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Spin relaxation and linear-in-electric-field frequency 
shift in an arbitrary, time-independent magnetic field 

Steven M. Clayton 

Department of Physics, University of Illinois, Urbana, IL, 61820 

Abstract 

A method is presented to calculate the spin relaxation times T1 , T2 due to a non­
uniform magnetic field, and the linear-in-electric-field precession frequency shift 
6WE when an electric field is present, in the diffusion approximation for spins 
confined to a rectangular cell. It is found that the rectangular cell geometry 
admits of a general result for T1 , T2, and 6WE in terms of the spatial cosine­
transform components of the magnetic field. 

Keywords: 

1. Introduction 

An experiment to measure the neutron electric dipole moment (nEDM), 
to be installed at the FnPB beamline at Oak Ridge National Laboratory, will 
utilize a helium-3 comagnetometer in the central, superfluid-helium-filled mea­
surement cell [11 [2]. The heli um-3 polarization must remain high over the entire 
measurement period, ~lOOO seconds, as the helium atoms precess in the hold­
ing field and diffuse within a rectangular cell. Also, as there is a strong electric 
field E applied across the cell, a subtle effect, in which the interplay of the 
motional v x E field with gradients in the static magnetic field cause the pre­
cession frequency to shift linearly with E [3], must be well-understood or shown 
to be negligible. Design optimization of the experimental apparatus includes 
calculating the helium-3 spin relaxation times T J , T2 , and linear-in-electric-field 
frequency shift 6WE due to given magnetic field non-uniformities. 

In this article, a method is shown to calculate these quantities in the dif­
fusion approximation in a rectangular cell and for an arbitrary magnetic field. 
The starting point for the relaxation times is the Redfield theory of spin re­
laxation [4]. In second order perturbation theory these can be written, for a 
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holding field in the z direction, as [5] 

1 2 - =, (kxx(wo) + kyy(wo)) , 
T} 

~ __ 1_ 2k (0) 
T2 - 2TJ +, zz , 

(1) 

(2) 

where the spectral density is given in terms of magnetic field perturbations hi(t), 

1100 

kij(w) = - (hi(t)hj(t + r)) coswrdr 
2 -00 

(3) 

Here, the total field in each direction i is Hi(t) = (Hi(t)) +hi(t), such that aver­
age perturbation (hi(t)) = 0, and Wo = ,(Hz(t)) is the average spin precession 
frequency. 

McGregor [6] calculated the ensemble average correlation of the field pertur­
bations seen by a diffusing particle in the case of a time-independent, uniform 
gradient of Hz in the x-direction, 

(
OH )2 

(hz(t)hz(t + r)) = ox
Z 

(x(t)x(t + r)), (4) 

resulting in an analytic expression for T2 in a rectangular cell, 

(5) 

We relax the requirement of uniform gradient and find, in the case of a rect­
angular prism cell, that TJ and T2 can be written in terms of the components 
of the 3D cosine transform of hq(f') over the cell volume. The same technique is 
applied to dressed spins [7], with uniform holding field and non-uniform dress­
ing field, by mapping non-uniformities in the dressing field to equivalent non­
uniformities in the holding field. In Section 3, a variation of the technique is 
used for the linear-in-electric-field frequency shift. Finally, as an example, in 
Section 4 the relaxation times and linear-in-electric-field frequency shift due to 
a superconducting rod near the cell are computed. 

2. Correlation functions in the diffusion limit 

The correlation function of hi can be expressed as integrals over the cell 
volume weighted by the probability density p( ia, t) that the particle is at ia at 
the initial time to, and the joint probability density p(i, tlia, to) that a particle 
at ia at time to will be at i at time t. Thus, [6] 

(hi(to)hi(to + r)) = r diahi (io)p(ia , to) ( di"hi(f')p(i, to + rlia, to). (6) iv iv 
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The particle density will be taken as uniform in the cell, p(i, t) = I/V. The 
joint probability is the solution to the diffusion equation, 

:tP(i, tlia, to) = D\l2p(i, tlia, to), 

subject to reflecting boundary conditions at the walls, 

\lp(is , tlia, to) . n = 0, 

(7) 

(8) 

where is E Sand n is normal to the wall. In a rotated coordinate system 
(x', y', Zl) aligned with the cell walls, the solution for a Lx x Ly x Lz box with 
walls at x' = ±Lx/2, y' = ±Ly/2 and Zl = ±Lz/2 is 

p(i', tl~, to) = p(X', tlx~, to; Lx)p(y', tly~, to; Ly)p(z', tlz~, to; Lz), (9) 

with the ID solution dependent on the time difference T = t - to, [6] 

1 2 00 I I 

'"' _n2 ,,2 Dr/ £2 . n1Tx . n1Txo - + - ~ e x sm -- sm --
Lx Lx n=1,3,... Lx Lx 

2 00 I I 
'"' _n2 ,,2 Dr/ £2 n1TX n1TXo +- ~ e x cos -- cos --. 

Lx , Lx Lx 
n=2,4,." 

(10) 

It will be convenient to recognize the following: 

00 

( I / I / 1 2 '"' p x -Lx 2, tlxo-Lx 2, to; Lx) = Lx + Lx ~ 
n=i,2,3, .. 

(11) 
Putting Eq. 9 and p(~, to) = I/V into Eq, 6, changing the limits of integra­

tion to 0 ::; q; ::; L-, for each dimension q; and using Eq, 11, we have 

x ~ l, dx~ dy~ dz~ hi(X~ - Lx/2, y~ - Ly/2, z~ - Lz/2) 

I I I 

C C C cos nx1Txo cos ny1Tyo cos nz1Tzo 
nx n1J n z Lx Ly Lz 

x ~ r dX' dy' dz' hi (x' - Lx/2, y' - Ly/2, Zl - Lz/2) 
V lv' 

nx1TX' ny1TY' nz1TZ' 
CnxCn,yCnZ cos -L- cos -L- cos -L-

x y z 

in which the factor Cn has been introduced, 

Cn = { ~ 

3 

if n = 0 
otherwise. 

(12) 

(13) 



We identify the 3D cosine transform of hi(r) within Eq. 12, 

~ r dx' dy' dz' hi(x' - Lx/2, y' - Ly/2, z' - Lz/2) 
V lv' 

n x 7rX' n y7rY' n z 7r Z' 
x cos -L- cos -L- cos -L-' 

x y z 
(14) 

(where the integral is over the range x' E [0, Lx], y' E [0 , Ly], z' E [0, Lz]), giving 
finally 

00 

(15) 

with the characteristic time Tc for a given spatial mode defined by 

(16) 

Putting this expression into Eq. 3 and performing the integral over T gives 

(17) 

Substitution into Eqs. 1 and 2 results in complete expressions for the longitu­
dinal and transverse relaxation times. 

For arbitrary fields including field maps, the cosine-transform amplitudes A 
can be numerically calculated by fast discrete cosine transform (DCT) over hq(f) 
sampled at a sufficient number of points throughout the cell volume. In this 
case the summation over nq is truncated accordingly, and accuracy is checked 
by increasing the number of sample points and comparing results. 

2.1. Extension to dressed spins with non-uniform dressing field 

An RF magnetic field with amplitude BI applied transverse to the holding 
field Bo modifies the effective precession frequency of a particle. In terms of 
dimensionless "dressing parameters" [8] 

X= I BI y = ,Bo 
WRF' WRF ' 

( 18) 

in the limit Y « 1 the effective gyromagnetic ratio becomes [7] 

(19) 

Thus for a dressing field with spatially varying amplitude Bl (f) = (B1) +bB I (f), 
the equivalent variation 15130 in the holding field Bo is given by [1] 

- chcff 
,cffbBo <-> b,cffBo = Bo ax bX = Bo,J1(X)bX, (20) 
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The expressions from the previous sections can be used to calculate T2 for the 
dressed spin with a non-uniform dressing field by setting 

I ----> leff, 

Wo ----> leff Eo, 

where the variation bED in the holding field itself has been included in hz . 

3. Linear electric field frequency shift 

(2l) 

(22) 

(23) 

A spin moving though an electric field experiences a motional magnetic field 
that may, in conjunction with gradients of the magnetic field, produce a shift 
in the precession frequency dependent on the electric field direction and magni­
tude. [3] Of particular concern in searches for electric dipole moments are effects 
that are linearly proportional to the electric field E. These may mimic effects 
expected for an electric dipole moment , thereby creating a "false EDM." 

As shown by Lamoreaux and Golub [9], the linear-in-electric-field frequency 
shift for spins in a confined volume is given by the expression 

(24) 

where the perturbations can be written more generally as 

Expanding the expression for bWE and keeping only terms linear in E results in 

The cosine-transform method developed in the present work can be used to 
compute Eq. 26 in the diffusion limit for the nEDM cell geometry. While the 
expressions , 

y(t) = Yo + it vy(t')dt', y(t - r) = Yo + it-r 

vy(t')dt', (27) 

were used in Ref. [9] to eliminate y in favor of an expression with vy, here we 
remove the velocity components from the correlation functions and use instead 
the Fundmental Theorem of Calculus and the above expression for y(t -r). The 
correlation functions can then be written 

(28) 
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o 
(hy(t - T)Vy(t)) = (hy(t)vy(t + T)) = OT (hy(t)y(t + T)). (29) 

In the latter expression, averages are assumed to be independent of the overall 
time offset t, as appropriate for a stationary problem. 

The expressions in Section 2 are modified to give the correlation function 
in the diffusion limit in terms of the cosine-transform components of hy(n and 
y(n , 

(hy(t)y(t - T)) = (30) 

(31 ) 

Performing the integral in Eq. 26, we have 

leading to an expression for the frequency shift, 

"?E 
bWE =--

c 
L (1 -)2C~ C~ C~ [An{hy} An{y} + An{hx} An{x}]. 

1 + WQT;)" x y z 
nx,nll,nz 

(33) 
The summation can be reduced by computing the cosine transform components 
of x(n and y(n analytically, 

if nx = 1,3, ... ; ny = n z = 0 

otherwise. 

The result for the frequency shift in the diffusion approximation is 

4. Example application employing the discrete cosine transform 

(34) 

The bulk of the computational effort required for practical application of the 
present technique is in finding the cosine transform amplitudes An of the field 
non-uniformities. The form of Eq. 14 is amenable to numerical computation 
with Fast Fourier Transform software libraries. The example below uses the 
multidimensional discrete cosine transform (DCT) feature of the freely-available 
software library FFTW3 [10]. Input to the DCT for each field component is an 
array of field perturbations hq(T) sampled over the cell volume at NxNyNz 
grid points, and the output is an array of DCT amplitudes which, after scaling 
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by 1/(8Nx Ny Nz ), correspond to the desired amplitudes An. The summations 
in Eqs. 17 and 35 are truncated according to the amplitudes available from the 
DCT. Accuracy of the result can be checked by increasing the number of sample 
points and repeating the computation. 

We calculate the effect of a superconducting rod placed near the cell in an 
otherwise uniform holding field. For an infinite-length rod along the z axis and 
through the origin in a magnetic field Bo applied along the x axis, the net field 
around the rod is [11] 

a2 

Bp (1 - 2:)Bo cos ¢, 
p 

(36) 

B4> 
a2 

. 
(1 + 2)Bosm¢, 

p 
(37) 

where a is the rod radius and (p, ¢) are polar coordinates in the xy plane. While 
the cosine transforms of B x , By derived from these equations (appropriately 
translated to the desired location of the superconducting rod) could perhaps 
be calculated analytically, here the equations are used to generate a field map 
that is subsequently run through the machinery to produce values for T1 , T2 , 

and bWE. Results are shown in Figure 1, with physical parameters given in the 
caption. 

5. Conclusion 

A method to calculate spin relaxation times and the linear-in-E frequency 
shift in the diffusion approximation was presented. The technique is based on 
the observation that, for a particle diffusing in a rectangular cell, the correlation 
function of a position-dependent field is the weighted sum over the squared 
cosine-transform components of the field (see Eq. 15).3 

As the formulation is intended for practical computation in a rectagular cell, 
the result is for the complete 3-dimensional geometry. It could also be applied to 
a cylindrical cell if the field variation in coordinates transverse to the cylinder 
axis can be neglected. Actual computation is done using fast discrete cosine 
transforms of the field components. This method could be used for example 
in magnet coil design optimization: given a field map, T J , T2, and bWE can be 
quickly evalulated and combined into a figure of merit. 
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Relaxation times vs. distance of rod from cell 

Frequency shiH vs. distance of rod from cell 

~ .., 
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Figure 1: Calculated (a) relaxation times Tl, T2 and (b) frequency shift (iwE due to the 
magnetic 'fi eld distortion from a 3-mm-diameter, infinitely-long superconducting rod para llel 
to the z-axis and placed near the cell. The parameters are I = -20393.963 radG - 1s-l 
(gyromagnetic ra tio fo r 3He), D = 428 cm2 /s (corresponding to a temperature of 450 mK [1 2]), 
Bo = 10 mG (applied para ll el to the x-axis) , E = 100 kV /cm (parallel to Bo ), cell dimens ions 
L x = 7.8 cm, L y = 10 cm, L z = 40 cm. 
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