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3He comagnetometer readout for
the nEDM experiment at SNS

Steven Clayton
Los Alamos National Laboratory

QOutline:

* nEDM@SNS measurement technique
* ?He comagnetometer

* SQUID noise requirements

» Pickup loop sensitivity

* LANL SQUID test stand
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neutron EDM measurement

* ultracold neutrons (UCN) are produced and

v, = (2u,B,+ 2ed E)/n | stored in superfluid ‘He
* non-zero d, causes the precession frequency to
be slightly different for E and B parallel vs. anti-
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neutron EDV measurement

* ultracold neutrons (UCN) are produced and

v, = (2u,B,+ 2ed E)/h | storedin superfluid ‘He
* non-zero d, causes the precession frequency to
be slightly different for E and B parallel vs. anti-

—
_o_. parallel
* polarized 3He in the measurement cell acts as the

neutron spin analyzer and comagnetometer.

3
v, = 2#330/’7 ;H He—=2>p +t !~764 keV
He precesses ~10% faster than the n, and the capture

v, = (2u,B,- 2ed E)/h cross-section is strongly total-spin dependent.
event rate proportional to sin(2m{v,—v,) t)

& || 'AANAN.

v;=2u3B,/h

# of events

* Frequency shift due to d , would show up in this signal

» systematic changes in B, also shift the frequency

Polarized 3He comagnetometer

LHe-filled cells are loaded with polarized 3He

Ultracold neutrons (UCN) are produced from cold
neutrons by using the LHe as a superthermal source
experimental optimization calls for *He concentration
~1012/cc and temperature 0.4 K

— long mean-free-path in 0.4K *He

» each 3He samples B-field over entire cell volume
— concentration low enough not to dominate UCN storage time
The signal amplitude from such a dilute concentration
of 3He is ~6 fT outside the measurement cell
— SQUID gradiometer is required to measure 3He precession.




Large gradiometer

Extremely Sensitive, Very Long Baseline Planar SQUID Gradiometer

R. Cantor and J. A Hall, STAR Cryoelectronics, Santa Fe, NM USA

A. N. Motlochov and P. L Volegov, Los Alamos Nanhonal Laboratory, Los Alomos, NAd USA

We have developed an extremely sensitive, low-Tc first-order planar gradiometer with a very long baseline of 9 cm. The
thin-film gradiometric pickup loop consists of two series-configured 3 cm x 6 cm pickup loops with center-to-center spacing
of 9 cm fabricated on a 150 mm Si wafer. The pickup loop is connected to the input circuit of a separate dc SQUID chip using
superconducting wire bonds. The measured magnetic field sensitivity of the gradiometer referred to one pickup loop is
0.105 nT/®,, and the intrinsic noise of the dc SQUID coupled to the thin-film pickup loop typically is 3 pd /Hz". This results
in a magnetic field noise of 0.3 fT/Hz" and a magnetic field gradient noise of 0.033 fT/cm-Hz". Measurements were carried
out in our magnetic shielded room.

Slide from talk by Savukov, “Magnetic shielding calculations,” at Feb. 2008 nEDM meeting at ASU

SQUID noise requirements

| Flux gh g vs. gradh ter position

Total flux through gradiometer

Flux through near loop only

Total flux per gradiometer o)

*  We expect 2000 ud, amglitude flux through
each gradiometer at the *He precession

aloiaigl

frequency (10-100 Hz). 3 35 ais

*  The flux through each SQUID is (ncidewai
®;~0.01 P, = 20 uP,

* For the SQUID noise not to significantly M M,
degrade nEDM precision, we need > 0, = T Lw il

of, < (26uHz)/3, or a SQUID flux noise of NA? 3
N < (0P OAT3/8 = (4 uo/ VT2 o5 (0,) sors

(or ~0.5 fT/VHz referred to gradiometer half) r g

based on Chibane et al., Meas. Sci

* Summing over 8 gradiometers improves the
Technol. 6 (1995) 1671.

situation if the noise/interference is
uncorrelated.




Relative pickup sensitivity vs. source position

Projections of 3D plot

epth in cell
(BO direction)

- S

3 cm from edge of pickup

SQUID principles

A Josephson junction is a formed by two weakly coupled superconductors.

A superconducting quantum interference device comprises two Josephson
junctions in parallel.

The dynamics of each Josephson junction are described by:

— 1% Josephson equation: I.=1, sin«——nPhase difference between the

/ ' \ macroscopic wave functions of the two

superconducting electrodes
supercurrent

aeross Junction maximum supercurrent (critical current)

— 2"9 Josephson equation: voltage across junction
dd 2e2n 2n
do _ U _ _U ‘/

di h @,

For U#0, the current across the junction oscillates with the Josephson frequency:

L 2af, =2V x483.6 MHz/uv

W,
0

Typical SQUID voltage swings of up to 50 uV correspond to intrinsic operating frequencies
of up to ~25 GHz.

SQUIQs can see electromagnetic interference over very broad band!




Low-noise SQUID operation for 3He precession readout

* demonstrated by LANL magnetometry group
— |. Savukov et al., Journal of Magnetic Resonance 195 (2008) 129-133
= extrapolated to nEDM conditions, &f; ~ 3.4 uHz per 500 s measurement (need
&f, < 26 puHz for nEDM)

SQUID =
o] ‘gl:]
Control ﬂ
Signals
1 Duta
Acquisition
Current Sy
Generat L —!
'.f
Aux.signals | I
Condition

*  What about practical implementation into much larger, more
complicated, less ideal nEDM apparatus?

— apply lessons of LANL magnetometry group:

* e.g., no conductors may penetrate Faraday cage: battery power all
electronics, use optical readout

— test electronics within Faraday cage for SQUID compatibility.

nEDM cryostat

3He Purifier

Magnet Package

Dilution

Beam Entrance Refrigerator

\ Central Detector

3He Plumbing &
Cryostat Actuators




Electronics Block Diagram
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LANL nEDM SQUID test apparatus
under construction . | shield room

fiber optic link
PC

batteries

designed to test configurations similar to the nEDM apparatus
— will test electronics for compatibility with SQUIDs, e.g., temperature
monitors, photomultiplier tubes.

— will test long leads between pickup loop/SQUID/room-temperature
electronics

could be configured to test materials for ferromagnetic
impurities

SQUIDs mounted and bottom shield




Electronics/DAQ for first cooldown

PFL100 PCI-1000
| —— programmable PFL controller,
fluxed-lock loop test signal,
output filter, etc.

/

SR560 low-noise
laptop preamp

HPIB { computer (gain=10)

HP35665A Spectrum Analyzer
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SQUID signal into analyzer
unplugged, analyzer input terminated

background-subtracted

Parameters:

+ small gradiometer w/square coils (see
Cantor et al., [EEE TRANSACTIONS ON
APPLIED SUPERCONDUCTIVITY, VOL. 17, NO.
2, JUNE 2007)

= 0.6 fT/b, (from Cantor et al. paper)

* 1.90 V/®, (measured in SQUID tuning)

* SR460 preamp gain = 10

+ 10 kHz filter on PCI-1000 output

+ 2-3 times the nEDM noise requirement without trying too hard

-- no Faraday cage around electronics
-- facility-powered equipment (no batteries)
* but,
-- further noise improvement may be difficult
-- setup was very far from nEDM configuration
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