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Burn Front and Reflected Shock Wave Visualization in an Inertially
Confined Detonation of High Explosive

Guillermo Terrones, Michael W. Burkett, and Christopher Morris
Abstract

Proton radiography was used to investigate the spatiotemporal evolution of the burn front
and associated reflected shocks on a PBX-9502 charge confined between an outer
cylindrical steel liner and an inner elliptical tin liner. The charge was initiated with a line
wave generator at 30 degrees from the major axis of the ellipse. This configuration
provides a large region where the high explosive (HE) is not within the line of sight of
the detonation line and thus offers a suitable experimental platform to test various burn
models and EOS formulations. In addition, the off axis initiation allows for the burn
fronts to travel around the charge through different confining paths. Simulations were
performed to assess the accuracy of several HE burn methodologies. Experimental data
from initiation through HE shock collision will be presented and simulation comparison
results will be discussed.
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Objective

« Use pRad data to determine the accuracy of current
burn models for the computation of the burn front
and associated reflected shocks beyond the shadow
region in an insensitive high explosive.
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Velocimetry Data
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Digitized pRad Shock Data
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Artificial Viscosity (Q) Map
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Quantitative Comparisons

e Metric: The time At (in shakes) it would
have taken the computed front to reach
the experimental one (At > 0= data leads).

e Calculate the ayerage for every point on
(in shakes).

the isochrone Ar)




Shadow Fraction = 0.95
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0.95 Shadow Fraction (Lower Fronts)
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Shadow Fraction = 0.95
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DSD

Dots = pRad Data

3 Lines = Simulation
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DSD (Lower Fronts)

t=3.8us t =48 us =58 s t=06.8us
AT AT AT AT
20 20 20 20
\\U'N S s \_‘O'N S S
_50 0.2 . ] 20 0.2 0. . _20 0.2 ; . o0 0.2 0. :
t =78 us t =88 us t =98 us t =108 us
AT At AT AT
20 20 20 20
| STz or—t° | Srur—s® | N0t
_20 0.2 0. : _20 0.2 0.6 ; _20 . g . _20 i : ;
t=118 us t=12.8 us t=13.8 us t =148 us
AT AT AT AT
20 20 20 20.
s s - S s
~20 90 -20 ~20 _oon 22
t= 158 us = 168 us
AT AT
20 20
s - s
02 06 1. o, 06 1.




e P

40 40

(AT)
201 (AT) :Mean At along isochrones

15 ® Upper

10 ® lower




Forest Fire
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Forest Fire (Lower Fronts)
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Sapatiotemporal Global
Averages in Shakes
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Reflected Shocks

Dots = pRad Data

Lines = Simulation
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Concluding Remarks

* The Forest Fire reactive burn model and DSD
have provided the best agreement with the data.
However, FF is mesh dependent and in this
problem it required a mesh resolution of 150 um.

e Two more burn algorithms (CJ Volume and
Dynamic Burn) will be compared with data.

 While the agreement with reflected shocks loci is
acceptable, on average is twice as large as that
for the burn fronts.



