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We demonstrate the stochastic nature of cavitation in a binary metallic liquid CU46Zr54 during 
hydrostatic expansion by employing molecular dynamics (MD) simulations. The activation volume is 
obtained from MD simulations and transition state theory. Extrapolation of the pressure dependence 
of the activation volume from our MD simulations to low tensile pressure agrees remarkably with 
the cavitation experiments. We find that classical nucleation theory can predict the cavitation rate 
if we incorporate the Tolman length derived from the MD simulations. 

Cavitation or t he formation of bubbles in metastable 
liquids, has been investigated experimentally and the­
oretically since Lord Rayleigh [1-6], yet there remain 
considerable uncertainties in the underlying descriptions. 
While it has been exploited for practical uses including 
ultrasonic cleaning [7, 8] and sonoluminescence [9], cav­
itation is directly relevant to undesirable natural events 
including volcanic eruptions and void formation in solids 
or glasses that degrade their mechanical, physical and 
chemical properties (e.g., fracture, shear banding and 
corrosion). In particular cavitation during isochoric cool­
ing of a metallic liquid may lead to voids at grain bound­
ary triple junctions or randomly dispersed in a metallic 
glass. This has been difficult to characterize for most 
metallic glasses because they are normally multicompo­
nent. However, bulk binary metallic glasses have recently 
been developed (e.g., Ni-Nb and Cu-Zr glasses), thus sim­
plifying the analysis for elucidating the physics underly­
ing cavitation in engineering metallic glasses and alloys. 

Cavitation in metastable liquid is a fluctuation-driven 
process that is described using classic nucleation theory 
(CNT) [10-12]. However, direct application of CNT to 
cavitation is complex, considering the closeness of the 
thermodynamic state to the spinodal, and the lack of 
reliable constraints on such parameters as surface ten­
sion. Molecular simulations (molecular dynamics and 
Monte Carlo method) and statistical theories have pro­
vided some insights into this phenomenon at a more fun­
damental level [13- 20]. However, recent molecular dy­
namics (MD) simulations of cavitation dynamics in a 
single-component liquid appear to disagree with CNT in 
the cavitation rate, likely due to uncertainties in esti­
mating the surface tension [13, 14]. In order to connect 
MD simulations with transition state and nucleation the­
ories and with experiments, we report MD simulations of 
cavitation in a binary metallic liquid, CU46Zr54, under 
negative pressure. Our studies shows that cavitation can 
be described as a random Poisson process. Thus using 
the activation volume obtained from the transition state 

theory and the surface energy from the Tolman length 
model, we find that CNT predicts the cavitation rates 
in accord with direct MD simulations. We characterize 
the pressure-dependence of the activation volume within 
a limited range of pressure and show that the extrapo­
lation to lower pressures leads to good agreement with 
experiments. 

Our MD simulations use the Rosato-Guillope-Legrand 
potential [21, 22] for Cu-Zr alloy extracted from density 
functional theory calculations on CuZr compounds and 
implemented in the ITAP molecular dynamics program 
[23]. Previous studies [22, 24, 25] showed that this po­
tential is accurate: the predicted glass formation tem­
perature ("-'700 K), bulk structure, elastic moduli, and 
viscosity agree with available experiments. 

We first construct binary CU46Zr54 systems ranging 
from 2000 atoms to 54000 atoms with random atom po­
sitions. Using an integration time step of 1 fs, we melt 
the systems at 1200 K and equilibrate them for 100 ps for 
subsequent cavitation simulations. For tensile loading, 
we expand the cell at a uniform expansion rate of 2x 108 

s-1 at 1200 K using a Nose-Hoover thermostat (constant 
volume-temperature or NVT ensemble). In order to ex­
plore the stochastic nature of cavitation, we carry out 100 
independent calculations for a given initial, metastable 
state. In each of such runs, we change only the initial 
velocity distributions (via changing the random number 
seed for velocity assignment) and observe the cavitation 
dynamics. To calculate the cavity volume within the bi­
nary liquids we use a grid-based void analysis method 
[26]. 

Fig. l(a) shows the pressure evolution as a function of 
volume (or bulk strain) for the 54000-atom system un­
der tension at a constant strain rate and fixed tempera­
ture (T). With increasing strain, pressure (P) decreases 
steadily (AB) until it reaches the pressure minimum B. 
There is a drastic decrease in the magnitude of P after 
B due to tensile stress relaxation accompanying rapid 
cavity nucleation and growth (Be). The system then 
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FIG. 1: (a) The pressure-volume plot for the 54000-atom sys­
tem under hydrostatic tension at 1200 K ; inset: an example 
of the cavity near C ("-'I nm in diameter). (b) Pressure evo­
lutions for 100 independent NVT runs, all started with the 
same configuration at P=-3.16 GPa in (a). 

reaches a steady states (CD) where P increases slowly. 
Cavitation during BCD is confirmed by direct analy­
sis, and an example of the cavity is shown as an inset to 
Fig. l(a). The cavity is approximately spherical but with 
a rugged surface at the MD scales. 

In order to analyze the onset of cavitation of this 
metastable binary liquid we follow its evolution under 
a fixed bulk volume and temperature. We choose various 
starting configurations from Fig. 1 (a) prior to the pres­
sure minimum B, to explore homogeneous cavitation at 
different loading conditions. For each such configuration , 
we perform NVT simulations (with fixed bulk volume and 
temperature) and observe the cavitation dynamics under 
the prescribed tensile loading. The point of cavitation 
is obvious in the change of the instantaneous bulk pres­
sure. Starting from a specific initial configuration [e.g., 
near B in Fig. l(a)], we carry out 100 independent NVT 
runs; for each run, a different random number seed is 
used for initial velocity assignment. Fig. 1 (b) shows the 
results from 100 runs all starting at a pre-cavitation load­
ing of P=-3.16 GPa. For each run , P remains constant 
for a while and then increases rapidly as a result of cav­
ity nucleation and growth, finally reaching a plateau in 
which the stress is in equilibrium [Fig. l(b)J . The pre­
and post-cavitation va.lues of P are the same for all 100 
independent runs. However , cavitation occurs at very 
different individual waiting time (twait). Here twa it is the 
instant at which the pressure amplitude decreases to 85% 
of the pre-cavitation value. 

For a given pre-cavitation pressure, the statistical runs 
yield 100 values of twait used to construct the probabil­
ity distribution [solid line in Fig. 2(a)J . Here each point 
was broadened into a Gaussian width of 15 [27J. Fitting 
the solid line to a Poisson process leads to the dashed 
line with an expected waiting time T=97 ps. The nucle­
ation or cavitation rate follows as V==.1/(NT) , where N 
is the system size. Here we obtain v=1.9 x 1Q5 S-1 per 
atom for the 54000-atom system at pre-cavitation pres­
sure of -3.16 GPa and 1200 K. To determine whether 
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FIG. 2: (a) Probability of cavitation obtained from 100 in­
dependent runs on the 54000-atom system (solid line) and 
Poisson fitting (dashed line). T=1200 K, and P=-3.16 GPa. 
(b) The cavitation rates (per atom) for four different system 
sizes at the same loading conditions. 

N =54000 is sufficiently large for studying cavity nucle­
ation, we perform similar simulations for N =2000, 6750 
and 16000. Fig. 2(b) shows that v is similar for three dif­
ferent system sizes with N~6750 (rv2 x 105 s-1 per atom 
or 1034 s-1 m-3), indicating that cavity nucleation is a 
local phenomenon. 

Using transition state theory, we can write the cav­
itation rate as vcx:exp( _~Ge /kBT), where kB is the 
Boltzmann constant. The Gibbs energy of activation 
~Ge=~nedP-~SedT if we neglect the minor com­
position change near the cavity. The activation vol­
ume ~ne=(8~Ge /8P)IT, and the activation entropy 
~Se=(8~Ge /8T)lp. Our simulations are performed 
at a fixed temperature, so the ~Se term can be ne­
glected. From transition state theory and the definition 
of v (l/NT), we obtain 

An8 = 8(kBTlnT) il 
LlH oP IT' (1) 

Thus, given T for various tensile loading, ~ne can be 
obtained as a function of P . (Similarly, the activation 
entropy can be obtained via varying temperature at a 
fixed pressure.) For the 54000-atom system, we also per­
form runs at lower tensile loading to obtain longer wait­
ing time T. Fig. 3 shows the plot of kBTlnT vs P, and 
its slope is the a.ctivation volume. Assuming a linear de­
pendence of activation vol ume on P, we fit the k B TIn T­

P data points with a quadratic function. This leads to 
~ne=820 . 7+229 .3P at T=1200 K where pressure is in 
GPa. and volume in A 3 . For a pre-cavitation pressure 
P=-3.16 GPa, the activation volume is 94 A3 at 1200 
K, corresponding to about 5 vacancies. 

The cavitation nucleation experiments were carried on 
CuZr metallic liquid to form cavities by rapid cooling, 
which created negative hydrostatic pressure inside the 
capsule; cavities formed within a timescale of 7 s at 1173 
K and P=-0.5 GPa (triangle, inset to Fig. 3) [28]. To 
compare with the experiments, we extrapolate the fitted 
k B TIn T-P relation to lower pressures, and the extrap-
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FIG . 3: ksT In T (left axis) and T (right axis) as a function 
of initial pressure P for the 54000-atom system at 1200 K. 
MD results: squares; dashed line: quadratic fitting . Inset: 
Extrapolation of MD results to experimental scales. The ex­
periment point (triangle) has T ",7 s for a system size of 1022 

atoms. 

olation is in accord with the experiments (Fig. 3 inset) . 
This agreement between the experiments and direct MD 
simulations lends support to the transition state theory 
analysis. Note that the local strain rate or the cavity 
growth rate is different in our MD simulations with dif­
ferent loading and in experiments. The higher the pre­
cavitation tensile loading, the higher the growth rate. In 
Fig. 3, the rate effect is implicitly incorporated in the 
pre-cavitation pressure. 

For steady states where a cavity is in equilibrium 
with the surrounding liquid, the surface energy (0") is 
O"=6.P 12r, where 6.P is the pressure difference across 
the cavity surface and r is the radius of the cavity at 
steady state. We construct a cavity within the liquid at 
1200 K, vary the bulk volume and let the system achieve 
equilibrium, and then measure the steady-state cavity 
size and pressure to calculate the corresponding 0". The 
results of 0" for different cavity sizes are shown in Fig. 4 
(squares), which can be fitted with the Tolman equation: 

0"0 
O"(r) = - -2-8 ' 

1+ r 
(2) 

where the Tolman length 6=0.3 A, and 0"0=0.59 J m- 2 

is the surface energy for a planar surface (Fig. 4). We 
apply the Tolman equation to both steady and transient 
states. For P=-3.16 GPa and T=1200 K, 6.n8 =94 A3 
and r=2.8 A; the surface energy corresponding to this 
activation volume is 0"=0.49 J m- 2 from Tolman equation 
(triangle in Fig. 4) . 

In classical nucleation theory, the driving force for cav­
ity nucleation is 6.C=41l"r2 0" + 11l"r3 P , where the first 
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(surface) term is the free energy gain due to surface ten­
sion of a cavity and the second (volume) term is the re­
duction while creating the cavity. 6.C peaks at the crit­
ical value (6.C") with the critical radius r"=20" I P, and 
6.C·=161l"0"3 / 3P2 . Assuming the activation volume at 
P=-3.16 GPa and T=1200 K is the corresponding crit­
ical nucleus size, we have r·=2 .8 A, 0"=0.49 Jm- 2 , and 
6.C"=1.23 eV. 

Given 6.C· at P=-3 .16 GPa and T=1200 K, CNT 
allows us to estimate the nucleation rate at the criti­
cal point: lI=lIO exp{ -6.C· I kBT}. Considering that the 
cavitation in vitreous liquids is related to the sponta­
neous and cooperative reorganization of individual clus­
ters name shear transformation zones (STZs), we also 
believe that the kinetic feature of liquid is related to 
the merging of 0: and (3 relaxations in high tempera­
tures [29]. So the prefactor lIo is related to the maxwell 
relaxation time [30], configurational entropy of critical 
cavity and the size of STZ zones. Thus, the prefac­
tor lIo=(l/N')(/l)ry) exp{n6.8IkB}. Here J1 is the shear 
modulus, ry is the viscosity, J1lry is the Maxwell relax­
ation frequency, N' is the number of atoms in the STZs 
(around 100 atoms as for glass [31]), 6.S is the configu­
rational entropy per atom, and n is the number of atoms 
occupying the same volume as the critical cavity. Fl'om 
our previous MD study [25], J1=2 GPa and ry=0 .2 Pas 
under similar conditions. We assume 6.8 is about 1 kB , 
similar to the entropy of fusion according to Richard 's 
rule, and n=5 as shown above . It follows that lIa is 
about 1.48xlOlO S-I, and II is <"V I X 105 S-1 per atom 
which agrees well with our direct MD simulations (2x 105 
S-I). This agreement shows that the cavitation rate can 
be predicted from CNT with remarkable accuracy if the 
Tolman length is considered . 

Our systematic study shows that cavitation in a binary 



metallic liquid is a random Poisson process, and such 
complex processes can be well described by the transi­
tion state theory and classical nucleation theory. We 
demonstrate the methodology of obtaining the activation 
volume (or entropy) indirectly from MD simulations and 
the transition state theory, and deducing cavitation rate 
directly from MD simulations. The classical nucleation 
theory converges with the simulations in describing the 
cavitation rate if the Tolman length effect is considered. 
Our results also bear implications to broadly defined nu­
cleation and growth processes. 
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