bubble surface propagates with a speed 
less than the speed of light, t.he current outside the 
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FIG. 19: Magnitude of the azimuthal magnetic field in 
the transverse plane at z=O as a function of r for a series 
of times t = tc + ot. Legend is the same as in Fig. 13. 
Field is calculated as in this work for as = 4 and n~ = 1, 
V 'wall = 1/ 2, and a = 6.7T. 

bubble actually has a greater speed , allowing a larger 
magnetic field there. 

Next we show in Fig. 19 the same calculation but 
with a = 6.7T as used in Ref [9], taking T = Tc = 
199GeV [17]. It is again useful to refer to Fig. 13, 
as well as Fig. 18. There are several points to note 
here as well. First, the scale of the magnetic field 
has decreased in comparison to that in Fig. 18. This 
has occurred at the expense of the field outside the 
bubble, a consequence of the dissipation character
istic a -=I- O. Thus, the field tends to be confined 
or "frozen" in the bubble. Both of these points are 
both consistent with the discussion of Sect. II C. 

The net effect of V wall < 1 and a -=I- 0 is to pro
duce fields somewhat smaller than and of compara
ble spatial scale to those shown in Fig. 13, which was 
calculated in the absence of these effec ts . The fact 
t.hat there is such a small net effect is perhaps un
expected based on the experience with the Abelian 
Higgs model as discussed in Sec t. II C. The larger 
size found here has been explained from the physics 
of the current arising from t.he charged W as opposed 
to that arising from the phase of the Higgs field : in 
the latter case, the current is strict.ly confined to the 
region within the bubbles, but in the fonner case the 
current is no t so restric ted. 

VIII. SUMMARY AND DISCUSSION 

Using EOM derived from the MSSM, we have ex
plored magnetic seed field creation during a first or
der primordial EWPT, focusing on the role that bub-
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ble surface dynamics plays in creating such fields by 
extending the results of Ref. [14] . In our theory the 
charged gauge bosons W ± of the non-Abelian seC
tor and fermions, through the conductivity current , 
aJ'e the sources of the em current producing the seed 
fields. We develop a linearized version of the theory 
applicable for the case of gentle collisions, where the 
Higgs field is largely unperturbed by the collision 
process [1 2]. 

In the theory developed here, the W ± fields con
tributing to the em current evolve from initial con
ditions applied before the bubbles collide. These W 
fields initia lly fill the bubble uniformly and expand 
a t the same speed as the scalar field of the bubble 
containing them, consistent with the physical pic
ture [12] adopted in earlier studies. 

Because of our particular focus on the dynamics 
of t.he bubble surface , the EOM must be solved nu
merically to obtain the W± fields for nuclea tion and 
collisions. The magnetic field obtained from these 
solut ions were found to be larger in both magni
tude and scale than the corresponding one embody
ing 0(1 , 2) symmetry and jump boundary conditions 
at. the time of collision [11, 12]. By comparing re
sults calculated with surfaces of different slopes we 
found the seed fields to be quite sensitive to the bub
ble surface, and we obtained a quantitative measure 
of the sensitivity to the steepness of the bubble sur
face. These results help understand why our results 
are larger in scale and magnitude than those ignor
ing surface dynamics. 

We have not attempted to determine the present 
day magnetic fields that are seeded by our fields 
generated during the EWPT. This is a cOlllpliciited 
problem of plasma physics that has been studied ex
tensively. It is known that the characteristics of the 
primordial magnetiC field are vastly modified during 
cosmic evolution to the present day. To model tlJis 
evolution in magnetohydronamics, one first solves 
the equations for the period leading to the forma
tion of galaxies and galactiC clusters cOllsiderillg all 
relevant dissipative processes such as viscosity, and 
then fo r the evolution of these st.ructures illcluding 
the possibility tha t they provide a large-scale dy
namo. Such studies have led to quantitative predic
tions for magnetic field energy and coherence length 
at the present epoch. The most recent of these [22] 
suppor t the possibili ty that galactiC cluster magnetic 
fields may be ent irely primordial in origin. 

Our present results reinforce the hope that the 
EWPT is a promising source for production of seed 
fields in the MSSM for large-scale galactic and extra
galactic fields observed today. 
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APPENDIX A: THE SCALAR FIELD OF A 
BUBBLE 

In this appendix we describe our scalar field p( x) 
for a single bubble. This field is is taken to have the 
form 

p(t,r,z) = pcF(t,r,z) , (AI) 

where F(t, r, z) gives its shape and time
dependence, Pc = p(t, 0, 0) is its value at the 
center of a bubble, and r(t, 0, 0) = 1 fixes its 
normalization. 

As discussed in Sect. II A, in the absence of a 
medium p(x) is an instanton solution of Coleman's 
equation, Eq. (21), at nucleation t = tn. The mag
nitude of this solution is constant at Pc = Po to a 
high degree of accuracy throughout a region near 
the center of this bubble and then drops to zero at 
the surface. The scalar potential Po is determined 
by mw from Eq. (17) as 

2 g2 2 
mw = 2 Po · (A2) 

Taking mw and 9 from Eq. (4), we find from 
Eq. (A2), 

Po;:::: 176 GeV;:::: 2.19mw. (A3) 

Within a medium, many-body corrections to the 
scalar field may be taken into account by introducing 
an effective scalar field. In the absence of a detailed 
understanding, F(t, r, z) is taken to have the surface 
characteristics of the Coleman solution in the so
called thin-wall approximation, 

F(t, r, z) = _1_(1 _ tanh R(r, z) - Ros(t)) ,(A4) 
fs(t) as 

where 

fs(t) = 1 - tanh -Ros(t) 
as 

(A5) 
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maintains the normalization and pc ----> Po - Pau, 
where Pau accounts for the presence of the other 
bubbles on the average as discussed in Sect. IV D 
Equation (A4) has the structure of the scalar field 
in Refs. [14] and resembles the scalar field of Eq. (6) 
in Sect. V of Ref. [10]. The functional form given in 
Eq. (A4) is used to characterize the distribution of 
other constituents of the bubble as well. 

In Eq. (A4), R(r, z) is the distance from the center 
of the bubble to any point i = (r, z) in the medium, 
with as determining the fall off of the scalar field in 
the bubble surface. The function Ros(t) specifies the 
time-dependence of t.he bubble radius, 

(A6) 

and is parametrized in terms of the asymptotic wall 
speed Vwall and nucleation time tn of the bubble. 

Defil1ing R 1/ 2 (t) as the radius at which the 
scalar field is half its central value, we find from 
Eq. (A4,A5) that 

) as ( 2Ros(t) R 1/ 2 (t = -log 2 + exp . ). 
2 a. 

The radius of the bubble at nucleation, 
R 1/ 2 (t n ), is then 

as 2R t rns = -10g(2 + exp - ) , 
2 as 

showing that Rt ;:::: Tns for large Rtf as· 

(A7) 

(AS) 

\;\,Iith the nucleation centers for the bubbles lo
cated symmetrically on the z-axis at z = ±zo, 
the collision time tc for bubbles nucleated simul
taneously may be found by solving the equation 
R 1/ 2 (tc) = zoo Taking Ro.(t) from Eq. (A6), 

~ 
as -2+e "~ 

tc = tn + -- log[ ~ ] . 
2vwau -2 + e " s 

(A9) 

APPENDIX B: BOUNDARY CONDITION ON 
DERIVATIVE OF W z 

Requiring that the rate at which W± quanta enter 
the bubble be the same as the rate at which they 
lea.ve the modes from which they originated in the 
thermal plasma, we have 

d w d w 
dtNbubble(t) = dtNp1a"ma(t). (Bl) 

This condition ma.intains the average density of W 
inside the bubble roughly constant as a function of 
time. 



The quantity N;'Ya .. ma is given by Ni1a .. ma = 

pw(T)Vb'Ubble, where Vb'Ubble is the volume of the 
bubble and pw(T) is the density of the W± in the 
plasma at temperature T that are able to make the 
transition into the bubble. Thus, the right-hand side 
of Eq. (B1) may be written 

d ~v d 
dt Nplasma(t) = pw(T) dt Vb1lbble , (B2) 

where d/dtVb'Ubble is the rate at which the bubble 
displaces the plasma volume. 

Since the volume of the bubble is the same as the 
volume occupied by its scalar field, we may write 

Vb"bble(t) = J r(t , i)2dV . (B3) 

Then, taking pW (T) = 2mwn~v from Eq. (72) of the 
Appendix of Ref. [12], with J2mw the relativistic 
normalization of the W wave function, we find 2 

d j' or(t i)2 
pW (T) dt Vbu.bble = 2mwn~ a; dV(B4) 

Likewise, N!:bble is determined as 

N!:bble(t) = 2mw J wz(t, i)2dV. (B5) 

Thus, the left-hand side of Eq. (B1) may written 

d w 
dtNb"bble(t) 4mw 

x J Wz(t,i)ow~,i) dV . (B6) 

or 

4nwn~mw 

To obtain Eq. (B7) have used Eq . (60) and taken the 
boundary condition on the time derivative of the W z 

field at t ~ to to be determined by the same function 
that determines the shape of wz(to, i) in Eq. (60), 
given in Eq. (62) . 

The normalization nw in Eq. (B7) may now be 
determined by equating Eqs. (B4,B7) at t = to, with 
the result 

I J or2(to, i)/otdV 
nw = nw J Ofw2(to, i)/atdV (B8) 

2 To avoid confusing the notation for the magnitude of 
Wz (to, x) with other components of the W field, we call 
this magnitude here nw (called w in Ref. [12]). 

22 

APPENDIX C: CONSTRAINED INITIAL 
CONDITIONS IN CYLINDRICAL 

COORDINATES 

III this Appendix we express the constrained ini
tial conditions discussed in Sect. N E 3 in cylindrical 
coordinates using the specific form of the W field at 
t = to motivated and discussed in Sect. IV E 2. 

Referring to Eqs. (26,27,28) the auxiliary condi
tion in cylindrical coordinates is enforced by express
ing Xa(x), defined in Eq. (23), and OXa.(x)/ot , with 
the aid of Eqs. (76,78). This gives 

and 

oxa(x) 
at 

oWo " ow" ow~ -- +2w· +r-- ---
at or OZ 

2( a oln m a oln m 
+ w0---at +rw ~ 

a
olnm ) 

wz~ (C1) 

a (owo a ow" ow~ .) - -- +2w +r- - ---
at at or OZ 
2 a (( a oln m a oln m 

+ at w0---at +rw ~ 

a oln m)) 
W z ~ . 

. uZ 
(C2) 

Equation (C2) may be equivalently expressed as 

10wo 02wo 2 0 

+ -:;. or + oz2 - m Wo , (C3) 

by using the EOM, Eq. (63), and canceling the term 
02WO/ot2. 

Using Eqs. (C1,C3), the conditions that XU(t = 
to,x) = 0 and OXu(t = to,i)/ot = 0 become, re
spectively, 

o 
a a a a a a 

( Wo + 2w" + l ' ~ _ W z ) 
at or OZ 

2(' aolnm "olnm 
+ Wo ---at + rw a:;:-

oolnm) 
wz~ (C4) 

and 

o 



In accord with Sect. IV A, a t t = to for both nu
cleation and collisions, the W quanta occupy w~ 
with the other components Wo and w a empty. Im
posing the boundary conditions wa (to, x) = 0 and 
wg(to, x) = 0, Eqs. (C4,C5) simplify and become 

o oWo(to, x) ow~(to, x) 
Ot oz 

') a( _)o lnm(to ,x) 
- -wz to, x oz (C6) 

and 

o 

(C7) 

With m(t, x) a continuous function , Eqs. (C7,C6) a.s 
well as the auxiliary condition Eq. (22) are satisfied. 

1. Collisions 

The colliding bubbles, which are nucleated simul
taneously at time t = tn at points z = ±zo located 
symmetrically about the origin on the z-axis with 
nucleation radii rns , are naturally assumed to be well 
separated and non-overlapping before they collide, 
as required by the discussion in Sect. IV B. Thus, 
the boundary conditions and initial conditions on 
the W fields are established well before the collision, 
satisfying the requirements of Sect. IV E. 

The functions WL, WR and their time deriva
tives depend on rand z entirely through R = 

Jr2 + (z ± zO)2 a t t = to, just as for the scalar field 
(see Eqs. (60,62)). Thus, 

and 

a wz±(r, z ) 
oz Ot 

z ± Zo a 
~oRwz± 

z ± Zo a 
-r-orwz± , 

z ± Zo a oWz ± 
-----

R oR at 

(C8) 

z ± Zo a oWz ± = ---- (C9) 
r or at 

where the positive sign corresponds to the left-hand 
bubble and the negative sign the right-hand bubble. 

The initial condition on own l Ot is found from the 
alL'<iliary condition in Eq. (C7), 

a owa 1 a 20Wa 

(2 + r or) 8t -:;: or r 8t 
a ow~ 
oz 8t ' (CIO) 

which determines ow(J(t = to, x)lot in terms of 
ow~(t = to,x)lot. Using Eq. (C9) and the boundary 
conditions on w~(to,x) in Eqs. (58,59), Eq. (ClO) 
becomes 

1 a 2 owa Z ± Zo a ow~± 
--1' - = ----- (Cll) 
1'01' Ot l' or Ot . 

This may be integrated immediately to give 

a a( _) 
otW to ,x 

(C I2 ) 

For a =11 we find 

a II( _) 
at w to ,x 

(C I3) 

and for a =1 

Z + Zo a 
---:;:2 (at wdr, Z) 

a 
Ot wdr = 0, z)) 

Z - Zo a 
---:;:2 (Ot w R( r, z) 

a 
at wR(r = 0, z)) . (CI4) 

Next, using Eq. (C6) and once again the bound
ary conditions on wz(to, x) in Eqs. (58,59), we find 
owolot for Bcn to be 

ow6' (to, x) 
Ot 

and for BCl to be 

ow6(to ,x) 
at 

a 1I( _) f1(-) ozwz to ,x +2wz to,x 

x : z In m(to,x) (CI5) 

:Z w;(to,x) + 2w~(to,x) 
x !lnm(to, x). (CI6) 

2. Nucleation 

Since the positively and negatively charged W 
field evolve exactly the same in a single bubble with 



our initial conditions, the distinction between the 
charged fields is immaterial for nucleation and we 
drop the superscript on wa(t, T, z) that distinguishes 
between W+ and W-. Then, assuming that the 
bubble is nucleated at the origin, T = Z = 0, with 
nucleation radius Tns , and assuming that the scalar 
field of the bubble expands in accord with Eq. (A6), 
the initial conditions for tn ::::; to < < tc are found as 
follows. 

For ow/at, the initial condition is found from 
Eq. (C7) with the boundary conditions on wz (to,55) 
in Eqs. (79). As in Eqs. (CI3,CI4), we find 

:t w(to, 55) 

(CI7) 
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