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Directly laser driven and X-radiation driven DT filled capsules differ in the relationship 
between neutron and X-ray images. Shot NII0217, a directly driven DT-filled glass 
micro-balloon provided the first neutron images at the National Ignition Facility. As 
seen in implosions on the Omega laser, the neutron image can be enclosed inside the 
contour of the time integrated X-ray images, and the time resolved ones at a time near 
peak neutron emission rate. HYDRA simulations show the X-ray image is dominated 
by emission from the glass shell while the neutron image arises from the DT fuel it 
encloses. In the absence of mix or jetting, X-ray images of a plastic shell, cryogenically 
layered THD fuel capsule should be dominated by emission from the hydrogen itself 
rather than the cooler plastic shell which is separated from the hot core by cold DT fuel. 
This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core 
neutrons. Time gated images of neutrons between 10 and 12 Me V show this fuel shell. 
X-ray emission spectra, and energy resolved images suggest that germanium doped 
plastic emits from the torus shaped hot spot. This work was performed for the U.S. 
Department of Energy, National Nuclear Security Administration and by the National 
Ignition Campaign partners; Lawrence Livermore National Laboratory (LLNL)(contract 
DE-AC52-07NA27344), University of Rochester -Laboratory for Laser Energetics 
(LLE), General Atomics (GA), Los Alamos National Laboratory (LANL) (Contract DE
AC52-06NA25396), Sandia National Laboratory (SNL). Other contributors include 
Lawrence Berkeley National Laboratory (LBNL), Massachusetts Institute of 
Technology (MIT), Atomic Weapons Establishment (A WE), England, and 
Commissariat a I'Energie Atomique (CEA), France. 
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Comparing X-ray and Neutron Images can differentiate 
regions of high X-ray emission from high DT burn. 

NIF-0000-00000s2.ppt 

• X-ray emission arises from hot plasma with high X-ray emissivity 

• Neutron emission from regions with high neutron production 
rates, i.e. high densities of deuterium and tritium, and high 
temperatures 

• Directly driven glass shells show neutron emission from the hot 
DT gas, and X-ray emission predominantly from the surrounding 
glass shell. 

• X-ray emission from radiation driven THO or DT capsules 
calculates to be dominated by dense, high temperature DT fuel, 
and little from the relatively colder plastic shell. 

• Both types of capsules show emission from shell material if it is 
mixed into the hot central fuel. 

Author-NIC Review, December 2009 3 



Outline 

• Directly driven DT filled glass microballoons 
- Calculational technique 

- The need to reduce inner beam cone laser power to match 
observed oblate X-ray shapes. 

- Observed X-ray (see Ma et al.) and Neutron images (Grim et al., Guier 
et al. ) 

- X-ray emission surrounds the neutron source 

• Cryogenically layered THD and DT capsules 
- Calculational technique (see Jones et al. ) 

- The need to reduce laser intensity to match shock velocities 
- Observed X-ray and Neutron Images 
- Neutron emission overlays general X-ray emission 
- X-ray bright spots arise in hot, low density regions 

- X-ray bright spots are not apparent in Neutron Images 

- Ross Pair Filtering suggests bright spots include germanium 
emission (Ma et al.) 

- X-ray spectra show Ge emission from the hot spot torus 
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Directly driven DT gas filled capsules give high yields. 

• Capsules: 
- N110217 - 2e+14, 10.1 keV 

- 126 kJ ramp, 1640 00, 4.3 flm thick Si02 shell, 7 atm DT 
- N110603-002 - 2.3e+14, 5.8 keV 

- 353 kJ ramp+flattop, 2100 00, 10 flm thick Si02 shell, 10 
atm DT 

- N110618 - 6.8 e+14, 8.0 keV 

- No Neutron images 

• Hydra Calculations: 
- 20 implosions with Monte Carlo neutron and charged particle 

transport 
- 30 laser powers are included (courtesy of S. Finnegan) 
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For Directly driven gas capsules, X-ray emission is 
dominated by the hot glass shell, and neutrons by the hot=oOT fue 

13-15 MeV Equatorial X-rays Polar X-rays 

- 1 

- 100 o 100 
-100 o 100 

0.00 1 0.006 0011 n.rl1F; 

0.001 0.004 0.007 0,01 

Materials Electron Temp Density 
200--:! I I I, I. ' .!J, lt 1, 11 1 11 I ,1 .J. 1, 1 I I, I J. I I,. I.' I III j ':-

200~ 111 1.1 r 1 .• 1.11, 1. 1' II I loll . I I . t l l ll I I , I I I I .. I I J ~ 

100-: 

Si02 100-: 

0--: 
0--: 

-1)0-: 
- 100-: 

- 100 0 100 200 -200 -; i I I I 1 ' 1 I I I' I I I II I I I I' I I , " , I I I I I' , , , I' , , I r -200-; I I I I II' 1'1'1 I' , ", I 1'1 1 11 'Til l I I ' 11 1" 1 11 II r 
200 -100 0 100 200 

-200 -100 0 100 200 
0.1 0.6 1.1 '1.6 

0,5 2.5 '4.5 6.5 

• X-ray is from hot Si02;neutron emission from a -sphere of hot, low density 
NIF-0000-00000s2.ppt DT fuel. Author-NIC Review, December 2009 6 
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Polar Direct Drive laser powers were adjusted to give 
a round implosion calculated by Hydra 

Nominal Calculation +100/0 Outers -200/0 Inners Observed Image 

-100 o 100 • 200x200 micron neutron frames 
I 

0.015 • 400x400 X-ray frames 
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Directly Driven Capsule Neutron and X-ray Images 
were oblate. 

Pinhole neutrons 
PO = 77.81Jm 
P2/PO=-63% 
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Shot N 110217 Shot N 110603-002 
Penumbral neutrons 

No polar image 
> 6keV X-rays 

- Pole 0-0 

Image frames are 400x400 J.lm 
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The neutron source, reconstructed from either a penumbral or pinhole 
image fits into the X-ray image near peak yield rate. 

A 
Los Alamos 
NATIONAL LABORATORY 

EST. 1943 

0,0 Reconstructed 0,0 

hGXI gated X-ray image 
near peak neutron yield rate 
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Neutron Sources 
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• The hGXI data was analyzed from Riccardo Tommasini (LLNL) 

• Neutron sources are in 200x200 f.!m frames 
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The neutron image can fit inside the shell of X-ray emission 
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The relative position of the X-ray and neutron images is not measured 
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HYDRA Simulations of THD and DT capsules 

NIF-0000-00000s2.ppt 

• Calculations were done by O. Jones (see P.Wed_8) with HYDRA and: 
- Laser powers adjusted to give proper shock velocities and timing 
- A beam power transfer script used to get approximately correct X-

ray image symmetry. 

• Calculations will be done for shots N110608 and N110615 with a 
different first shock to get the calculated and observed dsr to agree. 

• Neutron sources are reconstructed to remove instrument blurring. 
However high frequency residuals remain in the difference between the 
observed and calculated images. (see Grim et al., 

• The calculated and observed primary and down-scattered neutron 
images agree roughly with measured. 

• There may be evidence that X-ray bright spots are not bright in the 
primary neutron image. 

Author-NIC Review, December 2009 11 



In a clean THO or OT ignition capsule X-ray emission __ 
arises from hot, low density OT fuel, not CH or Ge doped CH 

13-15 MeV 
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• Both X-ray and neutron emission is from a torus of hot, low density DT fuel. 
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Neutron images and the various X-ray sources are 
viewed from different directions 

hGXI near Peak Brightness 
Equatorial (90-78) 

All frames are 
-- 1 00x1 00 f.lm 
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N110603, with TH(20%)O, has bright X-ray spots in a 
hot low density fuel toru·s. 

13-17 MeV Neutrons 
Calculated 

10-12 MeV Neutrons X-ray(Peak) 
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N110608, with T{50%)O , has bright X-ray spots in a 
hot low density fuel torus. 

Calculated 
13-17 MeV Neutrons 1 0-1? Mp.V NP.1 Jtrnn~ X-ray(Peak) Density (peak Y dot) 
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N110615, with T{50%)O, has bright X-ray spots in a 
hot low density fuel torus. 

13-17 MeV Neutrons 
Calculated 

10-12 MeV Neutrons X-ray(Peak) Density (peak Ydot) 
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N110620, with T(500/0)0, has bright X-ray spots in a 
hot, low density fuel teardrop. 

13-17 MeV Neutrons 
Calculated 

10-12 MeV Neutrons 
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Hot spot neutron yield is degraded, possibly by mix. 

Even if we calculate the observed dsr, ion temperature, and x-ray and neutron 
image sizes, there still seems to be a factor of -5 degradation in the 
measured yield from observed 

N110603 
Obs Calc Difference 

YBangtime(ns) 22.330 22.369 39ps 
Yield(13-15) 6.4ge13 -3.2e+14 Factor of 5 
Dsr(%) 4.68 4.88 0.2% 
Tion(keV) 2.9 3.09 0.19 keV 

For other THD and DT shots the calculations give too much compression. 
These will be re-done, setting the fuel on a higher adiabat 
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Germanium emission must arise from doped plastic 
mixed into the hot fuel. If Ge is mixed, then so is CH. 

• Germanium is observed in emission in N110603 THD and other THD and DT 
capsules See Regan et al. ,O.We_A14 

- 2-35 ng of CH IGe mixed into hot spot 

- Electron Density 0.5-1.0 e+25 

- Electron Temperature 2.2 (-0.6, +0.9) keY 

• Ne and Te are consistent with mixing into the hot spot's low density torus. 
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The X-r~y bright spot in the THO image is dominated 
by emission between 9 and 11 keV, probably from germanium 

Shot N 110603-002 

>6keV 

6 ~ 9 

keV 
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See Ma etal. ,P.WE_16 
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Summary 

"" r" nnnn nnnnnc.? nnt 

• For directly driven gas filled capsules, X-ray emission is 
dominated by the glass shell, or glass mixed in the central fuel 

- Neutron sources fit inside observed X-ray images. 
- Both neutron and X-ray images show oblate implosions 
- Modeling suggests that more energy is absorbed by the inner 

cones than the outer cones. 

- Reducing the outer cone power by - 20% , or transferring 
it to the inner cones might alleviate the problem. 

• For radiation driven THO and OT capsules, X-ray emission is 
dominated by material in the hot fuel, either OT or plastic mixed in 
from the cooler shell 

- Neutron image sizes are large, consistent with the entire X
ray image, not with the X-ray bright spots. 

- Combined with Ross filtered X-ray images and X-ray spectra, 
this suggests, X-ray bright spots contain plastic. 

• Further comparisons may suggest the spatial extent of hot spot 
yield degradation 
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