
LA-UR-
Approved for public release; 
distribution is unlimited. 

~Alamos 
NATIONAL LABORATORY 
----EST. 1943 ---

Title: Spin relaxation and linear-in-electric-field frequency shift in 
an arbitrary, time-independent magnetic field 

Author(s): Steven M. Clayton 

Intended for: Journal of Magnetic Resonance 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution , or to allow others to do so , for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



Spin relaxation and linear-in-electric-field frequency 
shift in an arbitrary, time-independent magnetic field 

Steven M. Clayton 

Department of Physics, University of Illinois, Urbana, IL , 61820 

Abstract 

A method is presented to calculate the spin relaxation times TI , T2 due to a non­
uniform magnetic field, and the linear-in-electric-field precession frequency shift 
8WE when an electric field is present, in the diffusion approximation for spins 
confined to a rectangular cell. It is found that the rectangular cell geometry 
admits of a general result for TI , T2 , and 8WE in terms of the spatial cosine­
transform components of the magnetic field. The result is applied to the case 
of a permanently-magnetized dipole impurity near the cell. 

Keywords: 

1. Introduction 

An experiment to measure the neutron electric dipole moment (nEDM), 
to be installed at the FnPB beamline at Oak Ridge National Laboratory, will 
utilize a helium-3 comagnetometer in the central, superfluid-helium-filled mea­
surement cell [1][2J. A non-zero EDM would manifest as a difference in the 
Larmor precession frequency when electric and magnetic fields are aligned ver­
sus anti-aligned. In the nEDM measurement, the helium-3, which also acts as 
neutron spin analyzer, will be used to correct for drifts in the magnetic field. 
The helium-3 polarization must remain high over the entire measurement pe­
riod, ",,1000 seconds, as the helium atoms precess in the holding field and diffuse 
within a rectangular cell. Also, as there is a strong electric field E applied across 
the cell, a subtle effect, in which the interplay of the motional iJ x E field with 
gradients in the static magnetic field cause the precession frequency to shift 
linearly with E [3J and thereby falsely signal an EDM, must be well-understood 
or shown to be negligible. Design optimization of the experimental apparatus 
includes calculating the helium-3 spin relaxation times TI (longitudinal), T2 (de­
phasing), and linear-in-electric-field frequency shift 8WE due to given magnetic 
field non-uniformities. 
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In this article, a method is shown to calculate these quantities in the dif­
fusion approximation in a rectangular cell and for an arbitrary magnetic field . 
The starting point for the relaxation times is the Redfield theory of spin re­
laxation [4]. In second order perturbation theory these can be written, for a 
holding field in the z direction, as [5] 

1 2 
Tl =, (kxx(wo) + kyy(wo)) , (1) 

1 1 2 
T2 = 2Tl +, kzz (O), (2) 

where the spectral density is given in terms of magnetic field perturbations hi(t), 

(3) 

Here, the total field in each direction i is Hi(t) = (Hi (t)) +hi(t), such that aver­
age perturbation (hi(t)) = 0, and Wo = ,(Hz(t)) is the average spin precession 
frequency. 

McGregor [6] calculated the ensemble average correlation of the field pertur­
bations seen by a diffusing particle in the case of a time-independent, uniform 
gradient of Hz in the x-direction, 

(
8H )2 

(hz(t) hzCt + T)) = 8x
z 

(x(t)x(t + T)) , (4) 

resulting in an analytic expression for T2 in a rectangular cell, 

(5) 

We relax the requirement of uniform gradient and find, in the case of a rect­
angular prism cell, that Tl and T2 can be written in terms of the components 
of the 3D cosine transform of hq(T) over the cell volume. The same technique is 
applied to dressed spins [7], with uniform holding field and non-uniform dress­
ing field , by mapping non-uniformities in the dressing field to equivalent non­
uniformities in the holding field . In Section 3, a variation of the technique is 
used for the linear-in-electric-field frequency shift. Finally, in Section 4, the 
method is applied to compute the relaxation times and linear-in-electric-field 
frequency shift due to sources of magnetic field non-uniformities near the cell: 
magnetic dipole impurities in given orientations and positions, and an infinitely­
long superconducting rod. 

2. Correlation functions in the diffusion limit 

The correlation function of hi can be expressed as integrals over the cell 
volume weighted by the probability density p(io, t) that the particle is at TO at 
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the initial time to, and the joint probability density p(f', tlf'o , to) that a particle 
at f'o at time to will be at f' at time t. Thus, [6] 

(hi(to)hi(to + T)) = i df'ohi (f'o)p(f'o , to) i df'hi (f)p(f', to + Tiro, to). (6) 

The particle density will be taken as uniform in the cell, p(f', t) = 1/V. The 
joint probability is the solution to the diffusion equation, 

%tp(f', tlf'o , to) = DV2p(f', tlf'o, to), 

subject to reflecting boundary conditions at the walls, 

Vp(rs, tlf'o, to) . n = 0, 

(7) 

(8) 

where f's E Sand n is normal to the wall. In a rotated coordinate system 
(x', y', z') aligned with the cell walls, the solution for a Lx x Ly x Lz box with 
walls at x' = ±Lx/2, y' = ±Ly/2 and z' = ±Lz/2 is 

p(r' , tl~, to) = p(x', tlx~ , to; Lx)p(y', tly~, to ; Ly)p(z' , tl zo, to; Lz), (9) 

with the 1D solution dependent on the time difference T = t - to , [6] 

1 2 -+­
Lx Lx 

n=1,3, ... 

00 " 
'" 2 2 D / L2 n7rx n7rxo L e-n 

1f r xsin--sin--
Lx Lx 

2 ~ 2 2 D / L2 n7rX' n7rXo +- L e-n 
1f r x cos -- cos --. (10) 

Lx Lx Lx 
n=2,4, . .. 

It will be convenient to recognize the following: 

" 1 2 ~ 2 2D / L 2 n7rX' n7rXo 
p(X -Lx/2, tlxo-Lx/2, to; Lx) = Lx + Lx L e-n 

1f r x cos Lx cos---r;:-. 
n=l,2,3, ... 

(11) 
Putting Eq. 9 and p(i'Q , to) = 1/V into Eq. 6, changing the limits of integra­

tion to 0 :S q~ :S L i for each dimension q~ and using Eq. 11, we have 

x ~ i, dx~ dyo dzo hi (X~ - Lx/2, Yo - Ly/2 , Zo - Lz/2) 

nx7rxo ny7rYo nz7rzo 
Cnx Cny Cn• cos -L- cos -- cos --

x Ly Lz 

x ~ i, dx' dy' dz' hi (X' - Lx/2 , y' - Ly/2, z' - Lz/2) 

nx7rX' ny7rY' nz7rz' 
Cnx Cny Cn• cos -L- cos -L- cos --

x y Lz 
(12) 
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in which the factor en has been introduced, 

if n = 0 
otherwise. 

We identify the 3D cosine transform of hi(f') within Eq. 12, 

A"{hi } == ~ lv, dx' dy' dz' hi(x' - L x/ 2, y' - Ly/2, z ' - L z/2) 

n x 7rx' n y7rY' n z7rz' 
xcos--cos--cos--

L x Ly Lz ' 

(13) 

(14) 

(where the integral is over the range x ' E [0, L x], y' E [0, Ly], z' E [0, L z]), giving 
finally 

00 

(15) 
n x,ny,nz=O 

with the characteristic time Tc for a given spatial mode defined by 

(16) 

Putting this expression into Eq. 3 and performing the integral over T gives 

00 " 

kii(W) = L e~X e~ye~Z 1 +:~(T")2 (A"{hi })2 , (17) 
n x,nll ,nz=O C 

Substitution into Eqs. 1 and 2 results in complete expressions for the longitu­
dinal and transverse relaxation times. 

2.1. Extension to dressed spins with non-uniform dressing field 

An RF magnetic field with amplitude Bl applied transverse to the holding 
field Bo modifies the effective precession frequency of a particle. In terms of 
dimensionless dressing parameters 

x = "Y B1 , Y = "Y Bo , 
WRF WRF 

(18) 

in the limit Y « 1 the effective gyromagnetic ratio becomes [7] 

"Yeff = "Y Jo(X) . (19) 

Thus for a dressing field with spatially varying amplitude Bl (7') = (Bl )+8Bl (7'), 
the equivalent variation 8Eo in the holding field Bo is given by [1] 

(20) 
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The expressions from the previous sections can be used to calculate T2 for the 
dressed spin with a non-uniform dressing field by setting 

, ~ , elf, 

Wo ~ , elfBO, 

h(X) 
hz(r) ~ y Jo(X) oB1(f') + oBo(f'), 

where any variation oBo in the holding field itself has been included in hz . 

3. Linear electric field frequency shift 

(21) 

(22) 

(23) 

A spin moving though an electric field experiences a motional magnetic field 
that may, in conjunction with gradients of the magnetic field, produce a shift 
in the precession frequency dependent on the electric field direction and mag­
nitude [3]. Of particular concern in searches for electric dipole moments are 
effects that are linearly proportional to the electric field E . These may mimic 
effects expected for an electric dipole moment, thereby creating a "false EDM." 

As shown by Lamoreaux and Golub [8], the linear-in-electric-field frequency 
shift for spins in a confined volume is given by the expression 

11t OWE = -- dT COSWOT{ (Wx(t)Wy(t - T)) - (Wx(t - T)Wy(t))}, 
2 0 

(24) 

where the perturbations can be written more generally as 

Expanding the expression for OWE and keeping only terms linear in E results in 

,
2E l t 

- dT COSWOT{ (hy(t)vy(t - T)) + (hx(t)vx(t - T)) 
2c 0 

- (hy(t - T)Vy(t)) - (hx(t - T)Vx(t))}. (26) 

The cosine-transform method developed in the present work can be used to 
compute Eq. 26 in the diffusion limit for the nEDM cell geometry. While the 
expressions, 

y(t) = Yo + lot vy(t')dt', y(t - T) = Yo + lot-r vy(t')dt', (27) 

were used in Ref. [8] to eliminate y in favor of an expression with v y , here we 
remove the velocity components from the correlation functions and use instead 
the Fundmental Theorem of Calculus and the above expression for y( t - T). The 
correlation functions can then be written 

(28) 
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a 
(hy(t - T)Vy(t)) = (hy(t)vy(t + T) ) = aT (hy(t)y(t + T)). (29) 

In the latter expression, averages are assumed to be independent of the overall 
time offset t, as appropriate for a stationary problem. 

The expressions in Section 2 are modified to give the correlation function 
in the diffusion limit in terms of the cosine-transform components of hy(f') and 
y(f'), 

(hy(t)y(t - T) ) = (30) 
n x,n y,n z 

(31) 

Performing the integral in Eq. 26, we have 

leading to an expression for the frequency shift , 

''''?E OWE = -­
C 

L 1 + (~OT~)2 C~x C~y C~z [An{hy} An{y} + An{hx} An{x}] . 
n x,n y,n z 

(33) 
The summation can be reduced by computing the cosine transform components 
of x(f') and y(f') analytically, 

An{x} = { - ;{7r~ ifnx = I,3 , ... ;n y = n z =0 
o otherwise. 

(34) 

The result for the frequency shift in the diffusion approximation is 

4'lE [ Ly A (O,ny,O){hy} Lx A(nx,O,O){hx} 1 
OWE = -c- ny~, .. . n~1f2 1 + (WOT~o ,ny,o))2 + nx~, ... n~1f2 1 + (WOT~nx,o ,o))2 ; 

(35) 
we are left with I-dimensional cosine transforms of the field perturbation in x 
and y . The false EDM equivalent to this linear-in-electric-field shift is 

(36) 

4. Example applications 

The bulk of the computational effort required for practical application of the 
present technique is in finding the cosine transform amplitudes An of the field 
non-uniformities. The form of Eq. 14 is amenable to numerical computation 
with Fast Fourier Transform software libraries. The examples below use the 
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multidimensional discrete cosine transform (DCT) feature of the freely-available 
software library FFTW3 [9]. Input to the DCT for each field component is an 
array of field perturbations hq(T) sampled over the cell volume at N x x Ny x N z 

grid points, and the output is an array of DCT amplitudes which, after scaling 
by 1/(8Nx N yN z ) , correspond to the desired amplitudes An. The summations · 
in Eqs. 17 and 35 are truncated according to the amplitudes available from the 
DCT. Accuracy of the result can be checked by increasing the number of sample 
points and repeating the computation. Note that for the linear-in-electric-field 
frequency shift (false-EDM) result , each of the two terms in Eq. 35 requires only 
a I-dimensional cosine transform of the respective field perturbation component 
averaged over the other dimensions. 

4.1. Dipole source near the cell 

We calculate the effect of a magnetic dipole source, here a small, permanently­
magnetized sphere of radius a, placed near the cell in an otherwise uniform field. 
The field perturbation at a point rwith respect to the center of the sphere is [10] 

(37) 

where B s is the magnitude of the field on the surface of the sphere at its poles, 
m is the unit vector in the direction of the magnetization, and n is the unit 
vector along r. 

The cell in this study has dimensions L x = 10.2 cm, Ly = 50 cm, Lz = 
7.6 cm and contains a dilute mixture of helium-3 in helium-4 at 450 mK, for 
a helium-3 diffusion constant of D = 428 cm2 Is [11]. The 10-mG, uniform 
holding field is in the z-direction, and four different dipole impurity cases are 
considered all with Bs = 1 Tesla: Dipole Source A, with diameter 150 j.Lm, 

location fd = (0,0,5.07) cm, orientation m along the z-axis; Dipole Source B, 
with diameter 150 j.Lm, location fd = (5.00,25.00, 5.07) cm, orientation m along 
the z-axis; Dipole Source C, with diameter 175 j.Lm, location fd = (0,0, 5.07) cm, 
orientation m along the x-axis; and Dipole Source D, with diameter 175 j.Lm, 

location i'd = (5.00,25.00,5.07) cm, orientation m along the x-axis. The location 
fd given for each dipole is with respect to an origin at the center of the cell 
volume and corresponds to an outside face of a 1.27-cm-thick cell wall, either 
at the center of the face (Sources A and C) or near the corner (Sources Band 
D). The results for relaxation times T I , T2 , and false EDM due to the magnetic 
field nonuniformity are shown in Table 4.1. The calculation was repeated for 
several different numbers of grid points used in the discrete cosine transform 
over the cell volume, and stability of the results is evident as the grid is made 
increasingly fine. 

The prediction for T2 due to each dipole source was checked by a diffusion 
Monte Carlo simulation. The simulated particles were treated classically, with 
constant velocity consistent with the thermal average kinetic energy of helium-
3 quasiparticles, and with the scattering mean free path set consistent with 
the diffusion constant. At a temperature of 450 mK, this gives a mean free 
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Case dV X E I 
Dipole source A 64 x 256 x 32 4467.65 830.59 -5.0622e-27 
Dipole source A 64 x 512 x 32 4467.65 830.59 -5.0622e-27 
Dipole source A 64 x 512 x 64 4444.89 829.15 -5.0784e-27 
Dipole source A 128 x 512 x 64 4444.90 829.16 -5.0824e-27 
Dipole source A 128 x 512 x 128 4439.24 828.80 -5.0865e-27 
Dipole source B 64 x 256 x 32 16967.75 3286.58 -1.508ge-27 
Dipole source B 64 x 512 x 32 16987.42 3286.95 -1.4836e-27 
Dipole source B 64 x 512 x 64 16864.89 3280.61 -1.5207e-27 
Dipole source B 128 x 512 x 64 16878.04 3280.85 -1.5044e-27 
Dipole source B 128 x 512 x 128 16847.56 3279.27 -1.5137e-27 
Dipole source C 64 x 256 x 32 3487.66 993.46 -8.8261e-43 
Dipole source C 64 x 512 x 32 3487.66 993.46 -1.1 026e-42 
Dipole source C 64 x 512 x 64 3470.03 990.81 -1.0648e-42 
Dipole source C 128 x 512 x 64 3470.09 990.85 -1 .3352e-42 
Dipole source C 128 x 512 x 128 3465.71 990.19 -1 .3549e-42 
Dipole source D 64 x 256 x 32 14022.45 642.52 2.0254e-26 
Dipole source D 64 x 512 x 32 14027.46 642.52 2.0274e-26 
Dipole source D 64 x 512 x 64 13947.02 641.22 2.0287e-26 
Dipole source D 128 x 512 x 64 13950.38 641.69 2.0288e-26 
Dipole source D 128 x 512 x 128 13930.38 641.36 2.0292e-26 

Table 1: Results of the calculation for the different combinations of dipole source location , 
orientation, and strength described in the text, and for several discrete cosine transform grid 
sizes. The parameters of each dipole source are given in the text. 
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Figure 1: Results for the transverse polarization P(t) versus time from the diffusion Monte 
Carlo simulations for T2 due a a dipole source near the cell. The shaded bands indicate 
the standard deviation of five curves P(t) for each dipole source found by subdividing the 
ensemble of 2000 simulated particles. In order from shortest to longest T2, the curves are for 
Dipole Sources D, A, C, and B described in the text. The smooth black lines are the predicted 
P(t) = exp( - t / Ti h ), where Tih for each dipole source is taken from Table 4.1. 

path of 3.54 mm, sufficiently small compared to the cell dimensions that the 
diffusion approximation is expected to be valid. Each simulated particle was 
started with spin initially aligned with the y-axis (transverse to the lO-mG 
holding field), and the spin orientation (Si for particle i) as the particle moved 
throughout the cell volume was evolved in the Rotating Frame [5] using a Runge­
Kutta method with adaptive stepsize control [12] . For each dipole source, 2000 
helium-3 particles were simulated, and the polarization in the plane transverse 
to the holding field was found from the vector sum of spin directions versus 

time, pet) = lL:i SIr(t)/nl, where SIr is the projection of spin i onto the plane 

transverse to the holding field. Simulation results are shown in Fig. 1 along with 
predictions from the present technique, demonstrating good agreement between 
the simulation and theory calculation. 

The cosine-transform technique is also applied in turn to Dipole Sources A 
through D repositioned successively further away from the cell in the z-direction . 

. Results are shown in Fig. 2 for the dipole source located as close as the outside 
of the 1.27-cm-thick cell wall. Dipole sources much closer than the outside of the 
cell wall are not considered here because the rapidly-falling field very near the 
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·Figure 2: Calculated relaxation times and false EDM arising from Dipole Sources A through D 
described in the text, as the sources are repositioned further away from the cell in the z­
direction. The number of grid points in the discrete cosine transform over the Lx x Ly x Lz = 
10.2 x 50 x 7.6 cm3 cell is N x x Ny x N z = 128 x 512 x 128. 

10 



source would not be well-represented by a 3-dimensional DCT over a practical 
number of grid points. As long as the average magnetic field perturbation 
remains small compared to the holding field, the results may be scaled to other 
dipole strengths: T 1,2 ex (Bsa3? and dvxE ex B sa3 . Dipole Source C, centered 
above the cell and oriented in the x-direction, gives zero (within numerical 
precision) false EDM because hx is symmetric across x = 0, and hy is symmetric 
across y = 0; i.e. , there are no odd components in the cosine transform of these 
perturbations in their respective directions. 

4.2. Superconducting rod near the cell 

As another example, we calculate the effect of a superconducting rod placed 
near the cell in an otherwise uniform holding field. For an infinite-length rod 
along the y axis and through the origin in a magnetic field Bo applied along the 
z axis, the net field around the rod is [13] 

a2 

(1 - 2" )Bo cos ¢;, 
p 

a2 

(1 + 2" )Bo sin ¢;, 
p 

(38) 

(39) 

where a is the rod radius and (p, ¢;) are polar coordinates in the zx plane. While 
the cosine transforms of Bx, B z derived from these equations (appropriately 
translated to the desired location of the superconducting rod) could perhaps 
be calculated analytically, here the equations are used to generate a field map 
that is subsequently run through the machinery to produce values for TI, T2 , 

and dvxE. Results are shown in Figure 3, with physical parameters given in the 
caption. 

5. Conclusion 

A method to calculate spin relaxation times and the linear-in-electric-field 
frequency shift in the diffusion approximation was presented. The technique is 
based on the observation that, for particles diffusing in a rectangular cell, the 
correlation function of position-dependent fields experienced by the particles is 
the weighted sum over the product of spatial cosine-transform components of the 
fields. 3 As the formulation is intended for practical computation in a rectagular 
cell, the result is for the complete 3-dimensional geometry. In the linear-in­
electric-field frequency shift calculation, the non-zero terms in the summation 
amount to I-dimensional cosine transforms in the directions transverse to the 
holding field; this is discussed further in Appendix A, where the dipole impurity 

3During preparation of this manuscript, independent work was published based on essen­
tially the same observation for the Tl, T2 calculation. These authors point out that their result 
may be used as a probe for possible unknown spin interactions and applied it to improve the 
limits on axion-like interactions with the cell walls [141. 

11 



~ 
109 

,1·· <1 

Q) 

E 
~ 
c 
0 
~ 
ns 
>< ns 
ii a: 

...................... ....................... : ........................ : 
l l 

......... ; .......................... ; ......................... . 

.................................................................. 

;; l~; 1···; 

X 10-27 

1r 10~····· · ·········;·························;········· .................. ; ........................ ; .......................... ; ......................... . 

t [\. 
w 5 _1" ............. ;: ....... , .................. ; ....... .. .................. ; .......................... ; ............ ............. ; ......... ················H 

""'''--
Q) 
1/1 

;f 
oU .HL.............. L............. =~~==~==d 

-5 " ............... ~ ....................... ~ ........................... ~ ......................... ~ ................. ···;.·························· H 

-101~·············· i .... .. ................... i .......... ············i······················ i···· 

-15h ....................... H·· i 
5 10 15 20 25 30 

Distance of rod to inner cell wall (cm) 

Figure 3: ·Calculated relaxation times T1 ,. T2 and false EDM dvxE due to the magnetic field 
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and placed near the cell . The rod is centered over the cell in the x-direction, and the horizontal 
axis of the plots is the distance along the z-axis between the inside of the cell wall and the 
center of the rod. The parameters are diffusion constant D = 428 cm2 /s (corresponding to a 
temperature of 450 mK Ill]) , holding field Bo = 10 mG (applied parallel to the z-axis) , and 
cell dimensions L x = 10.2 em, Ly = 50 em, Lz = 7.6 em. 
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example is extended. Computation of the relaxation times requires in general 
the full 3-dimensional cosine transform. Practical computation is done using 
fast discrete cosine transforms of the field components. 

In addition to evaluating the effect of magnetic impurities near the cell as 
in the above examples, this method could be used in magnet coil design op­
timization: given a field map, T 1 , T2 , and bw E can be quickly evalulated and 
combined into a figure of merit. 
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Appendix A. OWE due to a magnetic dipole impurity 

In the expression for the linear-in-electric-field frequency shift, Eq. 35, the 
full 3-dimensional cosine transform is not required. Integrating over the zero­
mode directions in A(nx ,O,O){hx} leaves a I-dimensional cosine transform in the 
remaining direction, 

(A.l) 

where A is the cross-sectional area of the cell in the yz-plane, and 

1 l L x 
n7rx' Anx{J} == - dx' f(x' - L/2) cos --. 

Lx ° L 
(A.2) 

It remains to calculate hx averaged over yz-plane cross sections and similarly 
for hy, i.e., the total magnetic flux through these cross sections divided by area. 
The analytic expression developed in this appendix for a dipole impurity near 
the cell, illustrated in Fig. A.4, is also applicable to the problem of finding the 
magnetic flux due to a dipole through a piecewise linear pickup loop. 

The magnetic flux through a surface S due to a dipole m at point r:", is 

<I>(fm) = ( B(f - r:",) . £a = { (V r x A(f - fm)) . dCl = J A(f - r:",) . dl. is is ~s 
(A.3) 

The magnetic vector potential at point f due to a dipole m at point r:", is 

(A.4) 

In terms of the maximum surface field Bs of a spherical, uniformly and perma­
nently magnetized impurity of radius a, the-dipole strength is 

Iml = 27r Bs a
3 

J.lo 
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E B 

1 1 
Figure A.4: Diagram of the cell configuration, indicating the impurity dipole ITt and one of the 
cell cross-sections over which the average field perturbation due to the dipole is calculated. 

Consider a closed planar surface S bounded by N connected line segments 
which have successive endponts ai, i = 0, ... , N and aN = aa. We will explicitly 
calculate the contribution ~<I>i to the line integral Eq. A.3 from the boundary 
line segment extending from ai to aH1, then sum over all segments to get the 
total flux due to the dipole . 

~<I>i(rm) = riiH 1 

A(r-f'm) · dl= 4/-La riii

+
1 ml~ (r:~m) · dl 

} iii 1T' } o'i r - r m 
(A.6) 

The line from ai to ai+! can be parameterized in terms of a scalar t E [-1, 1], 

l 

Equation A.6 becomes 

The solution to the integral ([15], Eq. 2.263 .3) , 

11 dt 

- 1 (1 + 2bt + c2t2 )3/2 

14 

(A.7) 

(A.8) 

(A.9) 

(A. 10) 

(A.ll) 

(A.12) 



yields an algebraic expression for b.<I>i, and the flux through the loop is found 
by summation over all of its constituent line segments. 

The average hx and hy can now be evaluated at discrete points along x and 
y, respectively, and fed into I-dimensional discrete cosine transforms. Results 
using this method, rather than the full 3-dimensional cosine transform as re­
quired for Tl and T2 , are shown in Fig. A.5 for a dipole source scanned over the 
outer cell wall. 
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Figure A.5: Results for the false-EDM effect (in e-cm) due to a dipole impurity 1.27 cm 
above the Lx x Ly x Lz = 10.2 x 50 x 7.6 cm3 cell, versus the position of the dipole in the 
axes transverse to the holding field. For the upper plot, the dipole source is aligned with the 
z-axis (holding field direction), has radius a = 150 p.m and maximum surface field Bs = 1 T. 
For the lower plot , the dipole source is aligned with the x-axis, has a = 175 p.m and Bs = 1 T . 
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