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Cosmic Ravs in the AtmosDhere 
Mostly protons and a (charged, strongly 

interactina heavv oarticles, -99%
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DO/{] Mostly muons (charged, EM-interacting heavy particles, -
electrons (charged, EM-interacting, light particles, -300/0). 

Neutrinos are weakly interacting and can be ignored. 
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Muons Penetrate Significant Depths 

2 meters (6.5 ft) of rock removes 
about 1000 MeV* of energy from 

muons. 

Or. .. muons with less 
than 1000 MeV of 

incoming energy will stop 
in the rock. 

The average energy of a cosmic ray 
muon is 3000 MeV and will pass 
through 6 meters (20 ft) of rock. 

* Me V ~ Million electron Volts 

Or ... half of the cosmic ray 
muon flux will stop in 6 meters 

of rock. 
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Attenuation Radiography with Muons 

Searching for Hidden Chambers in Pyramids 
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Predicting Volcanic Eruptions 

Tanaka, Nagamine, et. al. 
Nuclear Instruments and Methods A 

507:3, 657 (2003) 
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Luis Alvarez, et. al. 
Science 167, 832 (1970) 

Arturo Menchaca, et. al. 
current effort, see 

http://www.msnbc.msn.comlidl4540266/ 
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FilJlJre 4: Analyzing the i,ntemal 
structure of a volcanic zone using muons 
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Interaction in Matter 
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Both muons and electrons are scattered and stopped in matter. Higher energy 
(hard , mostly muons) component of cosmic-rays goes through, while lower 
energy (soft, mostly electrons) component stops in objects. 
Detecting both we can measure scattering density and stopping power of 
different objects. 
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Physics of interaction: multiple scattering 

Particle with 
momentum p 
and velocity f3 --r-

L 

Scattering distribution is 
approximately Gaussian 
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and the width of the 13 .6 
distribution is related to eo = --

the material P f3 
__ L_ 

Scattered particles 
carry information from 
which material may be 
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identified. 

(A is a radiation length) 

Material A,cm 8o, mrad* 

Water 36 2.3 

Iron 1.76 1,1.1 

Lead .56 20.1 

*10 cm of material, 3 Gev muons 



Cosmic-Ray Muon Tomography 
Padiographic imaging with cosmic- ray muons 
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Attenuation in Small Objects 
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Energy Spectra 

Cosmic-ray muons 
II 
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The main difference between muons and electrons is their mass 

• muons are -200 times heavier 
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E,MeV 

Because of this difference, muons lose energy much slower for broad range of energies 

Distribution of energies means distribution of ranges 
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tJ/e mixture in modeling and experimen 
Experiment: 30.9 events/s 
Simulation: 24.8 events/s from muons (1.7 mU/cm2 

+ 6.2 events/s from electrons (1 .7 e/cm2) 
Total : 31 +/- 6 events/s (with assumed data 
acquisition efficiency 87%

) 
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1-parameter vs. 2-parameter discrimination 
1 parameter 

r 

>' 0.7 rl ---H~~====----~ 0.6 I Humans 1 

5 0.5 -U 
15 

e 
n 
c 10 

Q; 0.4 
~ o 0.3 r--~ 
a. 

y 

0' I . V V ' V > 

~ 0.2 J: i--r. H
2
0

2 

g. 0.1 _-R6X 
en 0 I Teflon- ---------~ 

o 10 20 30 40 50 60 70 80 90 100 

Scattering density o 10 20 30 40 

Radiation Length (em) 

There could be less false positives in 2-parameter space 

50 

Not so effective, if both parameters are strongly correlated (mass and density) 

Doesn't work, if there is no correlation at all (mass and color) 
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MLSto 9 Reconstruction • pi 
Particle i with energy E traverses the volume if its energy exceeds the resistance Ry 
along the path Yi . Voxelize the area to be imaged. Approximate, for each ray i = 1, ... , M: 

N 

Maximize likelihood function w.r.t. p: R == Ep = ~ L. P 
Yi z zk k· 

M =1 

L (p) = ~ J[1- H(~p)fi H(~~!:~dPap;iCles ~i=O 
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Reconstruction of simple scenes 
Monte Carlo simulations: assume energy distribution is a log-normal mixture, and 
a 2 MeV/g/cm energy loss. 

Geant 4 simulations: reconstruction assumes energy distributions is a log
normal mixture. 

Stopping Reconstruction for Monte Carlo Simulations 

Mean reconstruction fidel 

q, - 1.34 

10 simulations. 15 iterations 
AI Fe W 

Actual 5.40 15.75 38.60 
Estimated mean 3.14 9.77 31 .30 
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Mean Stopping Reconstruction for Geant Simulations 
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Stopping density estimations 
Boxplots for Stopping Densi,ties Boxplots for Stopping Densities 
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Exposure time: 1 minute (50 simulations) Exposure time: 2 minutes (50 simulations) 

Boxplots: compare empirical distributions without making 
assumptions on the underlying statistical distribution. 
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-ni muon tracker design 
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xperiments 
-----~~i 

Using a mini muon tracker developed at the 
Los Alamos National Laboratory we 
performed experiments of. simple 
landscapes of various materials, including 
TNT, 9501, lead, tungsten, aluminium, and 
water. Most common scenes are four two 
inches thick step wedges of different 
dimensions: 12"x12", 12"x9", 12"x6", and 
12"x3"; and a one three inches thick 
hemisphere of lead with spherical hollow, 
and a similar full lead sphere. 

W stepwedge 



Conclusions 
• Analysis of stopped charged partic!les provides a 
complimentary view to scattering tomography and helps to 
resolve medium and low-Z materials. 
• Using scattering and stopping together we can 
discriminate better between different materials and detect 
potential threats in shorter time. 
• Stopped particles can be measured with the same muon 
tomography apparatus. 
• We developed reconstruction techniques for attenuation 
cosmic-ray tomography and demonstrated their 
performance in simulations. 
• We build a mini-muon tracker and performed a series of 
demonstration experiments with vari,ous simple objects. 
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A Range Muon Tomography Performance Study for 
the Detection of Explosives 

L. Cuellar, K. N. Borozdin, K. Chung, 1. A. Green, N. W. Hengartner, C. Morris, and L. 1. Schultz, 
Member, IEEE, N.P. Reimus, lD. Bacon , W. Vogan-McNeil 

Abstract-Soft cosmic ray tomography has been shown to 
successfully discriminate materials with various density le\'els due 
to their ability to deeply penetrate matter, allowing sensitivity 
to atomic number, radiation lengtb and density. Because the 
multiple muon scattering signal from high Z- materials is very 
strong, the technology is well suited to the detection of the illicit 
transportation of special and radiololgical nuclear materials. 
In addition, a recent detection technique based on measuring 
the lower energy particles that do not traverse the material 
(range radiography), allows to discriminate low and medium Z
materials. This is sbown in [4] using Monte Carlo simulations. 
More recently, using a mini muon tracker developed at Los 
Alamos NatiOnal Laboratory, we performed various experiments 
to tryout the radiation lengtb technology. This paper presents 
tbe results from real experiments and evaluates the likelihood 
that soft cosmic ray tomography may be applied to detect high
explosives. 

I. INTRODUCTION 

S Off cosmic rays are subatomic particles that collide with 
the upper atmosphere to produce pions that decay to 

the scene . The examples we consider range in complexity of 
the background clutter. 

muons , electrons and positrons . Most muons reach the earth's Fig. I. Final Mini Muon Tracker mechanical design 

crust where they penetrate deeply into matter (3]. Electrons 
also reach the crust but because they are less energetic , they 
stop faster. These muons and electrons can serve as probes 
for tomographic imaging . Multiple muon scattering has been 
succesfully applied to identify high Z- objects like shield
ing materials and special nuclear and radioactive materials. 
However, imaging of low-Z materials using multiple muon 
scattering are very noisy due to the low signal-to-noise ratio 
of thcse materials (5] and [6] . An alternative tomographic 
imaging technique, based on range radiography seems promis
ing [4]. This technique exploits the fact that lower energy 
particles are more likely to stop while traversing an object. 
Image reconstruction with this technique on simple synthetic 
landscapes using data from Geant Monte Carlo simulations 
(I], (2] are encouraging . 

The challenge is to mature this technology and transition it 
from working in Silica to enabling imaging of real scenes. To 
this end , Los Alamos National Laboratory has build a portable 
mini muon tracker (MMT) . This muon tracker is constructed 
from sealed aluminum drift tubes, which are grouped into 
twenty-four 4 feet 2 squared planes . The MMT can be moved 
via a pallet jack or a fork lift. This paper presents the resul ts of 
our first data collected from that instrument. The aim in each of 
the analyzed examples is to identify explosives hidden within 

All authors are with the Los Alamos National Laboratory, Los Alamos. 
NM 87545. (emails: {Ielicia, kbor. kiwhan. a-sreen , nick, cmorris, schullz, 
nreimus, jbacon, vogan} @lanl.gov) . 

Fig. 2. Completed Mini Muon Tracker to enable full track reconslrucltion 
of cosmic ray muons and electrons. 



II. EXPERIMENTS 

All experiments performed are simple landscapes of various 
materials placed on top of a r plywood table . Materials 
include TNT, 9501, Lead, Thngsten, Aluminum, and water. 
Most common scenes are four two inches thick step wedges of 
different dimension: 12' x 12" , 12" x 9", 12" x 6" and 12" x 3", 
one three inches thick hemisphere of lead with spericaJ hollow, 
and a similar full lead sphere. 

III. IMAGE RECONSTRUCTION 

We are currently in the process to apply our image re
construction technique based on stopping to all these scenes. 
Results should be available and ready to report by the time of 
the Nuclear Science Symposium. 
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