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1. Introduction 

Defining radiographic performance in a meaningful way for a range of technologies and 

requirements is a challenging task. Two key elements of performance are the ability to 

measure density (or transmission), and the ability to resolve an edge or feature. The former 

task is the main focus of this paper, owing to its inherent complexity, although the latter is also 

discussed. Our goal here is to outline an appropriate Figure of Merit (FOM) that may be used to 

inform decisions with respect to radiographic capabilities at the NNSS. We will also attempt to 

communicate relevant caveats and context, as appropriate. 

To this end, we first discuss various sources of error in NNSA radiography, and review which 

sources of error are impacted by the choice of radiographic system (below, in Section 1). A 

figure of merit is then introduced that uses the Contrast-to-Noise ratio, CNR, to identify the 

object-thickness regimes that are "optimum" based on the mean free path (A = 1/).!) of the 

particle type (Section 2). This figure of merit is then applied in the task of measuring a relative 

path length difference of 1% for a range of object thicknesses. For both x-rays and protons, we 

demonstrate the number of particles required to perform this discrimination task with 99% 

confidence (Section 3). The ability to resolve an edge or feature is discussed in Section 4. This 

task depends on several factors, but is addressed here by the dominant factor in most 

applications, the spatial resolution of the system. One straightforward way of quantifying 

spatial resolution is introduced. Finally, and for completeness, several important 

considerations outside the scope of this FOM are briefly discussed. 

Sources of error in NNSA radiography 

Typically, the underlying goal in attempting to develop a figure of merit (FOM) is to gain an 

understanding of how well we will be able to measure a quantity of interest. In NNSA 

radiography, this quantity is often density, p, and we would like to know how well we can 

measure density in a given experiment (or set of experiments) for different candidate 

radiographic systems (machines & detectors). It is thus instructive to examine the sources of 

error in radiographic experiments of interest to NNSA. An expression for error in density, Ep, is 

given below in Eqn 1. 

~_ 2 +2 +2 +2 +2 +2 +2+2 "'p - cpoisson cnoise cblur cscatter ccoll Coverlying c3D c sys Equation 1 

Here the sources of error are assumed to be uncorrelated, which may not be strictly true in all 

cases but is reasonable for the present purpose. Subscripts denote the sources of error as 

follows: poisson, for uncertainty due to particle statistics; noise, for all non-particle-counting 

sources of noise, such as noise sources in the camera system; blur, for errors due to all 



potential sources of blur; scatter, representing all sources of scatter, uncorrelated and 

correlated with the direct signal; coli, representing errors associated with graded or other 

collimation, or misalignment of such; overlying, representing errors associated with overlying 

materials in the radiographic line of sight; 3D, representing three-dimensional effects; and sys, 

intended to capture all other systematic sources of error not mentioned explicitly elsewhere. 

Note that other sources of error exist, and this expression will change based on the specifics of 

a given experiment-but this is one reasonable way of writing such an expression, and it is 

intended to be broadly applicable within the context of NNSS radiography. 

We are now able to examine this equation when asking the critical question, "How well will we 

be able to measure density?" The answer, of course, depends not only on the radiographic 

source and detector, but also the experiment. Importantly, the radiographic source will directly 

impact the first term, cpoisson, the third term, Cblur, and may impact the fourth term, Cscatter. The 

source will not have a strong impact on other terms, however, particularly those associated 

with systematic errors. Hence, the extent to which a Figure of Merit is an appropriate measure 

of our ability to estimate density depends heavily on the relative magnitudes of the terms in 

Equation 1. For regimes in which particle statistics are a dominant source of error, which might 

be the case for thicker objects, a FOM that captures these effects will be highly relevant. For 

regimes in which particle statistics are a small or negligible source of error relative to other 

terms, which might be the case for thinner objects, such an FOM will no longer be as relevant in 

terms of performance on real experiments. For example, reducing poisson noise to some 

fraction of other error sources might be good enough for a given measurement; moreover, 

further reduction in this one term may not yield overall improvement in the measurement, as 

suggested by an improving FOM. The relevance of an FOM in intermediate regimes will vary, of 

course, as the relative magnitudes of these error terms shift. Hence, ultimate decisions on 

radiographic systems should be informed not only by particle statistics errors but also by 

systematic and other errors for experiments of interest. 

Despite these caveats, characterization of radiographic systems remains a critical part of 

understanding total error. Moreover, in the complex task of selecting a radiographic source, an 

FOM remains a critical tool in that it allows for comparison of certain fundamental effects that 

are broadly present in radiographic measurement. 

2. A figure of merit for transmission measurement: CNR 

It is a common task in radiography to quantitatively measure differential pathlength1 as 

illustrated in Figure 1. Given this task, one might ask the following questions. First, assuming a 

fixed dose and a fixed differential path length, how confident are we that the measured 

I Sometimes called Line-Of-Sight mass, or Areal Mass, or Area Density. 



difference is real; i.e. what is the constrast sensitivity of our measurement? A second, related 

question is: what diagnostic dose, or alternatively how many particles, is required to establish a 

high level of confidence about a hypothetical pathlength difference from a differential 

absorption measurement? 
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Figure 1- Differential Absorption Measurement of Two Slabs of Material 

We start with a basic model based upon Beer's law as shown in Figure 1. In this model, the 

total mass absorption coefficient, fli p, is assumed to be constant with respect to particle energy 

and absorber material. This model assumption is only strictly true for mono-energetic, isotopic 

sources. Further, material #1 must be the same composition, but not necessarily the same 

density, as material #2. In general, these requirements are rarely met in practice. However, for 

megavolt radiography, the mass energy absorption coefficient is approximately constant over a 

wide range of energy and material Z. Thus, for the sake of this analysis, we can say that these 

conditions are approximately satisfied for certain applications. 

Let us establ ish two measurements. The first measurement, Mi, is simply a transmission 

measurement of No incident particles absorbed in a material with path length PIll. The second, 

nearly identical measurement, M2, has the same conditions as the first except applied to a 

different material path length, P2l2as follows: 

Equation 2 

Equation 3 



Our ability to measure this difference will come from the system with the largest difference in 

transmission relative to the noise in the measurement. Figure 2 demonstrates this effect. 
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Figure 2: (left) The thickness of an object has a step change in the center of the field of 

view and the extent of this step change needs to be measured. (middle) A low noise 

system allows a high fidelity measurement of this step change. (right) a high noise 

system will not measure this density as well. A useful figure of merit will result in the 

choice of the middle result over the right result. 

We will return to Eqns 2 and 3 in the next Section when we make statistical statements about 

our ability to discriminate between these 2 objects for given particles. Here we introduce the 

figure of merit. The above type of measurement is typical in the imaging world and contrast-to­

noise ratio is commonly used as a figure of merit to characterize the imaging systems. This 

figure of merit for radiography applications is shown in equation 1, where the contrast to noise 

ratio is related to the detected transmission. 

Equation 4 

In equation 4, CNR is the contrast to noise ratio, normalized to fractional object thickness 1'1//1, 

ND is the detected probes and TD is the detected transmission. It is important to note that 

these are detected quantities. By requiring detected quantities we are able to include 

detection efficiency in this FOM. If scatter background or long-range blur are significant 

contributors to the detected transmission, these quantities could be included in the evaluation 

of this FOM. This will most likely require simulations rather than an analytic evaluation of 

equation 4. 



It is useful to view this FOM for the most familiar as well as simplest analysis of x-ray 

radiography. In this analysis Beer's law, which is shown in a simplified form (assume f.l = 1) in 

Eqn. 5, is assumed for detected transmission measurement. 

T = e(-l) Equation 5 

This figure of merit is the classic CNR per fractional object thickness. Therefore, this CNR 

multiplied by the expected fractional change in object thickness provides an estimate of the 

contrast to noise ratio for this change in object thickness. Note that one must specify a desired 

spatial resolution or length scale in order to calculate this FOM. The resolution comes into this 

j:alculation through No, which will be determined by the (resolution)1\2 through the particle 

density flux at the detector. This specified length scale might be a nominal value, such as 1 

mm, to make comparisons on a uniform per-mm2 basis. Or, this length scale might be 

determined from the fundamental resolution of the radiography system. One reasonable way 

to define this is to use the FWHM values discussed in Section 4. 

Example FOM Calculation 

In this example the object thickness, I, is measured in units of mass attenuation lengths (also 

referred to interaction lengths). With the simplifying assumptions of 100% detection efficiency 

and no scatter background the FOM is easily determined analytically. This result is shown in 

Equation 6. 

Equation 6 

This provides the familiar result that the FOM improves as the square root of the number of 

particles. The CNR analysis also yields the result that the maximum of the FOM occurs when 1=2 

interaction lengths. A curve of this FOM for a pure beer's law attenuation radiography system 

is shown in figure 3. 

This simple example shows that this FOM has the attractive properties of going to zero at 100% 

transmission and going to zero at 0% transmission, and peaking somewhere in between. 

The above FOM gives important information in terms of where in the object-thickness regime a 

given particle type is "optimum" by the CNR criteria, where it is off-peak but relatively strong, 

and where it is relatively weak. It would be informative to link such an analysis to absolute 

performance, which is the goal of the following Section. 
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Figure 3: Beer's law attenuation is shown by the transmission curve_ The figure of merit 

described in equation 6 is also shown. This FOM peaks with the object thickness at 

twice the interaction length (mass attenuation coefficient for x-rays). 

3. Application of FOM to estimate measurement error 

In this section, we link the concepts in the above FOM to absolute performance, such as the 

ability of a radiographic system to measure to within some error the thickness difference in the 

simple problem described earlier. This problem may also be formulated by asking how many 

incident particles are required per unit area to achieve a given measurement accuracy. To do 

this, we return to Eqns 2 and 3, following on from their definitions, assuming x-rays, and using 

their notation. 

We define a differential absorption measurement, ~M: 

Equation 7 

Because the two measurements, Ml and M 2, are independent, the standard measurement 

error on their difference, (5!:J.M' is given by the followingi
: 

Equation 8 

a MI =~Ml,aM2 =~M2 Equation 9 



Equation 10 

The task we are interested in here is to determine if this measured difference is statistically 

different from zero and if so, with what degree of confidence. To do this, we must compare the 

expected difference, ~M, with the standard error, U!:J.M, for a given confidence level, <X. For <X = 

0.90 (Le. 90% confidence), ~M > 1.30U!:J.M; similarly for <X =0.95, ~M > 1.65u!:J.M; and for <X =0.99, 

~M > 2.33u!:J.M. Utilizing these constraints and solving for the number of particles, No, required 

we obtain the following boundary condition. 

N > L3
2[ex{ -~ p,i, )+exp( -~ p,e, )] 

0 - [exp( ->e,)-exp( ->,e, )y 
for <X = 0.90 (7) 

The results of this boundary condition are plotted in Figure 4 for the case of a fixed (~I=lg/cm2) 

path length difference. Note that for varying object thickness I, a constant path length 

difference ~I gives varying normalized contrast ~I/I, which was the basis of the FOM. Similar 

results are plotted in Figure 5 for the case of a fractional (1%) path length difference, ~I/I = 0.01, 

which is obviously a constant within the CNR formulation. Both plots assume ~p = 0.045cm2/g, 

which is typical for megavolt radiography. 
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Figure 4 - Incident X-Rays (~p = 0.045) Required To Discern Absolute (lg/cm2) Path length 

Differences With (90% & 99%) Confidence vs. Total Material Pathlength 



Note that the number of particles necessary to achieve a statistically significant result in Figure 
5 has a clear minimum, indicating an optimal path length for maximum statistical contrast. This 
is the same fundamental behavior captured by the (peaked) FOM earlier. The key question, of 
course, is whether or not a given radiographic system yields measurement errors that are 
acceptable given the system requirements, regardless of the distance from the "optimum" 
value. This must be determined for each radiographic system, experiment, and set of 
requirements considered. 

In general, one would like the shortest pathlength that allows enough particles through for the 
desired accuracy on the most opaque features. Even this rule must be balanced against 
practical considerations like detector dynamic range, and background effects (e.g. visible light 
scatter, signal bias etc.) 

H of Incident X-Rays for 90% ole 99% Confidence Detection of a 1 % Pothlength Delto 

Figure 5 -Incident X-Rays (~p = 0.045) Required to Discern a 1% Fractional Path length 

Difference With (90% & 99%) Confidence vs. Total Path length (p I). 



Trends for X-rays and Protons 

We have thus established the number of x-ray particles required to achieve a given level of 

sensitivity as a function of object pathlength. We might then ask, how many particles are 

actually available in a typical geometry for a DARHT-Iike X-ray machine? Figure 6 illustrates the 

number of y-rays (>lMeV) per Rad-cm2 as a function of electron energy for a range of energies 

commonly used for penetrating radiography. It is worth noting that because the below figures 

are on a per Rad-cml\2 basis, converting them to an actual error (or directly relating them to 

the particle requirements in Figure 5) requires knowledge or assumptions of experimental 

geometry, desired spatial resolution, and machine dose. 
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Figure 6 - Number of y-rays (>lMeV) per Rad-cm 2 vs Electron Energl 

We may also calculate the number of protons required for these characteristic tasks as a 

function of path length. Figure 7 illustrates the number of particles of both types necessary to 

accomplish a detection of 1% fractional pathlength change in uranium, and Figure 8 illustrates 

the case of a fixed (lg/cm2
) path length difference. From Figure 7, which most directly relates 

to our CNR, we observe that a large number of protons are necessary to discern differences in 

thinner objects. and a large number of y-rays are necessary to penetrate thicker objects. 
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Figure 7 - y-Rays and 10 GeV Protons Necessary for a 1% Fractional Path length 

Discrimination Task (a=0.99) . 
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4. Quantification of spatial resolution 

To allow us to properly capture the relative strengths and weaknesses of different radiographic 

systems, we consider separately the characterization of the resolution of the radiographic 

system. Although we reiterate that a single number cannot fully characterize the resolution 

function of any imaging system, we recognize that finding a single representative number is 

required here. We propose to use the full-width at half-maximum of the system line spread 

function (LSF), which is the derivative of the edge spread function (ESF). This can be estimated 

by considering the radiograph that generates an extended step function in the measured 

transmission. Such a step function is typically measured by radiograph ing a rolled-edge, which 

is least susceptible to misalignment issues. A high statistics measure of the system resolution 

can be measured by integrating along the edge to generate a one-dimensional graph of the 

transmission across the edge (this is the ESF). An example of this technique is shown in figure 

9, which is a measurement of the 800 MeV proton radiography system at LANL. Proton 

radiography sources typically have a Gaussian point spread function; therefore, the measured 

edge transition was fit to the edge transition that is expected from a Gaussian edge spread 

function . In fact, the specification for the shape of the blur function, along with the FWHM, 

fully characterizes the resolution of the imaging modality, provided that the specification of the 

shape is exactly correct (and aside from effects that are difficult to measure via the edge spread 

function, but can occur, such as low intensity long range components to the blur function) . 

These effects may also arise through a spatially-correlated scatter background. Some sources 

can have processes with very-long-range effects, so that objects far outside the field of view 

scatter probes back into the field of view. These effects are best characterized through their 

effects on density resolution. 
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Figure 1: (left) An 800 MeV proton radiograph of a 6 mm thick tungsten edge, which has been 

precision aligned to be perpendicular to the incident proton beam. A square edge allows the 

simultaneous measurement of the horizontal and vertical resolution in a single radiograph. An 

average over the vertical edge has been used to generate a high statistics measure of the 

transmission step across this edge. (Note curve is actually ESF, not LSF). 



5. Additional Characteristics of Radiographic Imaging Systems 

There are other important characteristics beyond those discussed here that must be considered 

when identifying the appropriate radiographic source. Temporal resolution of a single pulse is 

often an important quantity, which is easily characterized by the radiation pulse duration. 

Some applications also require or would greatly benefit from fast measurements at mUltiple 

times, so this is another consideration. Another characteristic that is typically overlooked is the 

operational repetition rate of the pulsed source. Data collected for characterization and 

calibration of the source and system are often as important as the dynamic object radiographs. 

Sources can be more fully optimized and characterized if measurements can be made quickly 

and at small expense-and these results can impact measurement error on the dynamic event. 

Finally, repeatability of the source is an important characteristic. With advanced analysis 

techniques, increasingly accurate measurements are possible through modeling different 

effects, but this is done most accurately with a repeatable source (so that the static object data 

is truly representative of the dynamic data). 

6. Conclusions 

Methods of evaluating radiographic imaging systems are discussed. Emphasis is placed on one 

general task in radiography: the ability to quantitatively measure a relative difference in 

pathlength. We derive a Figure of Merit (FOM) based upon the contrast-to-noise ratio (CNR) 

for such a task, and show how this FOM can be used to illuminate areas of relative strength and 

weakness in path length space for given particles. This FOM is then linked to system 

performance requirements for a specific ~I/I by examining how many particles are required to 

achieve a 1% fractional measurement with a given confidence. This is done for both x-rays and 

protons as a function of object pathlength. It shown that fewer x-rays are required for thinner 

objects, and fewer protons are required for thicker objects. The methodology also provides a 

framework for evaluation of candidate radiographic systems, given dose, experimental 

geometry, desired spatial resolution, and desired accuracy. We also outline one approach to 

defining system spatial resolution, the FWHM of the LSF. Finally, a general expression for 

density errors in NNSA radiography is discussed. Populating the terms in such an expression for 

a given class of experiments can provide important insights into when the sources of error 

captured by the FOM are highly relevant, moderately relevant, or less relevant in determining 

quantities of interest. 



Notes 

This paper is an attempt at combining separate, existing pieces of work into a coherent 

document. Frank Merrill's (P-25) "A common figure of merit for the comparison of radiographic 

imaging modalities" was heavily used in Sections 2 and 4. Scott Watson's (N-2) "Contrast 

Sensitivity in Radiography: the Princess and the Pea" was heavily used in Section 3, and also 

used in Section 2. References are found in those documents. 


